Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Metformin Preserves Insulin Secretion in Pancreatic β-cells through FGF21/Akt Pathway In vitro and In vivo

Author(s): Jianting Li, Qiang Jiang, Xin Wang, Lulu Hou, Lulu Wang, Kai Lou and Shuguang Pang*

Volume 27, Issue 18, 2024

Published on: 19 October, 2023

Page: [2691 - 2698] Pages: 8

DOI: 10.2174/0113862073246747230920170201

Price: $65

Abstract

Background: In our previous studies, it was found that metformin can elevate the expression of FGF21 in the peripheral blood of type 2 diabetic rats and improve insulin sensitivity in diabetic rats. However, whether this effect is mediated by increased FGF21 expression in pancreatic islet β-cells is still unknown. Therefore, this study focuses on the effect of metformin on insulin secretion in pancreatic β-cells.

Aims: Metformin can effectivly improve insulin resistance. Metformin influencing pancreatic β- cell function is inclusive. In this study, we sought to analyze possible variations in insulin secretion and possible signaling mechanisms after metformin intervention.

Methods: The study employed an in vivo model of a high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) that were subjected to damage caused by hyperglycemia and hyperlipidemia. After treating INS-1 cells in normal, high-glucose, and high-glucose+metformin, we measured insulin secretion by glucose-stimulated insulin secretion (GSIS). Insulin was measured using an enzyme-linked immunosorbent assay. FGF21 expression was detected by RT-PCR and Western blot, as well as that p-Akt and t-Akt expression were detected by Western blot in INS-1 cells and diabetic rat islets. Finally, to verify the regulation of the FGF21 /Akt axis in metformin administration, additional experiments were carried out in metformin-stimulated INS-1 cells.

Results: High-glucose could significantly stimulate insulin secretion while metformin preserved insulin secretion. Expression of FGF21 and p-Akt was decreased in high-glucose, however, metformin could reverse this effect in INS-1 cells and diabetic rat islets.

Conclusion: Our results demonstrate a protective role of metformin in preserving insulin secretion through FGF21/Akt signaling in T2DM.

[1]
Ligthart, S.; van Herpt, T.T.W.; Leening, M.J.G.; Kavousi, M.; Hofman, A.; Stricker, B.H.C.; van Hoek, M.; Sijbrands, E.J.G.; Franco, O.H.; Dehghan, A. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study. Lancet Diab. Endocrinol., 2016, 4(1), 44-51.
[http://dx.doi.org/10.1016/S2213-8587(15)00362-9] [PMID: 26575606]
[2]
Wajchenberg, B.L. β-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev., 2007, 28(2), 187-218.
[http://dx.doi.org/10.1210/10.1210/er.2006-0038] [PMID: 17353295]
[3]
Weir, G.C.; Bonner-Weir, S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(3), S16-S21.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S16] [PMID: 15561905]
[4]
Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heckman-Stoddard, B.M.; Temprosa, M.; Kahn, S.E.; Nathan, D.M. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia, 2017, 60(9), 1601-1611.
[http://dx.doi.org/10.1007/s00125-017-4361-9] [PMID: 28770322]
[5]
Masini, M.; Anello, M.; Bugliani, M.; Marselli, L.; Filipponi, F.; Boggi, U.; Purrello, F.; Occhipinti, M.; Martino, L.; Marchetti, P.; De Tata, V. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet β cells is associated with preserved ATP/ADP ratio. Diabetes Res. Clin. Pract., 2014, 104(1), 163-170.
[http://dx.doi.org/10.1016/j.diabres.2013.12.031] [PMID: 24462282]
[6]
Meier, J.J.; Bonadonna, R.C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 2013, 36(2)(2), S113-S119.
[http://dx.doi.org/10.2337/dcS13-2008] [PMID: 23882035]
[7]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[8]
Adak, T.; Samadi, A.; Ünal, A.Z.; Sabuncuoğlu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol., 2018, 92, 324-332.
[http://dx.doi.org/10.1016/j.yrtph.2017.12.023] [PMID: 29291990]
[9]
Moon, J.S.; Karunakaran, U.; Elumalai, S.; Lee, I.K.; Lee, H.W.; Kim, Y.W.; Won, K.C. Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic β cells. J. Diabetes Complications, 2017, 31(1), 21-30.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.09.001] [PMID: 27662780]
[10]
Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24.
[http://dx.doi.org/10.4155/fmc-2022-0141] [PMID: 36655571]
[11]
Aroda, V.R.; Ratner, R.E. Metformin and type 2 diabetes prevention. Diabetes Spectr., 2018, 31(4), 336-342.
[http://dx.doi.org/10.2337/ds18-0020] [PMID: 30510389]
[12]
Xu, J.; Lloyd, D.J.; Hale, C.; Stanislaus, S.; Chen, M.; Sivits, G.; Vonderfecht, S.; Hecht, R.; Li, Y.S.; Lindberg, R.A.; Chen, J.L.; Young Jung, D.; Zhang, Z.; Ko, H.J.; Kim, J.K.; Véniant, M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 2009, 58(1), 250-259.
[http://dx.doi.org/10.2337/db08-0392] [PMID: 18840786]
[13]
Kharitonenkov, A.; Dunbar, J.D.; Bina, H.A.; Bright, S.; Moyers, J.S.; Zhang, C.; Ding, L.; Micanovic, R.; Mehrbod, S.F.; Knierman, M.D.; Hale, J.E.; Coskun, T.; Shanafelt, A.B. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol., 2008, 215(1), 1-7.
[http://dx.doi.org/10.1002/jcp.21357] [PMID: 18064602]
[14]
Adams, A.C.; Cheng, C.C.; Coskun, T.; Kharitonenkov, A. FGF21 requires βklotho to act in vivo. PLoS One, 2012, 7(11), e49977.
[http://dx.doi.org/10.1371/journal.pone.0049977] [PMID: 23209629]
[15]
Wente, W.; Efanov, A.M.; Brenner, M.; Kharitonenkov, A.; Köster, A.; Sandusky, G.E.; Sewing, S.; Treinies, I.; Zitzer, H.; Gromada, J. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes, 2006, 55(9), 2470-2478.
[http://dx.doi.org/10.2337/db05-1435] [PMID: 16936195]
[16]
Wang, Y.; Dang, N.; Sun, P.; Xia, J.; Zhang, C.; Pang, S. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats. Endocr. J., 2017, 64(5), 543-552.
[http://dx.doi.org/10.1507/endocrj.EJ16-0391] [PMID: 28413172]
[17]
Hashemitabar, M.; Bahramzadeh, S.; Saremy, S.; Nejaddehbashi, F. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed. Rep., 2015, 3(5), 721-725.
[http://dx.doi.org/10.3892/br.2015.476] [PMID: 26405552]
[18]
Langelueddecke, C.; Jakab, M.; Ketterl, N.; Lehner, L.; Hufnagl, C.; Schmidt, S.; Geibel, J.P.; Fuerst, J.; Ritter, M. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions. Cell. Physiol. Biochem., 2012, 29(1-2), 75-86.
[http://dx.doi.org/10.1159/000337589] [PMID: 22415077]
[19]
Leclerc, I.; Woltersdorf, W.W.; da Silva Xavier, G.; Rowe, R.L.; Cross, S.E.; Korbutt, G.S.; Rajotte, R.V.; Smith, R.; Rutter, G.A. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab., 2004, 286(6), E1023-E1031.
[http://dx.doi.org/10.1152/ajpendo.00532.2003] [PMID: 14871885]
[20]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[21]
Lupi, R.; Del Guerra, S.; Fierabracci, V.; Marselli, L.; Novelli, M.; Patanè, G.; Boggi, U.; Mosca, F.; Piro, S.; Del Prato, S.; Marchetti, P. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes, 2002, 51(Suppl. 1), S134-S137.
[http://dx.doi.org/10.2337/diabetes.51.2007.S134] [PMID: 11815472]
[22]
Patanè, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic β-cells. Diabetes, 2000, 49(5), 735-740.
[http://dx.doi.org/10.2337/diabetes.49.5.735] [PMID: 10905481]
[23]
Marchetti, P.; Del Guerra, S.; Marselli, L.; Lupi, R.; Masini, M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca, F.; Del Prato, S. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab., 2004, 89(11), 5535-5541.
[http://dx.doi.org/10.1210/jc.2004-0150] [PMID: 15531508]
[24]
Lablanche, S.; Cottet-Rousselle, C.; Lamarche, F.; Benhamou, P-Y.; Halimi, S.; Leverve, X.; Fontaine, E. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis., 2011, 2(3), e134.
[http://dx.doi.org/10.1038/cddis.2011.15] [PMID: 21430707]
[25]
Dai, Y.L.; Huang, S.L.; Leng, Y. AICAR and metformin exert ampk-dependent effects on INS-1E Pancreatic β-cell apoptosis via differential downstream mechanisms. Int. J. Biol. Sci., 2015, 11(11), 1272-1280.
[http://dx.doi.org/10.7150/ijbs.12108] [PMID: 26435693]
[26]
Liu, S.N.; Liu, Q.; Sun, S.J.; Hou, S.C.; Wang, Y.; Shen, Z.F. [Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice]. Yao Xue Xue Bao, 2014, 49(11), 1554-1562.
[PMID: 25757281]
[27]
Zhang, E.; Mohammed Al-Amily, I.; Mohammed, S.; Luan, C.; Asplund, O.; Ahmed, M.; Ye, Y.; Ben-Hail, D.; Soni, A.; Vishnu, N.; Bompada, P.; De Marinis, Y.; Groop, L.; Shoshan-Barmatz, V.; Renström, E.; Wollheim, C.B.; Salehi, A. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β-cells. Cell Metab., 2019, 29(1), 64-77.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.09.008] [PMID: 30293774]
[28]
Le Bacquer, O.; Queniat, G.; Gmyr, V.; Kerr-Conte, J.; Lefebvre, B.; Pattou, F. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J. Endocrinol., 2013, 216(1), 21-29.
[http://dx.doi.org/10.1530/JOE-12-0351] [PMID: 23092880]
[29]
Lee, D.; Kim, Y.M.; Jung, K.; Chin, Y.W.; Kang, K. Alpha-mangosin improves insulin secretion and protects INS-1 from streptozotocin-induced damage. Int. J. Mol. Sci., 2018, 19(5), 1484.
[http://dx.doi.org/10.3390/ijms19051484] [PMID: 29772703]
[30]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[31]
Kahn, S.E. The importance of the β-cell in the pathogenesis of type 2 diabetes mellitus11Supported in part by national institutes of health grants dk-02654, dk-17047, dk-50703, and the medical research service of the department of veterans affairs. Am. J. Med., 2000, 108(6)(Suppl. 6a), 2-8.
[http://dx.doi.org/10.1016/S0002-9343(00)00336-3] [PMID: 10764844]
[32]
Xu, J.; Stanislaus, S.; Chinookoswong, N. Acute glucose‐lowering and insulin‐sensitizing action of FGF21 in insulin‐resistant mouse models—association with liver and adipose tissue effects. American. J. Physiol. Endo. Meta., 2009, 297, 1105-1114.
[33]
Fon Tacer, K.; Bookout, A.L.; Ding, X.; Kurosu, H.; John, G.B.; Wang, L.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Mangelsdorf, D.J.; Kliewer, S.A. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol., 2010, 24(10), 2050-2064.
[http://dx.doi.org/10.1210/me.2010-0142] [PMID: 20667984]
[34]
Hale, C.; Chen, M.M.; Stanislaus, S.; Chinookoswong, N.; Hager, T.; Wang, M.; Véniant, M.M.; Xu, J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology, 2012, 153(1), 69-80.
[http://dx.doi.org/10.1210/en.2010-1262] [PMID: 22067317]
[35]
Shenoy, V.K.; Beaver, K.M.; Fisher, M.; Singhal, G.; Dushay, J.R.; Maratos-Flier, E.; Flier, S.N. Elevated serum fibroblast growth factor 21 in humans with acute pancreatitis. PLoS One, 2016, 11(11), e0164351.
[http://dx.doi.org/10.1371/journal.pone.0164351] [PMID: 27832059]
[36]
Omar, B.A.; Andersen, B.; Hald, J.; Raun, K.; Nishimura, E.; Ahrén, B. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes, 2014, 63(1), 101-110.
[http://dx.doi.org/10.2337/db13-0710] [PMID: 24062250]
[37]
Coate, K.C.; Hernandez, G.; Thorne, C.A.; Sun, S.; Le, T.D.V.; Vale, K.; Kliewer, S.A.; Mangelsdorf, D.J. FGF21 is an exocrine pancreas secretagogue. Cell Metab., 2017, 25(2), 472-480.
[http://dx.doi.org/10.1016/j.cmet.2016.12.004] [PMID: 28089565]
[38]
Markan, K.R.; Naber, M.C.; Ameka, M.K.; Anderegg, M.D.; Mangelsdorf, D.J.; Kliewer, S.A.; Mohammadi, M.; Potthoff, M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 2014, 63(12), 4057-4063.
[http://dx.doi.org/10.2337/db14-0595] [PMID: 25008183]
[39]
Singh, R.K.; Bhatia, R. Eds.; Protein kinases-promising targets for anticancer drug research; Intech Open, 2021.
[http://dx.doi.org/10.5772/intechopen.82939]
[40]
Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II; Bentham Science Publishers, 2022.
[http://dx.doi.org/10.2174/97898150400741220101]
[41]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[42]
Hakonen, E.; Ustinov, J.; Eizirik, D.L.; Sariola, H.; Miettinen, P.J.; Otonkoski, T. In vivo activation of the PI3K–Akt pathway in mouse β cells by the EGFR mutation L858R protects against diabetes. Diabetologia, 2014, 57(5), 970-979.
[http://dx.doi.org/10.1007/s00125-014-3175-2] [PMID: 24493201]
[43]
Kaneko, K.; Ueki, K.; Takahashi, N.; Hashimoto, S.; Okamoto, M.; Awazawa, M.; Okazaki, Y.; Ohsugi, M.; Inabe, K.; Umehara, T.; Yoshida, M.; Kakei, M.; Kitamura, T.; Luo, J.; Kulkarni, R.N.; Kahn, C.R.; Kasai, H.; Cantley, L.C.; Kadowaki, T. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab., 2010, 12(6), 619-632.
[http://dx.doi.org/10.1016/j.cmet.2010.11.005] [PMID: 21109194]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy