Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

The Role of Neuronal Pathways in Gastrointestinal Cancers: Targets for Prevention and Treatment

Author(s): Mohadeseh Poudineh, Samaneh Mollazadeh, Shima Mehrabadi, Majid Khazaei, Seyed Mahdi Hassanian and Amir Avan*

Volume 21, Issue 14, 2024

Published on: 18 October, 2023

Page: [2875 - 2890] Pages: 16

DOI: 10.2174/0115701808258045231010102318

Price: $65

Abstract

In recent decades, the mortality and morbidity of Gastrointestinal (GI) cancer have remarkably increased, especially in younger individuals. Recent studies revealed that neuronal connections play an active part in GI tumor initiation and progression. Also, studies showed neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. These studies show that the humoral and nervous pathways can transfer signals of tumors to the brain. But, the exact mechanism of this regulation from the brain to the gut is still unknown. In this review, we summarized the mechanism of the neuronal pathway in the regulation of promotion or suppression of GI cancer and oncogene activation, and we summarize recent findings linking the nervous system to GI tumor progression and highlight the importance of targeting neural mechanisms in GI tumor therapy

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bhargava, A.; Bunkar, N.; Khare, N.K.; Mishra, D.; Mishra, P.K. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: From biology to translational medicine. Nanomedicine, 2014, 9(14), 2187-2202.
[http://dx.doi.org/10.2217/nnm.14.115] [PMID: 25405796]
[3]
Haddad, P.; Mir, M.R.; Jamali, M.; Abdirad, A.; Alikhasi, A.; Farhan, F.; Memari, F.; Sadighi, S.; Shahi, F. Gastrointestinal tumor board: An evolving experience in Tehran Cancer Institute. Acta Med. Iran., 2013, 51(4), 270-273.
[PMID: 23690109]
[4]
Ondicova, K.; Mravec, B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol., 2010, 11(6), 596-601.
[http://dx.doi.org/10.1016/S1470-2045(09)70337-7] [PMID: 20522385]
[5]
Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Ther., 2015, 37(5), 984-995.
[http://dx.doi.org/10.1016/j.clinthera.2015.04.002] [PMID: 26046241]
[6]
Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 195-219.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_9]
[7]
Tsang, S.W.; Auyeung, K.K.; Bian, Z.X.; Ko, J.K. Pathogenesis, experimental models and contemporary pharmacotherapy of irritable bowel syndrome: Story about the brain-gut axis. Curr. Neuropharmacol., 2016, 14(8), 842-856.
[http://dx.doi.org/10.2174/1570159X14666160324144154] [PMID: 27009115]
[8]
Ondicova, K.; Pecenák, J.; Mravec, B. The role of the vagus nerve in depression. Neuroendocrinol. Lett., 2010, 31(5), 602-608.
[PMID: 21173739]
[9]
Sasselli, V.; Pachnis, V.; Burns, A.J. The enteric nervous system. Dev. Biol., 2012, 366(1), 64-73.
[http://dx.doi.org/10.1016/j.ydbio.2012.01.012] [PMID: 22290331]
[10]
Lasrado, R.; Boesmans, W.; Kleinjung, J.; Pin, C.; Bell, D.; Bhaw, L.; McCallum, S.; Zong, H.; Luo, L.; Clevers, H.; Vanden Berghe, P.; Pachnis, V. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science, 2017, 356(6339), 722-726.
[http://dx.doi.org/10.1126/science.aam7511] [PMID: 28522527]
[11]
Brookes, S.J.H.; Spencer, N.J.; Costa, M.; Zagorodnyuk, V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 286-296.
[http://dx.doi.org/10.1038/nrgastro.2013.29] [PMID: 23438947]
[12]
Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H-J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 2014, 817, 39-71.
[13]
Furness, J.B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst., 2000, 81(1-3), 87-96.
[http://dx.doi.org/10.1016/S0165-1838(00)00127-2] [PMID: 10869706]
[14]
Boesmans, W.; Lasrado, R.; Vanden Berghe, P.; Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia, 2015, 63(2), 229-241.
[http://dx.doi.org/10.1002/glia.22746] [PMID: 25161129]
[15]
Morarach, K.; Mikhailova, A.; Knoflach, V.; Memic, F.; Kumar, R.; Li, W.; Ernfors, P.; Marklund, U. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci., 2021, 24(1), 34-46.
[http://dx.doi.org/10.1038/s41593-020-00736-x] [PMID: 33288908]
[16]
Fung, C.; Vanden Berghe, P. Functional circuits and signal processing in the enteric nervous system. Cell. Mol. Life Sci., 2020, 77(22), 4505-4522.
[http://dx.doi.org/10.1007/s00018-020-03543-6] [PMID: 32424438]
[17]
Rao, M.; Nelms, B.D.; Dong, L.; Salinas-Rios, V.; Rutlin, M.; Gershon, M.D.; Corfas, G. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia, 2015, 63(11), 2040-2057.
[http://dx.doi.org/10.1002/glia.22876] [PMID: 26119414]
[18]
Haller, A.v. On the Sensible and Irritable Parts of Animals; The Natural Philosophy of Albrecht von Haller, 1936.
[19]
Uesaka, T.; Young, H.M.; Pachnis, V.; Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol., 2016, 417(2), 158-167.
[http://dx.doi.org/10.1016/j.ydbio.2016.04.016] [PMID: 27112528]
[20]
Lomax, A.E.; Sharkey, K.A.; Furness, J.B. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol. Motil., 2010, 22(1), 7-18.
[PMID: 19686308]
[21]
Browning, K.N.; Travagli, R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol., 2014, 4(4), 1339-1368.
[http://dx.doi.org/10.1002/cphy.c130055] [PMID: 25428846]
[22]
Walter, G.C.; Phillips, R.J.; Baronowsky, E.A.; Powley, T.L. Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines. J. Neurosci. Methods, 2009, 178(1), 1-9.
[http://dx.doi.org/10.1016/j.jneumeth.2008.11.003] [PMID: 19056424]
[23]
Brierley, S.; Hughes, P.; Harrington, A.; Blackshaw, L. Innervation of the gastrointestinal tract by spinal and vagal afferent nerves; Elsevier, 2012.
[http://dx.doi.org/10.1016/B978-0-12-382026-6.00024-5]
[24]
Heffner, K.L.; Loving, T.J.; Robles, T.F.; Kiecolt-Glaser, J.K. Examining psychosocial factors related to cancer incidence and progression: In search of the silver lining. Brain Behav. Immun., 2003, 17(1), 109-111.
[http://dx.doi.org/10.1016/S0889-1591(02)00076-4] [PMID: 12615195]
[25]
Bianchi, M.T.; Song, L.; Zhang, H.; Macdonald, R.L. Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J. Neurosci., 2002, 22(13), 5321-5327.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05321.2002] [PMID: 12097483]
[26]
Jansen, A.; Hoepfner, M.; Herzig, K.H.; Riecken, E.O.; Scherübl, H. GABA C receptors in neuroendocrine gut cells: A new GABA-binding site in the gut. Pflugers Arch., 2000, 441(2-3), 294-300.
[http://dx.doi.org/10.1007/s004240000412] [PMID: 11211116]
[27]
Glassmeier, G.; Herzig, K.H.; Höpfner, M.; Lemmer, K.; Jansen, A.; Scherübl, H. Expression of functional GABA A receptors in cholecystokinin-secreting gut neuroendocrine murine STC-1 cells. J. Physiol., 1998, 510(3), 805-814.
[http://dx.doi.org/10.1111/j.1469-7793.1998.805bj.x] [PMID: 9660895]
[28]
Szczaurska, K.; Mazurkiewicz, M.; Opolski, A. The role of GABA-ergic system in carcinogenesis. Postepy Hig. Med. Dosw., 2003, 57(5), 485-500.
[PMID: 14737966]
[29]
Watanabe, M.; Maemura, K.; Oki, K.; Shiraishi, N.; Shibayama, Y.; Katsu, K. Gamma-aminobutyric acid (GABA) and cell proliferation: Focus on cancer cells. Histol. Histopathol., 2006, 21(10), 1135-1141.
[PMID: 16835836]
[30]
Moon, M.S.; Cho, E.W.; Byun, H.S.; Jung, I.L.; Kim, I.G. GAD 67KD antisense in colon cancer cells inhibits cell growth and sensitizes to butyrate and pH reduction and H2O2 and γ-radiation. Arch. Biochem. Biophys., 2004, 430(2), 229-236.
[http://dx.doi.org/10.1016/j.abb.2004.07.015] [PMID: 15369822]
[31]
Zomot, E. kanner, B.I. The interaction of the γ-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J. Biol. Chem., 2003, 278(44), 42950-42958.
[http://dx.doi.org/10.1074/jbc.M209307200] [PMID: 12925537]
[32]
Tatsuta, M.; Iishi, H.; Baba, M.; Nakaizumi, A.; Uehara, H.; Taniguchi, H. Effect of gamma-butyrolactone on baclofen inhibition of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Oncology, 1992, 49(2), 123-126.
[http://dx.doi.org/10.1159/000227024] [PMID: 1574247]
[33]
Schuller, H.M.; Al-Wadei, H.A.N.; Majidi, M. GABAB receptor is a novel drug target for pancreatic cancer. Cancer, 2008, 112(4), 767-778.
[http://dx.doi.org/10.1002/cncr.23231] [PMID: 18098271]
[34]
Maemura, K.; Shiraishi, N.; Sakagami, K.; Kawakami, K.; Inoue, T.; Murano, M.; Watanabe, M.; Otsuki, Y. Proliferative effects of γ-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation. J. Gastroenterol. Hepatol., 2009, 24(4), 688-696.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05687.x] [PMID: 19032445]
[35]
Mazurkiewicz, M.; Opolski, A.; Wietrzyk, J.; Radzikowski, C.; Kleinrok, Z. GABA level and GAD activity in human and mouse normal and neoplastic mammary gland. J. Experim. Clin. Can. Res., 1999, 18, 247-253.
[36]
Li, Y.H.; Liu, Y.; Li, Y-D.; Liu, Y-H.; Li, F.; Ju, Q.; Xie, P.L.; Li, G.C. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit. World J. Gastroenterol., 2012, 18(21), 2704-2711.
[http://dx.doi.org/10.3748/wjg.v18.i21.2704] [PMID: 22690081]
[37]
Takehara, A.; Hosokawa, M.; Eguchi, H.; Ohigashi, H.; Ishikawa, O.; Nakamura, Y.; Nakagawa, H. γ-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor π subunit. Cancer Res., 2007, 67(20), 9704-9712.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2099] [PMID: 17942900]
[38]
De Ponti, F. Pharmacology of serotonin: What a clinician should know. Gut, 2004, 53(10), 1520-1535.
[http://dx.doi.org/10.1136/gut.2003.035568] [PMID: 15361507]
[39]
Grin, A.; Streutker, C.J. Neuroendocrine tumors of the luminal gastrointestinal tract. Arch. Pathol. Lab. Med., 2015, 139(6), 750-756.
[http://dx.doi.org/10.5858/arpa.2014-0130-RA] [PMID: 26030244]
[40]
Cattaneo, M.G.; Fesce, R.; Vicentini, L.M. Mitogenic effect of serotonin in human small cell lung carcinoma cells via both 5-HT1A and 5-HT1D receptors. Eur. J. Pharmacol., 1995, 291(2), 209-211.
[http://dx.doi.org/10.1016/0922-4106(95)90145-0] [PMID: 8566173]
[41]
Tutton, P.J.M.; Barkla, D.H. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats. Clin. Exp. Pharmacol. Physiol., 1978, 5(1), 91-94.
[http://dx.doi.org/10.1111/j.1440-1681.1978.tb00657.x] [PMID: 25153]
[42]
Al‐Wadei, H.A.; Schuller, H.M. Nicotinic receptor‐associated modulation of stimulatory and inhibitory neurotransmitters in NNK‐induced adenocarcinoma of the lungs and pancreas. J. Pathology, 2009, 218, 437-445.
[http://dx.doi.org/10.1002/path.2542]
[43]
Vicaut, E.; Laemmel, E.; Stücker, O. Impact of serotonin on tumour growth. Ann. Med., 2000, 32(3), 187-194.
[http://dx.doi.org/10.3109/07853890008998826] [PMID: 10821326]
[44]
Baguley, B.C.; Cole, G.; Thomsen, L.L.; Zhuang, L. Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol., 1993, 33(1), 77-81.
[http://dx.doi.org/10.1007/BF00686027] [PMID: 8269593]
[45]
El-Salhy, M.; Sitohy, B.; Norrgård, Ö. Triple therapy with octreotide, galanin, and serotonin reduces the size and blood vessel density and increases apoptosis of a rat colon carcinoma. Regul. Pept., 2003, 111(1-3), 145-152.
[http://dx.doi.org/10.1016/S0167-0115(02)00280-X] [PMID: 12609762]
[46]
Schaal, C.; Padmanabhan, J.; Chellappan, S. The role of nAChR and calcium signaling in pancreatic cancer initiation and progression. Cancers, 2015, 7(3), 1447-1471.
[http://dx.doi.org/10.3390/cancers7030845] [PMID: 26264026]
[47]
Yang, T.; He, W.; Cui, F.; Xia, J.; Zhou, R.; Wu, Z.; Zhao, Y.; Shi, M. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget, 2016, 7(14), 18085-18094.
[http://dx.doi.org/10.18632/oncotarget.7634] [PMID: 26919111]
[48]
Rubí, B.; Maechler, P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinology, 2010, 151(12), 5570-5581.
[http://dx.doi.org/10.1210/en.2010-0745] [PMID: 21047943]
[49]
Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev., 2011, 63(1), 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[50]
Basu, S.; Dasgupta, P.S. Alteration of dopamine D2 receptors in human malignant stomach tissue. Dig. Dis. Sci., 1997, 42(6), 1260-1264.
[http://dx.doi.org/10.1023/A:1018862309440] [PMID: 9201092]
[51]
Kou, X.; Han, Y.; Yang, D.; Liu, Y.; Fu, J.; Zheng, S.; He, D.; Zhou, L.; Zeng, C. Dopamine d 1 -like receptors suppress proliferation of vascular smooth muscle cell induced by insulin-like growth factor-1. Clin. Exp. Hypertens., 2014, 36(3), 140-147.
[http://dx.doi.org/10.3109/10641963.2013.789048] [PMID: 23713966]
[52]
Leng, Z.G.; Lin, S.J.; Wu, Z.R.; Guo, Y.H.; Cai, L.; Shang, H.B.; Tang, H.; Xue, Y.J.; Lou, M.Q.; Zhao, W.; Le, W.D.; Zhao, W.G.; Zhang, X.; Wu, Z.B. Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy, 2017, 13(8), 1404-1419.
[http://dx.doi.org/10.1080/15548627.2017.1328347] [PMID: 28613975]
[53]
Huang, H.; Wu, K.; Ma, J.; Du, Y.; Cao, C.; Nie, Y. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int. Immunopharmacol., 2016, 39, 113-120.
[http://dx.doi.org/10.1016/j.intimp.2016.07.002] [PMID: 27468100]
[54]
Moreno-Smith, M.; Lee, S.J.; Lu, C.; Nagaraja, A.S.; He, G.; Rupaimoole, R.; Han, H.D.; Jennings, N.B.; Roh, J.W.; Nishimura, M.; Kang, Y.; Allen, J.K.; Armaiz, G.N.; Matsuo, K.; Shahzad, M.M.K.; Bottsford-Miller, J.; Langley, R.R.; Cole, S.W.; Lutgendorf, S.K.; Siddik, Z.H.; Sood, A.K. Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia, 2013, 15(5), 502-IN15.
[http://dx.doi.org/10.1593/neo.121412] [PMID: 23633922]
[55]
Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[56]
Cooke, E.; Zhou, J.; Wyseure, T.; Joshi, S.; Bhat, V.; Durden, D.; Mosnier, L.; von Drygalski, A. Vascular permeability and remodelling coincide with inflammatory and reparative processes after joint bleeding in factor VIII-deficient mice. Thromb. Haemost., 2018, 118(6), 1036-1047.
[http://dx.doi.org/10.1055/s-0038-1641755] [PMID: 29847841]
[57]
Sarkar, C.; Chakroborty, D.; Chowdhury, U.R.; Dasgupta, P.S.; Basu, S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin. Cancer Res., 2008, 14(8), 2502-2510.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1778] [PMID: 18413843]
[58]
Lee, J.W.; Shahzad, M.M.K.; Lin, Y.G.; Armaiz-Pena, G.; Mangala, L.S.; Han, H.D.; Kim, H.S.; Nam, E.J.; Jennings, N.B.; Halder, J.; Nick, A.M.; Stone, R.L.; Lu, C.; Lutgendorf, S.K.; Cole, S.W.; Lokshin, A.E.; Sood, A.K. Surgical stress promotes tumor growth in ovarian carcinoma. Clin. Cancer Res., 2009, 15(8), 2695-2702.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2966] [PMID: 19351748]
[59]
Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; Lemeshow, S.; Glaser, R. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res., 2006, 66(21), 10357-10364.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2496] [PMID: 17079456]
[60]
Shin, V.Y.; Wu, W.K.K.; Chu, K.M.; Koo, M.W.L.; Wong, H.P.S.; Lam, E.K.Y.; Tai, E.K.K.; Cho, C.H. Functional role of β-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol. Sci., 2006, 96(1), 21-29.
[http://dx.doi.org/10.1093/toxsci/kfl118] [PMID: 17003101]
[61]
Al-Wadei, H.A.; Al-Wadei, M.H.; Schuller, H.M. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs, 2009, 20(6), 477-482.
[http://dx.doi.org/10.1097/CAD.0b013e32832bd1e3] [PMID: 19387337]
[62]
Coelho, M.; Moz, M.; Correia, G.; Teixeira, A.; Medeiros, R.; Ribeiro, L. Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol. Rep., 2015, 33(5), 2513-2520.
[http://dx.doi.org/10.3892/or.2015.3874] [PMID: 25812650]
[63]
Liu, X.; Wu, W.K.K.; Yu, L.; Sung, J.J.Y.; Srivastava, G.; Zhang, S.T.; Cho, C.H. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via β-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J. Cell. Biochem., 2008, 105(1), 53-60.
[http://dx.doi.org/10.1002/jcb.21802] [PMID: 18452159]
[64]
Otani, Y.; Kubota, T.; Sakurai, Y.; Igarashi, N.; Yokoyama, T.; Kimata, M.; Wada, N.; Kameyama, K.; Kumai, K.; Okada, Y.; Kitajima, M. Expression of matrix metalloproteinases in gastric carcinoma and possibility of clinical application of matrix metalloproteinase inhibitor in vivo. Ann. N. Y. Acad. Sci., 1999, 878(1 INHIBITION OF), 541-543.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07721.x] [PMID: 10415767]
[65]
Shi, M.; Liu, D.; Duan, H.; Han, C.; Wei, B.; Qian, L.; Chen, C.; Guo, L.; Hu, M.; Yu, M.; Song, L.; Shen, B.; Guo, N. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Mol. Cancer, 2010, 9(1), 269.
[http://dx.doi.org/10.1186/1476-4598-9-269] [PMID: 20939893]
[66]
Valès, S.; Bacola, G.; Biraud, M.; Touvron, M.; Bessard, A.; Geraldo, F.; Dougherty, K.A.; Lashani, S.; Bossard, C.; Flamant, M.; Duchalais, E.; Marionneau-Lambot, S.; Oullier, T.; Oliver, L.; Neunlist, M.; Vallette, F.M.; Van Landeghem, L. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. EBioMedicine, 2019, 49, 172-188.
[http://dx.doi.org/10.1016/j.ebiom.2019.09.045] [PMID: 31662289]
[67]
Wang, D.; Fu, L.; Sun, H.; Guo, L.; DuBois, R.N. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology, 2015, 149, 1884-1895.
[http://dx.doi.org/10.1053/j.gastro.2015.07.064]
[68]
Pesic, M.; Greten, F.R. Inflammation and cancer: Tissue regeneration gone awry. Curr. Opin. Cell Biol., 2016, 43, 55-61.
[http://dx.doi.org/10.1016/j.ceb.2016.07.010] [PMID: 27521599]
[69]
Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer. Cancer, 2009, 115(15), 3379-3391.
[http://dx.doi.org/10.1002/cncr.24396] [PMID: 19484787]
[70]
Duchalais, E.; Guilluy, C.; Nedellec, S.; Touvron, M.; Bessard, A.; Touchefeu, Y.; Bossard, C.; Boudin, H.; Louarn, G.; Neunlist, M.; Van Landeghem, L. Colorectal cancer cells adhere to and migrate along the neurons of the enteric nervous system. Cell. Mol. Gastroenterol. Hepatol., 2018, 5(1), 31-49.
[http://dx.doi.org/10.1016/j.jcmgh.2017.10.002] [PMID: 29188232]
[71]
Gershon, M.D.; Bursztajn, S. Properties of the enteric nervous system: Limitation of access of intravascular macromolecules to the myenteric plexus and muscularis externa. J. Comp. Neurol., 1978, 180(3), 467-487.
[http://dx.doi.org/10.1002/cne.901800305] [PMID: 659670]
[72]
Yang, Z.; Chen, Y.; Wei, X.; Wu, D.; Min, Z.; Quan, Y. Upregulated NTF4 in colorectal cancer promotes tumor development via regulating autophagy. Int. J. Oncol., 2020, 56(6), 1442-1454.
[http://dx.doi.org/10.3892/ijo.2020.5027] [PMID: 32236587]
[73]
Drewes, J.L.; Corona, A.; Sanchez, U.; Fan, Y.; Hourigan, S.K.; Weidner, M. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile. JCI Insight, 2019, 4.
[http://dx.doi.org/10.1172/jci.insight.130848]
[74]
Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; Chipashvili, O.; Hagan, T.; Walker, M.; Ramachandran, A.; Diosdado, B.; Serna, G.; Mulet, N.; Landolfi, S.; Ramon y Cajal, S.; Fasani, R.; Aguirre, A.J.; Ng, K.; Élez, E.; Ogino, S.; Tabernero, J.; Fuchs, C.S.; Hahn, W.C.; Nuciforo, P.; Meyerson, M. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science, 2017, 358(6369), 1443-1448.
[http://dx.doi.org/10.1126/science.aal5240] [PMID: 29170280]
[75]
Huybrechts, I.; Zouiouich, S.; Loobuyck, A.; Vandenbulcke, Z.; Vogtmann, E.; Pisanu, S.; Iguacel, I.; Scalbert, A.; Indave, I.; Smelov, V.; Gunter, M.J.; Michels, N. The human microbiome in relation to cancer risk: A systematic review of epidemiologic studies. Cancer Epidemiol. Biomarkers Prev., 2020, 29(10), 1856-1868.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-0288] [PMID: 32727720]
[76]
Tomkovich, S.; Dejea, C.M.; Winglee, K.; Drewes, J.L.; Chung, L.; Housseau, F.; Pope, J.L.; Gauthier, J.; Sun, X.; Mühlbauer, M.; Liu, X.; Fathi, P.; Anders, R.A.; Besharati, S.; Perez-Chanona, E.; Yang, Y.; Ding, H.; Wu, X.; Wu, S.; White, J.R.; Gharaibeh, R.Z.; Fodor, A.A.; Wang, H.; Pardoll, D.M.; Jobin, C.; Sears, C.L. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest., 2019, 129(4), 1699-1712.
[http://dx.doi.org/10.1172/JCI124196] [PMID: 30855275]
[77]
Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 1-9.
[78]
Felton, J.; Cheng, K.; Shang, A.C.; Hu, S.; Larabee, S.M.; Drachenberg, C.B. Two sides to colon cancer: Mice mimic human anatomical region disparity in colon cancer development and progression. J. Cancer. Metast. Treatm., 2018, 4
[79]
Bergstrom, K.; Shan, X.; Casero, D.; Batushansky, A.; Lagishetty, V.; Jacobs, J.P.; Hoover, C.; Kondo, Y.; Shao, B.; Gao, L.; Zandberg, W.; Noyovitz, B.; McDaniel, J.M.; Gibson, D.L.; Pakpour, S.; Kazemian, N.; McGee, S.; Houchen, C.W.; Rao, C.V.; Griffin, T.M.; Sonnenburg, J.L.; McEver, R.P.; Braun, J.; Xia, L. Proximal colon–derived O-glycosylated mucus encapsulates and modulates the microbiota. Science, 2020, 370(6515), 467-472.
[http://dx.doi.org/10.1126/science.aay7367] [PMID: 33093110]
[80]
Vaes, N.; Lentjes, M.H.F.M.; Gijbels, M.J.; Rademakers, G.; Daenen, K.L.; Boesmans, W.; Wouters, K.A.D.; Geuzens, A.; Qu, X.; Steinbusch, H.P.J.; Rutten, B.P.F.; Baldwin, S.H.; Sharkey, K.A.; Hofstra, R.M.W.; van Engeland, M.; Vanden Berghe, P.; Melotte, V. NDRG4, an early detection marker for colorectal cancer, is specifically expressed in enteric neurons. Neurogastroenterol. Motil., 2017, 29(9), e13095.
[http://dx.doi.org/10.1111/nmo.13095] [PMID: 28524415]
[81]
Benesh, E.C.; Miller, P.M.; Pfaltzgraff, E.R.; Grega-Larson, N.E.; Hager, H.A.; Sung, B.H.; Qu, X.; Baldwin, H.S.; Weaver, A.M.; Bader, D.M. Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition. Mol. Biol. Cell, 2013, 24(22), 3496-3510.
[http://dx.doi.org/10.1091/mbc.e12-07-0539] [PMID: 24048452]
[82]
Fontenas, L.; De Santis, F.; Di Donato, V.; Degerny, C.; Chambraud, B.; Del Bene, F.; Tawk, M. Neuronal Ndrg4 is essential for nodes of ranvier organization in zebrafish. PLoS Genet., 2016, 12(11), e1006459.
[http://dx.doi.org/10.1371/journal.pgen.1006459] [PMID: 27902705]
[83]
Garcia, S.B.; Aranha, A.L.; Garcia, F.R.B.; Basile, F.V.; Pinto, A.P.M.; Oliveira, E.C.; Zucoloto, S. A retrospective study of histopathological findings in 894 cases of megacolon: what is the relationship between megacolon and colonic cancer? Rev. Inst. Med. Trop., 2003, 45(2), 91-93.
[http://dx.doi.org/10.1590/S0036-46652003000200007] [PMID: 12754574]
[84]
Vespúcio, M.V.O.; Turatti, A.; Modiano, P.; Oliveira, E.C.; Chicote, S.R.M.; Pinto, A.M.P.; Garcia, S.B. Intrinsic denervation of the colon is associated with a decrease of some colonic preneoplastic markers in rats treated with a chemical carcinogen. Braz. J. Med. Biol. Res., 2008, 41(4), 311-317.
[http://dx.doi.org/10.1590/S0100-879X2008005000008] [PMID: 18297187]
[85]
Ko, S.Y.; Dass, C.R.; Nurgali, K. Netrin-1 in the developing enteric nervous system and colorectal cancer. Trends Mol. Med., 2012, 18(9), 544-554.
[http://dx.doi.org/10.1016/j.molmed.2012.07.001] [PMID: 22920895]
[86]
Castets, M.; Broutier, L.; Molin, Y.; Brevet, M.; Chazot, G.; Gadot, N.; Paquet, A.; Mazelin, L.; Jarrosson-Wuilleme, L.; Scoazec, J.Y.; Bernet, A.; Mehlen, P. DCC constrains tumour progression via its dependence receptor activity. Nature, 2012, 482(7386), 534-537.
[http://dx.doi.org/10.1038/nature10708] [PMID: 22158121]
[87]
Mazelin, L.; Bernet, A.; Bonod-Bidaud, C.; Pays, L.; Arnaud, S.; Gespach, C.; Bredesen, D.E.; Scoazec, J.Y.; Mehlen, P. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature, 2004, 431(7004), 80-84.
[http://dx.doi.org/10.1038/nature02788] [PMID: 15343335]
[88]
Mehlen, P.; Furne, C. Netrin-1: When a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell. Mol. Life Sci., 2005, 62(22), 2599-2616.
[http://dx.doi.org/10.1007/s00018-005-5191-3] [PMID: 16158190]
[89]
Godlewski, J.; Łakomy, I.M. Changes in vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide and neuropeptide Y-ergic structures of the enteric nervous system in the carcinoma of the human large intestine. Folia Histochem. Cytobiol., 2010, 48(2), 208-216.
[http://dx.doi.org/10.2478/v10042-010-0052-9] [PMID: 20675276]
[90]
Godlewski, J.; Kaleczyc, J. Somatostatin, substance P and calcitonin gene-related peptide-positive intramural nerve structures of the human large intestine affected by carcinoma. Folia Histochem. Cytobiol., 2010, 48(3), 475-483.
[http://dx.doi.org/10.2478/v10042-010-0079-y] [PMID: 21071356]
[91]
Godlewski, J.; Pidsudko, Z. Characteristic of galaninergic components of the enteric nervous system in the cancer invasion of human large intestine. Ann. Anat., 2012, 194(4), 368-372.
[http://dx.doi.org/10.1016/j.aanat.2011.11.009] [PMID: 22226150]
[92]
Raufman, J.P.; Samimi, R.; Shah, N.; Khurana, S.; Shant, J.; Drachenberg, C.; Xie, G.; Wess, J.; Cheng, K. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res., 2008, 68(10), 3573-3578.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6810] [PMID: 18483237]
[93]
Cheng, K.; Shang, A.C.; Drachenberg, C.B.; Zhan, M.; Raufman, J.P. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget, 2017, 8(13), 21106-21114.
[http://dx.doi.org/10.18632/oncotarget.15500] [PMID: 28416748]
[94]
Xie, G.; Cheng, K.; Shant, J.; Raufman, J.P. Acetylcholine-induced activation of M 3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(4), G755-G763.
[http://dx.doi.org/10.1152/ajpgi.90519.2008] [PMID: 19221016]
[95]
Raufman, J.P.; Cheng, K.; Saxena, N.; Chahdi, A.; Belo, A.; Khurana, S.; Xie, G. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem. Biophys. Res. Commun., 2011, 415(2), 319-324.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.052] [PMID: 22027145]
[96]
Raufman, J.P.; Dawson, P.A.; Rao, A.; Drachenberg, C.B.; Heath, J.; Shang, A.C.; Hu, S.; Zhan, M.; Polli, J.E.; Cheng, K. Slc10a2 -null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Carcinogenesis, 2015, 36(10), 1193-1200.
[http://dx.doi.org/10.1093/carcin/bgv107] [PMID: 26210740]
[97]
Cheng, K.; Metry, M.; Felton, J.; Shang, A.C.; Drachenberg, C.B.; Xu, S.; Zhan, M.; Schumacher, J.; Guo, G.L.; Polli, J.E.; Raufman, J.P. Diminished gallbladder filling, increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15-deficient mice. Oncotarget, 2018, 9(39), 25572-25585.
[http://dx.doi.org/10.18632/oncotarget.25385] [PMID: 29876009]
[98]
Renz, B.W.; Tanaka, T.; Sunagawa, M.; Takahashi, R.; Jiang, Z.; Macchini, M.; Dantes, Z.; Valenti, G.; White, R.A.; Middelhoff, M.A.; Ilmer, M.; Oberstein, P.E.; Angele, M.K.; Deng, H.; Hayakawa, Y.; Westphalen, C.B.; Werner, J.; Remotti, H.; Reichert, M.; Tailor, Y.H.; Nagar, K.; Friedman, R.A.; Iuga, A.C.; Olive, K.P.; Wang, T.C. Cholinergic Signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov., 2018, 8(11), 1458-1473.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0046] [PMID: 30185628]
[99]
Zahalka, A.H.; Frenette, P.S. Nerves in cancer. Nat. Rev. Cancer, 2020, 20(3), 143-157.
[http://dx.doi.org/10.1038/s41568-019-0237-2] [PMID: 31974491]
[100]
Cervantes-Villagrana, R.D.; Albores-García, D.; Cervantes-Villagrana, A.R.; García-Acevez, S.J. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct. Target. Ther., 2020, 5(1), 99.
[http://dx.doi.org/10.1038/s41392-020-0205-z] [PMID: 32555170]
[101]
Zahalka, A.H.; Arnal-Estapé, A.; Maryanovich, M.; Nakahara, F.; Cruz, C.D.; Finley, L.W.S.; Frenette, P.S. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science, 2017, 358(6361), 321-326.
[http://dx.doi.org/10.1126/science.aah5072] [PMID: 29051371]
[102]
Mauffrey, P.; Tchitchek, N.; Barroca, V.; Bemelmans, A.P.; Firlej, V.; Allory, Y.; Roméo, P.H.; Magnon, C. Progenitors from the central nervous system drive neurogenesis in cancer. Nature, 2019, 569(7758), 672-678.
[http://dx.doi.org/10.1038/s41586-019-1219-y] [PMID: 31092925]
[103]
Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic nerve development contributes to prostate cancer progression. Science, 2013, 341(6142), 1236361.
[http://dx.doi.org/10.1126/science.1236361] [PMID: 23846904]
[104]
Roger, E.; Martel, S.; Bertrand-Chapel, A.; Depollier, A.; Chuvin, N.; Pommier, R.M.; Yacoub, K.; Caligaris, C.; Cardot-Ruffino, V.; Chauvet, V.; Aires, S.; Mohkam, K.; Mabrut, J.Y.; Adham, M.; Fenouil, T.; Hervieu, V.; Broutier, L.; Castets, M.; Neuzillet, C.; Cassier, P.A.; Tomasini, R.; Sentis, S.; Bartholin, L. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβ signaling. Cell Death Dis., 2019, 10(12), 886.
[http://dx.doi.org/10.1038/s41419-019-2116-x] [PMID: 31767842]
[105]
Deborde, S.; Omelchenko, T.; Lyubchik, A.; Zhou, Y.; He, S.; McNamara, W.F.; Chernichenko, N.; Lee, S.Y.; Barajas, F.; Chen, C.H.; Bakst, R.L.; Vakiani, E.; He, S.; Hall, A.; Wong, R.J. Schwann cells induce cancer cell dispersion and invasion. J. Clin. Invest., 2016, 126(4), 1538-1554.
[http://dx.doi.org/10.1172/JCI82658] [PMID: 26999607]
[106]
Okada, Y.; Eibl, G.; Guha, S.; Duffy, J.P.; Reber, H.A.; Hines, O.J. Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells. Clin. Exp. Metastasis, 2004, 21(4), 285-292.
[http://dx.doi.org/10.1023/B:CLIN.0000046131.24625.54] [PMID: 15554384]
[107]
Okada, Y.; Eibl, G.; Duffy, J.P.; Reber, H.A.; Hines, O.J. Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer. Surgery, 2003, 134(2), 293-299.
[http://dx.doi.org/10.1067/msy.2003.239] [PMID: 12947332]
[108]
Miknyoczki, S.J.; Lang, D.; Huang, L.; Klein-Szanto, A.J.P.; Dionne, C.A.; Ruggeri, B.A. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: Expression patterns and effects on In vitro invasive behavior. Int. J. Cancer, 1999, 81(3), 417-427.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990505)81:3<417:AID-IJC16>3.0.CO;2-6] [PMID: 10209957]
[109]
Albini, A. Tumor and endothelial cell invasion of basement membranes. Pathol. Oncol. Res., 1998, 4(3), 230-241.
[http://dx.doi.org/10.1007/BF02905254] [PMID: 9761943]
[110]
Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; Chang, D.K.; Cowley, M.J.; Gardiner, B.B.; Song, S.; Harliwong, I.; Idrisoglu, S.; Nourse, C.; Nourbakhsh, E.; Manning, S.; Wani, S.; Gongora, M.; Pajic, M.; Scarlett, C.J.; Gill, A.J.; Pinho, A.V.; Rooman, I.; Anderson, M.; Holmes, O.; Leonard, C.; Taylor, D.; Wood, S.; Xu, Q.; Nones, K.; Lynn Fink, J.; Christ, A.; Bruxner, T.; Cloonan, N.; Kolle, G.; Newell, F.; Pinese, M.; Scott Mead, R.; Humphris, J.L.; Kaplan, W.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chou, A.; Chin, V.T.; Chantrill, L.A.; Mawson, A.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Daly, R.J.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Kakkar, N.; Zhao, F.; Qing, Wu Y.; Wang, M.; Muzny, D.M.; Fisher, W.E.; Charles Brunicardi, F.; Hodges, S.E.; Reid, J.G.; Drummond, J.; Chang, K.; Han, Y.; Lewis, L.R.; Dinh, H.; Buhay, C.J.; Beck, T.; Timms, L.; Sam, M.; Begley, K.; Brown, A.; Pai, D.; Panchal, A.; Buchner, N.; De Borja, R.; Denroche, R.E.; Yung, C.K.; Serra, S.; Onetto, N.; Mukhopadhyay, D.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Gallinger, S.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Schulick, R.D.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Capelli, P.; Corbo, V.; Scardoni, M.; Tortora, G.; Tempero, M.A.; Mann, K.M.; Jenkins, N.A.; Perez-Mancera, P.A.; Adams, D.J.; Largaespada, D.A.; Wessels, L.F.A.; Rust, A.G.; Stein, L.D.; Tuveson, D.A.; Copeland, N.G.; Musgrove, E.A.; Scarpa, A.; Eshleman, J.R.; Hudson, T.J.; Sutherland, R.L.; Wheeler, D.A.; Pearson, J.V.; McPherson, J.D.; Gibbs, R.A.; Grimmond, S.M. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491(7424), 399-405.
[http://dx.doi.org/10.1038/nature11547] [PMID: 23103869]
[111]
Mulligan, L.M. GDNF and the RET receptor in cancer: New insights and therapeutic potential. Front. Physiol., 2019, 9, 1873.
[http://dx.doi.org/10.3389/fphys.2018.01873] [PMID: 30666215]
[112]
Jurcak, N.R.; Rucki, A.A.; Muth, S.; Thompson, E.; Sharma, R.; Ding, D. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology, 2019, 157(3), 383-850.
[http://dx.doi.org/10.1053/j.gastro.2019.05.065]
[113]
Foley, K.; Rucki, A.A.; Xiao, Q.; Zhou, D.; Leubner, A.; Mo, G.; Kleponis, J.; Wu, A.A.; Sharma, R.; Jiang, Q.; Anders, R.A.; Iacobuzio-Donahue, C.A.; Hajjar, K.A.; Maitra, A.; Jaffee, E.M.; Zheng, L. Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer. Sci. Signal., 2015, 8(388), ra77-ra77.
[http://dx.doi.org/10.1126/scisignal.aaa5823] [PMID: 26243191]
[114]
Sinha, S.; Fu, Y.Y.; Grimont, A.; Ketcham, M.; Lafaro, K.; Saglimbeni, J.A.; Askan, G.; Bailey, J.M.; Melchor, J.P.; Zhong, Y.; Joo, M.G.; Grbovic-Huezo, O.; Yang, I.H.; Basturk, O.; Baker, L.; Park, Y.; Kurtz, R.C.; Tuveson, D.; Leach, S.D.; Pasricha, P.J. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res., 2017, 77(8), 1868-1879.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0899] [PMID: 28386018]
[115]
Demir, I.E.; Ceyhan, G.O.; Liebl, F.; D’Haese, J.G.; Maak, M.; Friess, H. Neural invasion in pancreatic cancer: The past, present and future. Cancers, 2010, 2(3), 1513-1527.
[http://dx.doi.org/10.3390/cancers2031513] [PMID: 24281170]
[116]
Griffin, N.; Faulkner, S.; Jobling, P.; Hondermarck, H. Targeting neurotrophin signaling in cancer: The renaissance. Pharmacol. Res., 2018, 135, 12-17.
[http://dx.doi.org/10.1016/j.phrs.2018.07.019] [PMID: 30031169]
[117]
Stopczynski, R.E.; Normolle, D.P.; Hartman, D.J.; Ying, H.; DeBerry, J.J.; Bielefeldt, K.; Rhim, A.D.; DePinho, R.A.; Albers, K.M.; Davis, B.M. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res., 2014, 74(6), 1718-1727.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2050] [PMID: 24448244]
[118]
Tan, X.; Sivakumar, S.; Bednarsch, J.; Wiltberger, G.; Kather, J.N.; Niehues, J.; de Vos-Geelen, J.; Valkenburg-van Iersel, L.; Kintsler, S.; Roeth, A.; Hao, G.; Lang, S.; Coolsen, M.E.; den Dulk, M.; Aberle, M.R.; Koolen, J.; Gaisa, N.T.; Olde Damink, S.W.M.; Neumann, U.P.; Heij, L.R. Nerve fibers in the tumor microenvironment in neurotropic cancer—pancreatic cancer and cholangiocarcinoma. Oncogene, 2021, 40(5), 899-908.
[http://dx.doi.org/10.1038/s41388-020-01578-4] [PMID: 33288884]
[119]
Partecke, L.I.; Käding, A.; Trung, D.N.; Diedrich, S.; Sendler, M.; Weiss, F.; Kühn, J.P.; Mayerle, J.; Beyer, K.; von Bernstorff, W.; Heidecke, C.D.; Keßler, W. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget, 2017, 8(14), 22501-22512.
[http://dx.doi.org/10.18632/oncotarget.15019] [PMID: 28160574]
[120]
Partecke, L.I.; Speerforck, S.; Käding, A.; Seubert, F.; Kühn, S.; Lorenz, E.; Schwandke, S.; Sendler, M.; Keßler, W.; Trung, D.N.; Oswald, S.; Weiss, F.U.; Mayerle, J.; Henkel, C.; Menges, P.; Beyer, K.; Lerch, M.M.; Heidecke, C.D.; von Bernstorff, W. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology, 2016, 16(3), 423-433.
[http://dx.doi.org/10.1016/j.pan.2016.03.005] [PMID: 27083074]
[121]
Kim-Fuchs, C.; Le, C.P.; Pimentel, M.A.; Shackleford, D.; Ferrari, D.; Angst, E.; Hollande, F.; Sloan, E.K. Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun., 2014, 40, 40-47.
[http://dx.doi.org/10.1016/j.bbi.2014.02.019] [PMID: 24650449]
[122]
Zeng, Q.; Michael, I.P.; Zhang, P.; Saghafinia, S.; Knott, G.; Jiao, W.; McCabe, B.D.; Galván, J.A.; Robinson, H.P.C.; Zlobec, I.; Ciriello, G.; Hanahan, D. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature, 2019, 573(7775), 526-531.
[http://dx.doi.org/10.1038/s41586-019-1576-6] [PMID: 31534217]
[123]
Li, L.; Zeng, Q.; Bhutkar, A.; Galván, J.A.; Karamitopoulou, E.; Noordermeer, D. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell, 2018, 33, 736-751.
[http://dx.doi.org/10.1016/j.ccell.2018.02.011]
[124]
Runge, T.M.; Abrams, J.A.; Shaheen, N.J. Epidemiology of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol. Clin. North Am., 2015, 44(2), 203-231.
[http://dx.doi.org/10.1016/j.gtc.2015.02.001] [PMID: 26021191]
[125]
Mittal, R.; Vaezi, M.F. Esophageal motility disorders and gastroesophageal reflux disease. N. Engl. J. Med., 2020, 383(20), 1961-1972.
[http://dx.doi.org/10.1056/NEJMra2000328] [PMID: 33176086]
[126]
Blondy, S.; Christou, N.; David, V.; Verdier, M.; Jauberteau, M.O.; Mathonnet, M.; Perraud, A. Neurotrophins and their involvement in digestive cancers. Cell Death Dis., 2019, 10(2), 123.
[http://dx.doi.org/10.1038/s41419-019-1385-8] [PMID: 30741921]
[127]
Zhou, Y.; Sinha, S.; Schwartz, J.L.; Adami, G.R. A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer, 2019, 19(1), 607.
[http://dx.doi.org/10.1186/s12885-019-5789-8] [PMID: 31221127]
[128]
Bakst, R. L.; Wong, R. J. Mechanisms of perineural invasion. J. Neurolog Surg. Part B: Skull Base, 2016, 77, 096-106.
[http://dx.doi.org/10.1055/s-0036-1571835]
[129]
Tsunoda, S.; Okumura, T.; Ito, T.; Mori, Y.; Soma, T.; Watanabe, G.; Kaganoi, J.; Itami, A.; Sakai, Y.; Shimada, Y. Significance of nerve growth factor overexpression and its autocrine loop in oesophageal squamous cell carcinoma. Br. J. Cancer, 2006, 95(3), 322-330.
[http://dx.doi.org/10.1038/sj.bjc.6603255] [PMID: 16832412]
[130]
Okumura, T.; Tsunoda, S.; Mori, Y.; Ito, T.; Kikuchi, K.; Wang, T.C.; Yasumoto, S.; Shimada, Y. The biological role of the low-affinity p75 neurotrophin receptor in esophageal squamous cell carcinoma. Clin. Cancer Res., 2006, 12(17), 5096-5103.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2852] [PMID: 16951226]
[131]
Griffin, N.; Rowe, C.W.; Gao, F.; Jobling, P.; Wills, V.; Walker, M.M.; Faulkner, S.; Hondermarck, H. Clinicopathological significance of nerves in esophageal cancer. Am. J. Pathol., 2020, 190(9), 1921-1930.
[http://dx.doi.org/10.1016/j.ajpath.2020.05.012] [PMID: 32479822]
[132]
Gao, A.; Wang, L.; Li, J.; Li, H.; Han, Y.; Ma, X. Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: A meta-analysis. Dis. mark., 2016, 2016
[http://dx.doi.org/10.1155/2016/7340180]
[133]
Xu, G.; Feng, F.; Liu, Z.; Liu, S.; Zheng, G.; Xiao, S.; Cai, L.; Yang, X.; Li, G.; Lian, X.; Guo, M.; Sun, L.; Yang, J.; Fan, D.; Lu, Q.; Zhang, H. Prognosis and progression of ESCC patients with perineural invasion. Sci. Rep., 2017, 7(1), 43828.
[http://dx.doi.org/10.1038/srep43828] [PMID: 28256609]
[134]
Yamada, T.; Alpers, D.H.; Kalloo, A.N.; Kaplowitz, N.; Owyang, C.; Powell, D.W. Textbook of gastroenterology; John Wiley & Sons, 2011.
[135]
Xie, G.; Drachenberg, C.; Yamada, M.; Wess, J.; Raufman, J.P. Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M 1 and M 3 muscarinic receptors. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(3), G521-G529.
[http://dx.doi.org/10.1152/ajpgi.00105.2004] [PMID: 15933222]
[136]
Zhao, C-M.; Hayakawa, Y.; Kodama, Y.; Muthupalani, S.; Westphalen, C.B.; Andersen, G.T. Denervation suppresses gastric tumorigenesis. Sci. transl. med., 2014, 6, 250ra115-250ra115.
[http://dx.doi.org/10.1126/scitranslmed.3009569]
[137]
Bahmanyar, S.; Ye, W.; Dickman, P.W.; Nyrén, O. Long-term risk of gastric cancer by subsite in operated and unoperated patients hospitalized for peptic ulcer. Offic. J. Am. Coll. Gastroent., 2007, 102, 1185-1191.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01161.x]
[138]
Wang, L.; Xu, J.; Xia, Y.; Yin, K.; Li, Z.; Li, B.; Wang, W.; Xu, H.; Yang, L.; Xu, Z. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer. Oncogenesis, 2018, 7(11), 88.
[http://dx.doi.org/10.1038/s41389-018-0099-6] [PMID: 30459304]
[139]
Wang, L.; Zhi, X.; Zhang, Q.; Wei, S.; Li, Z.; Zhou, J.; Jiang, J.; Zhu, Y.; Yang, L.; Xu, H.; Xu, Z. Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol., 2016, 37(2), 2105-2117.
[http://dx.doi.org/10.1007/s13277-015-4011-0] [PMID: 26346168]
[140]
Yu, H.; Xia, H.; Tang, Q.; Xu, H.; Wei, G.; Chen, Y.; Dai, X.; Gong, Q.; Bi, F. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci. Rep., 2017, 7(1), 40802.
[http://dx.doi.org/10.1038/srep40802] [PMID: 28102288]
[141]
Hayakawa, Y.; Sakitani, K.; Konishi, M.; Asfaha, S.; Niikura, R.; Tomita, H.; Renz, B.W.; Tailor, Y.; Macchini, M.; Middelhoff, M.; Jiang, Z.; Tanaka, T.; Dubeykovskaya, Z.A.; Kim, W.; Chen, X.; Urbanska, A.M.; Nagar, K.; Westphalen, C.B.; Quante, M.; Lin, C.S.; Gershon, M.D.; Hara, A.; Zhao, C.M.; Chen, D.; Worthley, D.L.; Koike, K.; Wang, T.C. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell, 2017, 31(1), 21-34.
[http://dx.doi.org/10.1016/j.ccell.2016.11.005] [PMID: 27989802]
[142]
Verkhratsky, A.; Ho, M.S.; Zorec, R.; Parpura, V. The concept of neuroglia; Neuroglia in Neurodegenerative Diseases, 2019, pp. 1-13.
[143]
Seguella, L.; Gulbransen, B.D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 571-587.
[http://dx.doi.org/10.1038/s41575-021-00423-7] [PMID: 33731961]
[144]
Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H-J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Microb. Endocrinol., 2014, 39-71.
[145]
Schonkeren, S.L.; Thijssen, M.S.; Vaes, N.; Boesmans, W.; Melotte, V. The emerging role of nerves and glia in colorectal cancer. Cancers, 2021, 13(1), 152.
[http://dx.doi.org/10.3390/cancers13010152] [PMID: 33466373]
[146]
Sundaresan, S.; Meininger, C.A.; Kang, A.J.; Photenhauer, A.L.; Hayes, M.M.; Sahoo, N. Gastrin induces nuclear export and proteasome degradation of menin in enteric glial cells. Gastroenterology, 2017, 153, 1555-1567.
[http://dx.doi.org/10.1053/j.gastro.2017.08.038]
[147]
Yuan, R.; Bhattacharya, N.; Kenkel, J.A.; Shen, J.; DiMaio, M.A.; Bagchi, S.; Prestwood, T.R.; Habtezion, A.; Engleman, E.G. Enteric glia play a critical role in promoting the development of colorectal cancer. Front. Oncol., 2020, 10, 595892.
[http://dx.doi.org/10.3389/fonc.2020.595892] [PMID: 33282743]
[148]
Târtea, E-A.; Florescu, C.; Donoiu, I.; Pirici, D.; Mihailovici, A.R.; Albu, V-C.; Bălşeanu, T.A.; Iancău, M.; Badea, C.D.; Vere, C.C.; Sfredel, V. Implications of inflammation and remodeling of the enteric glial cells in colorectal adenocarcinoma. Rom. J. Morphol. Embryol., 2017, 58(2), 473-480.
[PMID: 28730232]
[149]
Puiu, I.; Albu, C.V.; Tartea, E.A.; Calborean, V.; Gheorman, V.; Dinescu, S.N.; Vasile, R.C.; Dinescu, V.C.; Bica, E.C.; Romanescu, F.M.; Tudorascu, D.R. Relationships between glial enteric cells, beta-cell signaling and tumor proliferative activity in patients with colorectal neoplasia. Revista de Chimie, 2018, 69(10), 2744-2748.
[http://dx.doi.org/10.37358/RC.18.10.6617]
[150]
Seguella, L.; Rinaldi, F.; Marianecci, C.; Capuano, R.; Pesce, M.; Annunziata, G.; Casano, F.; Bassotti, G.; Sidoni, A.; Milone, M.; Aprea, G.; de Palma, G.D.; Carafa, M.; Pesce, M.; Esposito, G.; Sarnelli, G. Pentamidine niosomes thwart S100B effects in human colon carcinoma biopsies favouring wt p53 rescue. J. Cell. Mol. Med., 2020, 24(5), 3053-3063.
[http://dx.doi.org/10.1111/jcmm.14943] [PMID: 32022398]
[151]
Rani, M.; Weadge, J.T.; Jabaji, S. Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front. Microbiol., 2020, 11, 64.
[http://dx.doi.org/10.3389/fmicb.2020.00064] [PMID: 32256455]
[152]
Ferdoushi, A.; Li, X.; Griffin, N.; Faulkner, S.; Jamaluddin, M.F.B.; Gao, F.; Jiang, C.C.; van Helden, D.F.; Tanwar, P.S.; Jobling, P.; Hondermarck, H. Schwann cell stimulation of pancreatic cancer cells: A proteomic analysis. Front. Oncol., 2020, 10, 1601.
[http://dx.doi.org/10.3389/fonc.2020.01601] [PMID: 32984024]
[153]
Wan, C.; Yan, X.; Hu, B.; Zhang, X. Emerging roles of the nervous system in gastrointestinal cancer development. Cancers, 2022, 14(15), 3722.
[http://dx.doi.org/10.3390/cancers14153722] [PMID: 35954387]
[154]
Liu, V.; Dietrich, A.; Kasparek, M.S.; Benhaqi, P.; Schneider, M.R.; Schemann, M.; Seeliger, H.; Kreis, M.E. Extrinsic intestinal denervation modulates tumor development in the small intestine of ApcMin/+ mice. J. Exp. Clin. Cancer Res., 2015, 34(1), 39.
[http://dx.doi.org/10.1186/s13046-015-0159-0] [PMID: 25925839]
[155]
Sadighparvar, S.; Darband, S.G.; Ghaderi-Pakdel, F. mihanfar, A.; Majidinia, M. Parasympathetic, but not sympathetic denervation, suppressed colorectal cancer progression. Eur. J. Pharmacol., 2021, 913, 174626.
[http://dx.doi.org/10.1016/j.ejphar.2021.174626] [PMID: 34774852]
[156]
Amit, M.; Na’ara, S.; Gil, Z. Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer, 2016, 16(6), 399-408.
[http://dx.doi.org/10.1038/nrc.2016.38] [PMID: 27150016]
[157]
Hunt, P.J.; Kabotyanski, K.E.; Calin, G.A.; Xie, T.; Myers, J.N.; Amit, M. Interrupting neuron—tumor interactions to overcome treatment resistance. Cancers, 2020, 12(12), 3741.
[http://dx.doi.org/10.3390/cancers12123741] [PMID: 33322770]
[158]
Liang, D.; Shi, S.; Xu, J.; Zhang, B.; Qin, Y.; Ji, S.; Xu, W.; Liu, J.; Liu, L.; Liu, C.; Long, J.; Ni, Q.; Yu, X. New insights into perineural invasion of pancreatic cancer: More than pain. Biochim. Biophys. Acta, 2016, 1865(2), 111-122.
[PMID: 26794395]
[159]
Saloman, J.L.; Albers, K.M.; Li, D.; Hartman, D.J.; Crawford, H.C.; Muha, E.A.; Rhim, A.D.; Davis, B.M. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl. Acad. Sci., 2016, 113(11), 3078-3083.
[http://dx.doi.org/10.1073/pnas.1512603113] [PMID: 26929329]
[160]
Ye, D.; Xu, H.; Tang, Q.; Xia, H.; Zhang, C.; Bi, F. The role of 5-HT metabolism in cancer. Biochimica et Biophysica Acta, 2021, 1876, 188618.
[161]
Abedini, F.; Amjadi, O.; Hedayatizadeh-Omran, A.; Lira, S.A.; Ahangari, G. Serotonin receptors and acetylcholinesterase gene expression alternations: The potential value on tumor microenvironment of gastric cancer. Oncology, 2023, 101(7), 415-424.
[http://dx.doi.org/10.1159/000530878] [PMID: 37231904]
[162]
Li, T.; Fu, B.; Zhang, X.; Zhou, Y.; Yang, M.; Cao, M.; Chen, Y.; Tan, Y.; Hu, R. Overproduction of gastrointestinal 5-HT promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation. Cancer Immunol. Res., 2021, 9(9), 1008-1023.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-1043] [PMID: 34285037]
[163]
Prenzel, N.; Zwick, E.; Daub, H.; Leserer, M.; Abraham, R.; Wallasch, C.; Ullrich, A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 1999, 402(6764), 884-888.
[http://dx.doi.org/10.1038/47260] [PMID: 10622253]
[164]
Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol., 2016, 8(1), 57-84.
[http://dx.doi.org/10.1177/1758834015614530] [PMID: 26753006]
[165]
Rosenfeld, G.C. Isolated parietal cells: Adrenergic response and pharmacology. J. Pharmacol. Exp. Ther., 1984, 229(3), 763-767.
[PMID: 6202870]
[166]
Ali, O.; Tolaymat, M.; Hu, S.; Xie, G.; Raufman, J.P. Overcoming obstacles to targeting muscarinic receptor signaling in colorectal cancer. Int. J. Mol. Sci., 2021, 22(2), 716.
[http://dx.doi.org/10.3390/ijms22020716] [PMID: 33450835]
[167]
Liu, H.; Hofmann, J.; Fish, I.; Schaake, B.; Eitel, K.; Bartuschat, A.; Kaindl, J.; Rampp, H.; Banerjee, A.; Hübner, H.; Clark, M.J.; Vincent, S.G.; Fisher, J.T.; Heinrich, M.R.; Hirata, K.; Liu, X.; Sunahara, R.K.; Shoichet, B.K.; Kobilka, B.K.; Gmeiner, P. Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc. Natl. Acad. Sci., 2018, 115(47), 12046-12050.
[http://dx.doi.org/10.1073/pnas.1813988115] [PMID: 30404914]
[168]
Peng, Z.; Heath, J.; Drachenberg, C.; Raufman, J.P.; Xie, G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer, 2013, 13(1), 204.
[http://dx.doi.org/10.1186/1471-2407-13-204] [PMID: 23617763]
[169]
Sobczuk, P.; Łomiak, M.; Cudnoch-Jędrzejewska, A. Dopamine D1 receptor in cancer. Cancers, 2020, 12(11), 3232.
[http://dx.doi.org/10.3390/cancers12113232] [PMID: 33147760]
[170]
Seo, E.J.; Sugimoto, Y.; Greten, H.J.; Efferth, T. Repurposing of bromocriptine for cancer therapy. Front. Pharmacol., 2018, 9, 1030.
[http://dx.doi.org/10.3389/fphar.2018.01030] [PMID: 30349477]
[171]
Kamazani, F.M. Sotoodehnejad nematalahi, F.; Siadat, S.D.; Pornour, M.; Sheikhpour, M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci. Rep., 2021, 11(1), 24419.
[http://dx.doi.org/10.1038/s41598-021-03031-2] [PMID: 34952904]
[172]
Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1176] [PMID: 29907594]
[173]
Mancusi, R.; Monje, M. The neuroscience of cancer. Nature, 2023, 618(7965), 467-479.
[http://dx.doi.org/10.1038/s41586-023-05968-y] [PMID: 37316719]
[174]
Liao, P.; Song, K.; Zhu, Z.; Liu, Z.; Zhang, W.; Li, W.; Hu, J.; Hu, Q.; Chen, C.; Chen, B.; McLeod, H.L.; Pei, H.; Chen, L.; He, Y. Propranolol suppresses the growth of colorectal cancer through simultaneously activating autologous CD8+ T cells and inhibiting tumor AKT/MAPK pathway. Clin. Pharmacol. Ther., 2020, 108(3), 606-615.
[http://dx.doi.org/10.1002/cpt.1894] [PMID: 32418204]
[175]
Lv, G.B.; Wang, T.T.; Zhu, H.L.; Wang, H.K.; Sun, W.; Zhao, L.F. Vortioxetine induces apoptosis and autophagy of gastric cancer AGS cells via the PI3K/AKT pathway. FEBS Open Bio, 2020, 10(10), 2157-2165.
[http://dx.doi.org/10.1002/2211-5463.12944] [PMID: 32750222]
[176]
Curtis, J.J.; Vo, N.T.K.; Seymour, C.B.; Mothersill, C.E. 5-HT 2A and 5-HT 3 receptors contribute to the exacerbation of targeted and non-targeted effects of ionizing radiation-induced cell death in human colon carcinoma cells. Int. J. Radiat. Biol., 2020, 96(4), 482-490.
[http://dx.doi.org/10.1080/09553002.2020.1704911] [PMID: 31846381]
[177]
Lee, H.; Shim, S.; Kong, J.S.; Kim, M.J.; Park, S.; Lee, S.S.; Kim, A. Retracted: Overexpression of dopamine receptor D2 promotes colorectal cancer progression by activating the β‐catenin/ZEB1 axis. Cancer Sci., 2021, 112(9), 3732-3743.
[http://dx.doi.org/10.1111/cas.15026] [PMID: 34118099]
[178]
Cole, S.W.; Sood, A.K. Molecular pathways: Beta-adrenergic signaling in cancer. Clin. Cancer Res., 2012, 18(5), 1201-1206.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0641] [PMID: 22186256]
[179]
Ciurea, R.N.; Rogoveanu, I.; Pirici, D.; Târtea, G.C.; Streba, C.T.; Florescu, C.; Cătălin, B.; Puiu, I.; Târtea, E.A.; Vere, C.C. B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma. World J. Gastroenterol., 2017, 23(7), 1250-1261.
[http://dx.doi.org/10.3748/wjg.v23.i7.1250] [PMID: 28275305]
[180]
Musselman, R.P.; Bennett, S.; Li, W.; Mamdani, M.; Gomes, T.; van Walraven, C.; Boushey, R.; Al-Obeed, O.; Al-Omran, M.; Auer, R.C. Association between perioperative beta blocker use and cancer survival following surgical resection. Eur. J. Surg. Oncol., 2018, 44(8), 1164-1169.
[http://dx.doi.org/10.1016/j.ejso.2018.05.012] [PMID: 29858097]
[181]
Shin, V.Y.; Jin, H.C.; Ng, E.K.O.; Yu, J.; Leung, W.K.; Cho, C.H.; Sung, J.J.Y. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways. Toxicol. Appl. Pharmacol., 2008, 233(2), 254-261.
[http://dx.doi.org/10.1016/j.taap.2008.08.012] [PMID: 18805435]
[182]
Ketterer, K.; Rao, S.; Friess, H.; Weiss, J.; Büchler, M.W.; Korc, M. Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin. Cancer Res., 2003, 9(14), 5127-5136.
[PMID: 14613990]
[183]
Banh, R.S.; Biancur, D.E.; Yamamoto, K.; Sohn, A.S.; Walters, B.; Kuljanin, M. Neurons release serine to support mRNA translation in pancreatic cancer. Cell, 2020, 183, 1202-1218.
[http://dx.doi.org/10.1016/j.cell.2020.10.016]

© 2025 Bentham Science Publishers | Privacy Policy