Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

3D-QSAR and Molecular Docking Studies of Pyrimidine-based EGFR Inhibitors

Author(s): Hui Gao, Hong Liu, Jingxuan Hou, Qingshan Gu, Meiqi Shi, Qingkun Wu* and Lu Zheng*

Volume 21, Issue 14, 2024

Published on: 20 October, 2023

Page: [3049 - 3059] Pages: 11

DOI: 10.2174/0115701808267565231012095231

Price: $65

Abstract

Background: Epidermal growth factor tyrosine kinase receptor (EGFR) is expressed in a variety of tumors and has become a new target for anti-cancer drugs. In recent years, small molecule inhibitors targeting EGFR have been reported extensively.

Objective: To investigate the quantitative structure-activity relationship (QSAR) of a set of EGFR inhibitors and design several new EGFR inhibitors with better efficiency and selectivity.

Methods: The structure–activity relationship of 119 pyrimidine EGFR inhibitors were studied based on comparative field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMISA).

Results: In this study, performance models with high prediction ability were constructed (CoMFA model: q2= 0.574, r2= 0.970, SEE= 0.163, F= 407.252; CoMSIA model: q2= 0.575, r2= 0.968, SEE= 0.171, F= 286.102), according to which 9 new EGFR inhibitors were designed. MD simulation (100 ns) on the docked complex of compound N7 (the most active compound) shows that the small molecule bindswith the protein stably.

Conclusion: The newly designed compound N7 was considered to be a promising EGFR inhibitor with better activity than the best active compound 80, according to the results of molecular docking, molecular dynamics, and ADMET prediction. These results will provide valuable guidance for the design of novel EGFR inhibitors.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[3]
Blackhall, F.; Ranson, M.; Thatcher, N. Where next for gefitinib in patients with lung cancer? Lancet Oncol., 2006, 7(6), 499-507.
[http://dx.doi.org/10.1016/S1470-2045(06)70725-2] [PMID: 16750500]
[4]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[5]
Tao, G.; Chityala, P.K. Epidermal growth factor receptor inhibitor-induced diarrhea: Clinical incidence, toxicological mechanism, and management. Toxicol. Res., 2021, 10(3), 476-486.
[http://dx.doi.org/10.1093/toxres/tfab026] [PMID: 34141161]
[6]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(Suppl. 1), i10-i19.
[http://dx.doi.org/10.1093/annonc/mdx703] [PMID: 29462254]
[7]
Wang, S.; Song, Y.; Yan, F.; Liu, D. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors. Front. Med., 2016, 10(4), 383-388.
[http://dx.doi.org/10.1007/s11684-016-0488-1] [PMID: 27770386]
[8]
Chen, L.; Fu, W.; Feng, C.; Qu, R.; Tong, L.; Zheng, L.; Fang, B.; Qiu, Y.; Hu, J.; Cai, Y.; Feng, J.; Xie, H.; Ding, J.; Liu, Z.; Liang, G. Structure-based design and synthesis of 2,4-diaminopyrimidines as EGFR L858R/T790M selective inhibitors for NSCLC. Eur. J. Med. Chem., 2017, 140, 510-527.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.061] [PMID: 28987609]
[9]
Chen, L.; Zhang, Y.; Tian, L.; Wang, C.; Deng, T.; Zheng, X.; Wang, T.; Li, Z.; Tang, Z.; Meng, Q.; Sun, H.; Li, L.; Ma, X.; Xu, Y. Noncovalent EGFR T790M/L858R inhibitors based on diphenylpyrimidine scaffold: Design, synthesis, and bioactivity evaluation for the treatment of NSCLC. Eur. J. Med. Chem., 2021, 223, 113626.
[http://dx.doi.org/10.1016/j.ejmech.2021.113626] [PMID: 34218082]
[10]
Chen, L.; Zhang, Y.; Wang, C.; Tang, Z.; Meng, Q.; Sun, H.; Qi, Y.; Ma, X.; Li, L.; Li, Y.; Xu, Y. Design, synthesis, and biological evaluation of hydroxamic acid-substituted 2,4-diaryl aminopyrimidines as potent EGFRT790M/L858R inhibitors for the treatment of NSCLC. Bioorg. Chem., 2021, 114, 105045.
[http://dx.doi.org/10.1016/j.bioorg.2021.105045] [PMID: 34161879]
[11]
Xiao, Q.; Qu, R.; Gao, D.; Yan, Q.; Tong, L.; Zhang, W.; Ding, J.; Xie, H.; Li, Y. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors. Bioorg. Med. Chem., 2016, 24(12), 2673-2680.
[http://dx.doi.org/10.1016/j.bmc.2016.04.032] [PMID: 27131639]
[12]
Li, Y.; Chang, Y.; Fu, J.; Ding, R.; Zhang, L.; Liang, T.; Liu, Y.; Liu, Y.; Hu, J. Design, synthesis and biological evaluation of aminopyrimidine derivatives bearing a 4,5,6,7-tetrahydrothieno [3,2-c]pyridine as potent EGFR inhibitors. Eur. J. Med. Chem., 2021, 226, 113845.
[http://dx.doi.org/10.1016/j.ejmech.2021.113845] [PMID: 34534838]
[13]
Liu, Q.; Luo, Y.; Li, Z.; Chen, C.; Fang, L. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity. Bioorg. Med. Chem., 2021, 36, 116094.
[http://dx.doi.org/10.1016/j.bmc.2021.116094] [PMID: 33667898]
[14]
Yan, Q.; Chen, Y.; Tang, B.; Xiao, Q.; Qu, R.; Tong, L.; Liu, J.; Ding, J.; Chen, Y.; Ding, N.; Tan, W.; Xie, H.; Li, Y. Discovery of novel 2,4-diarylaminopyrimidine derivatives as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation. Eur. J. Med. Chem., 2018, 152, 298-306.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.052] [PMID: 29730192]
[15]
Zhou, F.; Zhang, L.; Jin, Y.; Liu, W.; Cheng, P.; He, X.; Xie, J.; Shen, S.; Lei, J.; Ji, H.; Hu, Y.; Liu, Y.; Cui, Y.; Lv, Q.; Lan, J. Discovery of N -aryl- N ′-pyrimidin-4-yl ureas as irreversible L858R/T790M mutant selective epidermal growth factor receptor inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(7), 1257-1261.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.009] [PMID: 29534926]
[16]
Deng, Y.; Wang, J.; Chu, H.; Wang, J.; Hu, Y. lin, Y.; Shu, M.; Lin, Z. 3D-QSAR and docking studies on pyrimidine derivatives as CSF-1R inhibitors. Lett. Drug Des. Discov., 2020, 17(3), 341-355.
[http://dx.doi.org/10.2174/1570180816666190329224946]
[17]
Yang, Y.; Qin, J.; Liu, H.; Yao, X. Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors. J. Chem. Inf. Model., 2011, 51(3), 680-692.
[http://dx.doi.org/10.1021/ci100427j] [PMID: 21338122]
[18]
Zhu, J.; Wu, Y.; Xu, L.; Jin, J. Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3Î2 (GSK3Î2) with pyrazine ATP-competitive inhibitors by 3DQSAR, molecular docking, molecular dynamics simulation and free energy calculations. Curr. Computeraided Drug Des., 2020, 16(1), 17-30.
[http://dx.doi.org/10.2174/18756697OTk0jNDkgTcVY] [PMID: 31284868]
[19]
Liu, Y.; Tian, Z.; Li, H.; Liu, Z.; Shi, L.; Yang, L. 3D quantitative structure–activity relationships study on anti-gastric cancer of chrysin derivatives. J. Math. Chem., 2023, 61(5), 1205-1216.
[http://dx.doi.org/10.1007/s10910-023-01455-x]
[20]
Zarei, O.; Raeppel, S.L.; Hamzeh-Mivehroud, M. An alignment-independent three-dimensional quantitative structure–activity relationship study on ron receptor tyrosine kinase inhibitors. J. Bioinform. Comput. Biol., 2022, 20(3), 2250015.
[http://dx.doi.org/10.1142/S0219720022500159] [PMID: 35880255]
[21]
Zhao, L.; Fu, L.; Li, G.; Yu, Y.; Wang, J.; Liang, H.; Shu, M.; Lin, Z.; Wang, Y. Three-dimensional quantitative structural-activity relationship and molecular dynamics study of multivariate substituted 4-oxyquinazoline HDAC6 inhibitors. Mol. Divers., 2023, 27(3), 1123-1140.
[http://dx.doi.org/10.1007/s11030-022-10474-w] [PMID: 35767128]
[22]
Deng, R.; He, W.; Guo, H.; Su, Z.; Wu, W.; Wu, Z. In silico design of RORγ inverse agonists based on 3D-QSAR and molecular docking. New J. Chem., 2022, 46(18), 8464-8477.
[http://dx.doi.org/10.1039/D1NJ05185G]
[23]
Xu, Y.; He, Z.; Liu, H.; Chen, Y.; Gao, Y.; Zhang, S.; Wang, M.; Lu, X.; Wang, C.; Zhao, Z.; Liu, Y.; Zhao, J.; Yu, Y.; Yang, M. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno[3,2- b]pyrrole-5-carboxamide derivatives as LSD1 inhibitors. RSC Advances, 2020, 10(12), 6927-6943.
[http://dx.doi.org/10.1039/C9RA10085G] [PMID: 35493862]
[24]
Hadni, H.; Elhallaoui, M. 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents. New J. Chem., 2020, 44(16), 6553-6565.
[http://dx.doi.org/10.1039/C9NJ05767F]
[25]
Jiang, Z.; Zheng, X.; Li, Z.; Pan, S.; Wang, X.; Zhang, C.; Li, Z.; Luo, H.B.; Wu, D.; Cai, X. 3D-QSAR modeling of Phosphodiesterase-5 inhibitors: Evaluation and comparison of the receptor- and ligand-based alignments. Med. Chem. Res., 2019, 28(6), 820-830.
[http://dx.doi.org/10.1007/s00044-019-02311-x]
[26]
Balupuri, A.; Balasubramanian, P.K.; Cho, S.J. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arab. J. Chem., 2020, 13(1), 1052-1078.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.009]
[27]
Wang, F.; Yang, W.; Li, Z.; Zhou, B. Studies on molecular mechanism between SHP2 and pyridine derivatives by 3D-QSAR, molecular docking and MD simulations. J. Saudi Chem. Soc., 2021, 25(11), 101346.
[http://dx.doi.org/10.1016/j.jscs.2021.101346]
[28]
Xu, H.R.; Fu, L.; Zhan, P.; Liu, X.Y. 3D-QSAR analysis of a series of S -DABO derivatives as anti-HIV agents by CoMFA and CoMSIA. SAR QSAR Environ. Res., 2016, 27(12), 999-1014.
[http://dx.doi.org/10.1080/1062936X.2016.1233580] [PMID: 27667445]
[29]
Çapan, İ.; Gümüş, M.; Gökce, H.; Çetin, H.; Sert, Y.; Koca, İ. Synthesis, dielectric properties, molecular docking and ADME studies of pyrrole-3-ones. J. Biomol. Struct. Dyn., 2022, 40(19), 8655-8671.
[http://dx.doi.org/10.1080/07391102.2021.1914174] [PMID: 33890547]
[30]
Bicak, B. Structural, spectroscopic, molecular docking, ADME, molecular dynamics studies of Val-Trp dipeptide. J. Biomol. Struct. Dyn., 2023, 1-18.
[http://dx.doi.org/10.1080/07391102.2023.2183041] [PMID: 36843537]
[31]
Kumar, A.; Sharma, S.; Mishra, S.; Ojha, S.; Upadhyay, P. ADME prediction, structure-activity relationship of boswellic acid scaffold for the aspect of anticancer & anti-inflammatory potency. Anti- Cancer Agent. Me., 2023, 23(13), 1499-1505.
[32]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[33]
Han, C.; Wei, B.B.; Shang, P.P.; Guo, X.Y.; Bai, L.G.; Ma, Z.Y. Design, synthesis and evaluation of 2-(2-oxoethyl)pyrimidine-5-carboxamide derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2022, 72, 128873.
[http://dx.doi.org/10.1016/j.bmcl.2022.128873] [PMID: 35779827]
[34]
Ramu, N.; Krishna, T.M.; Nasipireddy, V.; Kapavarapu, R.; Narsimha, S. Fused Imidazo[2,1‐b][1,2,3]triazolo[4,5‐d][1,3]thiazines: One‐pot synthesis, antibiofilim, bactericidal effects, and in silico studies. ChemistrySelect, 2023, 8(26), e202300777.
[http://dx.doi.org/10.1002/slct.202300777]
[35]
Ramasamy, S.; Rajan, A.T. Unraveling the pharmaceutical benefits of freshly prepared amino acid-based schiff bases via dft, in silico molecular docking and ADMET. J. Fluoresc., 2022, 32(5), 1873-1888.
[http://dx.doi.org/10.1007/s10895-022-02987-2] [PMID: 35749028]
[36]
Zhao, L.; Zhang, T.; Luo, Y.; Li, L.; Cheng, R.; Shi, Z.; Wang, G.; Ren, T. Effects of temperature and microwave on the stability of the blast effector complex APikL2A/sHMA25 as determined by molecular dynamics analyses. J. Mol. Model., 2023, 29(5), 134.
[http://dx.doi.org/10.1007/s00894-023-05550-3] [PMID: 37041399]
[37]
Bhandari, S.; Agrwal, A.; Kasana, V.; Tandon, S.; Boulaamane, Y.; Maurady, A. β‐amino carbonyl derivatives: Synthesis, molecular docking, ADMET, molecular dynamic and herbicidal studies. ChemistrySelect, 2022, 7(48), e202201572.
[http://dx.doi.org/10.1002/slct.202201572]
[38]
Idoko, V.O.; Sulaiman, M.A.; Adamu, R.M.; Abdullahi, A.D.; Tajuddeen, N.; Mohammed, A.; Inuwa, H.M.; Ibrahim, M.A. Evaluating khaya senegalensis for dipeptidyl peptidase‐IV inhibition using in vitro analysis and molecular dynamic simulation of identified bioactive compounds. Chem. Biodivers., 2023, 20(2), e202200909.
[http://dx.doi.org/10.1002/cbdv.202200909] [PMID: 36565063]
[39]
Zhao, J.; Yu, N.; Zhao, X.; Quan, W.; Shu, M. 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors. J. Mol. Model., 2023, 29(5), 131.
[http://dx.doi.org/10.1007/s00894-023-05525-4] [PMID: 37020092]
[40]
Zhang, C.; Li, Q.; Meng, L.; Ren, Y. Design of novel dopamine D 2 and serotonin 5-HT 2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, 38(3), 860-885.
[http://dx.doi.org/10.1080/07391102.2019.1590244] [PMID: 30916624]
[41]
Tuccinardi, T. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin. Drug Discov., 2021, 16(11), 1233-1237.
[http://dx.doi.org/10.1080/17460441.2021.1942836] [PMID: 34165011]
[42]
Lima Silva, W.J.; Freitas de Freitas, R. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors. J. Comput. Aid. Mol. Des., 2023, 1-13.
[43]
Wang, E.; Liu, H.; Wang, J.; Weng, G.; Sun, H.; Wang, Z.; Kang, Y.; Hou, T. Modeling, Development and evaluation of MM/GBSA based on a variable dielectric GB model for predicting protein-ligand binding affinities. J. Chem. Inf. Model., 2020, 60(11), 5353-5365.
[http://dx.doi.org/10.1021/acs.jcim.0c00024] [PMID: 32175734]

© 2025 Bentham Science Publishers | Privacy Policy