Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Upregulation of M6A Reader HNRNPA2B1 Associated with Poor Prognosis and Tumor Progression in Lung Adenocarcinoma

Author(s): Wei Wang and Shengwei Li*

Volume 19, Issue 5, 2024

Published on: 17 October, 2023

Page: [652 - 665] Pages: 14

DOI: 10.2174/0115748928258696230925064550

Price: $65

Abstract

Background: Lung cancer is the most prevalent malignancy worldwide, and lung adenocarcinoma (LUAD) accounts for a substantial proportion of all cases. N6-methyladenosine (m6A) is the most frequent post-transcriptional modification in mRNAs that also plays a role in cancer development. Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is a reader of m6A modification, which can affect tumor invasion, migration, and proliferation.

Objectives: The purpose of this study was to explore the prognostic factors of LUAD based on m6A through bioinformatics analysis.

Materials and Methods: The expression levels and prognostic significance of HNRNPA2B1 in LUAD were analyzed on the basis of data extracted from the UALCAN, GEPIA, NCBI-GEO, Human Protein Atlas, STRING, miRDB, TargetScan, PROMO, Starbase, UCSC Xena browser, TIMER, and TISIDB databases. HNRNPA2B1 protein and mRNA levels in several LUAD cell lines were detected by western blotting and qRT-PCR. CCK8, wound-healing and transwell assays were performed to evaluate the proliferation, invasion, and migration abilities of LUAD cells.

Results: HNRNPA2B1 mRNA was found to be significantly overexpressed in LUAD tissues, and its high levels correlated with poor OS and DFS. The genes co-expressed with HNRNPA2B1 were related to mRNA production, cell cycle, and histone binding. To determine the mechanistic basis of HNRNPA2B1 in LUAD, we next predicted the microRNAs and transcription factors that were directly associated with HNRNPA2B1, as well as copy number changes. In addition, it was found that HNRNPA2B1 expression was significantly related to CD4+ T cells, neutrophils, lymphocytes, immunomodulators, and chemokines. Besides, knocking down HNRNPA2B1 in the LUAD cells led to a significant reduction in their proliferation, invasion, and migration rates in vitro.

Conclusion: Elevated HNRNPA2B1 is a risk factor in LUAD and portends a poor prognosis.

[1]
Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges and future perspectives. Eur Radiol 2021; 31(2): 1049-58.
[http://dx.doi.org/10.1007/s00330-020-07141-9] [PMID: 32809167]
[2]
Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet 2021; 398(10299): 535-54.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[3]
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018; 553(7689): 446-54.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non–small cell lung cancer: Facts and hopes. Clin Cancer Res 2019; 25(15): 4592-602.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1538] [PMID: 30824587]
[5]
Spella M, Stathopoulos GT. Immune resistance in lung adenocarcinoma. Cancers 2021; 13(3): 384.
[http://dx.doi.org/10.3390/cancers13030384] [PMID: 33494181]
[6]
Guseva NG, Shcherbakov AB. Raynaud syndrome: Pathophysiologic mechanisms, diagnosis, treatment. Revmatologiia 1985; (4): 63-7.
[PMID: 3912902]
[7]
Doll KM, Rademaker A, Sosa JA. Practical guide to surgical data sets: Surveillance, epidemiology, and end results (SEER) database. JAMA Surg 2018; 153(6): 588-9.
[http://dx.doi.org/10.1001/jamasurg.2018.0501] [PMID: 29617544]
[8]
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2021; 157: 103194.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103194] [PMID: 33316418]
[9]
Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction — evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 2021; 18(3): 135-51.
[http://dx.doi.org/10.1038/s41571-020-00432-6] [PMID: 33046839]
[10]
Zhang H, Shi X, Huang T, et al. Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res 2020; 48(11): 6251-64.
[http://dx.doi.org/10.1093/nar/gkaa347] [PMID: 32406913]
[11]
Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genom Proteom Bioinform 2013; 11(1): 8-17.
[http://dx.doi.org/10.1016/j.gpb.2012.12.002] [PMID: 23453015]
[12]
Wang J, Lu A. The biological function of m6A reader YTHDF2 and its role in human disease. Cancer Cell Int 2021; 21(1): 109.
[http://dx.doi.org/10.1186/s12935-021-01807-0] [PMID: 33593354]
[13]
Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer 2020; 19(1): 88.
[http://dx.doi.org/10.1186/s12943-020-01204-7] [PMID: 32398132]
[14]
Barceló C, Etchin J, Mansour MR, et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014; 147(4): 882-892.e8.
[http://dx.doi.org/10.1053/j.gastro.2014.06.041] [PMID: 24998203]
[15]
Zhang E, Li X. LncRNA SOX2‐OT regulates proliferation and metastasis of nasopharyngeal carcinoma cells through miR‐146b‐5p/HNRNPA2B1 pathway. J Cell Biochem 2019; 120(10): 16575-88.
[http://dx.doi.org/10.1002/jcb.28917] [PMID: 31099048]
[16]
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 2015; 162(6): 1299-308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[17]
Jiang F, Tang X, Tang C, et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol 2021; 14(1): 54.
[http://dx.doi.org/10.1186/s13045-021-01066-6] [PMID: 33794982]
[18]
Monsivais D, Vasquez YM, Chen F, et al. Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene 2021; 40(11): 2081-95.
[http://dx.doi.org/10.1038/s41388-021-01681-0] [PMID: 33627787]
[19]
Almdahl SM, Jenssen TG, Samdal FA, Burhol PG. The effect of pancreatectomy and gastroenterectomy on the release of somatostatin and vasoactive intestinal polypeptide in experimental fecal peritonitis. Scand J Gastroenterol 1988; 23(1): 31-4.
[http://dx.doi.org/10.3109/00365528809093843] [PMID: 2894071]
[20]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[21]
Lamb J, Golub TR, Subramanian A, Peck DD. Gene-expression profiling with reduced numbers of transcript measurements. WO2011127150, 2016.
[22]
Rigoutsos I, Telonis AG. Systems-level analysis of 32 TCGA cancers reveals disease-dependent TRNA fragmentation patterns and very selective associations with messenger rnas and repeat elements. bioRxiv 2020.
[23]
Bogomolov M, Peterson CB, Benjamini Y, Sabatti C. Testing hypotheses on a tree: New error rates and controlling strategies. arXiv:170507529 2017.
[24]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(D1): D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[25]
Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 2018; 46(D1): D956-63.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[26]
Chen Y, Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127-31.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[27]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[28]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[29]
Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 2020; 38(6): 675-8.
[http://dx.doi.org/10.1038/s41587-020-0546-8] [PMID: 32444850]
[30]
Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002; 18(2): 333-4.
[http://dx.doi.org/10.1093/bioinformatics/18.2.333] [PMID: 11847087]
[31]
Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017; 77(21): e108-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[32]
Ru B, Wong CN, Tong Y, et al. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019; 35(20): 4200-2.
[http://dx.doi.org/10.1093/bioinformatics/btz210] [PMID: 30903160]
[33]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79(1): 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[34]
Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188522.
[http://dx.doi.org/10.1016/j.bbcan.2021.188522] [PMID: 33545295]
[35]
Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol 2015; 16(7): e342-51.
[http://dx.doi.org/10.1016/S1470-2045(15)00077-7] [PMID: 26149886]
[36]
Anichini A, Perotti VE, Sgambelluri F, Mortarini R. Immune escape mechanisms in non small cell lung cancer. Cancers 2020; 12(12): 3605.
[http://dx.doi.org/10.3390/cancers12123605] [PMID: 33276569]
[37]
Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol 2017; 7(9): 170070.
[http://dx.doi.org/10.1098/rsob.170070] [PMID: 28878044]
[38]
Zhang Y, Zhao W, Zhang J. Comprehensive epigenetic analysis of the signature genes in lung adenocarcinoma. Epigenomics 2017; 9(9): 1161-73.
[http://dx.doi.org/10.2217/epi-2017-0023] [PMID: 28809126]
[39]
Xu R, Pang G, Zhao Q, et al. The momentous role of N6‐methyladenosine in lung cancer. J Cell Physiol 2021; 236(5): 3244-56.
[http://dx.doi.org/10.1002/jcp.30136] [PMID: 33135190]
[40]
Li L, Li M, Wang X. Cancer type-dependent correlations between TP53 mutations and antitumor immunity. DNA Repair 2020; 88: 102785.
[http://dx.doi.org/10.1016/j.dnarep.2020.102785] [PMID: 32007736]
[41]
Ma S, Chen C, Ji X, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12(1): 121.
[http://dx.doi.org/10.1186/s13045-019-0805-7] [PMID: 31757221]
[42]
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014; 15(5): 293-306.
[http://dx.doi.org/10.1038/nrg3724] [PMID: 24662220]
[43]
Wang X, Xiao H, Wu D, Zhang D, Zhang Z. miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2. OncoTargets Ther 2020; 13: 6255-63.
[http://dx.doi.org/10.2147/OTT.S245136] [PMID: 32636645]
[44]
Guo H, Wang B, Xu K, et al. m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol 2020; 10: 553045.
[http://dx.doi.org/10.3389/fonc.2020.553045] [PMID: 33134163]
[45]
Tian XY, Li J, Liu TH, et al. The overexpression of AUF1 in colorectal cancer predicts a poor prognosis and promotes cancer progression by activating ERK and AKT pathways. Cancer Med 2020; 9(22): 8612-23.
[http://dx.doi.org/10.1002/cam4.3464] [PMID: 33016643]
[46]
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451-65.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[47]
Jing P, Xie N, Zhao N, et al. miR-24-3p/KLF8 signaling axis contributes to LUAD metastasis by regulating EMT. J Immunol Res 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/4036047] [PMID: 32411796]
[48]
Wang J, Yao S, Diao Y, Geng Y, Bi Y, Liu G. miR‐15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 2020; 11(6): 1396-405.
[http://dx.doi.org/10.1111/1759-7714.13382] [PMID: 32220063]
[49]
Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell 2018; 172(4): 650-65.
[http://dx.doi.org/10.1016/j.cell.2018.01.029] [PMID: 29425488]
[50]
Xu H, Liu L, Li W, et al. Transcription factors in colorectal cancer: Molecular mechanism and therapeutic implications. Oncogene 2021; 40(9): 1555-69.
[http://dx.doi.org/10.1038/s41388-020-01587-3] [PMID: 33323976]
[51]
Lu H, Huang C. Transcription factor NFAT, its role in cancer development, and as a potential target for chemoprevention. Curr Cancer Drug Targets 2007; 7(4): 343-53.
[http://dx.doi.org/10.2174/156800907780809750] [PMID: 17979629]
[52]
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett 2020; 470: 126-33.
[http://dx.doi.org/10.1016/j.canlet.2019.11.009] [PMID: 31730903]
[53]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[54]
Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 2018; 18(10): 635-47.
[http://dx.doi.org/10.1038/s41577-018-0044-0] [PMID: 30057419]
[55]
Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61(12): 4766-72.
[PMID: 11406550]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy