Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Synthesis and Selective Anticancer Activity Evaluation of 2-phenylacrylonitrile Derivatives as Tubulin Inhibitors

Author(s): Ye-Zhi Jin, Ya-Bing Xin, Yuan Li, Xin-Yuan Chen, De-Ao Man and Yu-Shun Tian*

Volume 31, Issue 15, 2024

Published on: 16 October, 2023

Page: [2090 - 2106] Pages: 17

DOI: 10.2174/0109298673263854231009063053

Price: $65

Abstract

Objective: This study aimed at synthesizing 13 series of novel derivatives with 2-phenylacrylonitrile, evaluating antitumor activity both in vivo and in vitro, and obtaining novel tubulin inhibitors.

Methods: The 13 series of 2-phenylacrylonitrile derivatives were synthesized by Knoevenagel condensation and the anti-proliferative activities were determined by MTT assay. The cell cycle and apoptosis were analyzed by flow cytometer. Quantitative cell migration was performed using 24-well Boyden chambers. The proteins were detected by western blotting. in vitro kinetics of microtubule assembly was measured using ELISA kit for Human β-tubulin (TUBB). Molecular docking was done by Discovery Studio (DS) 2017 Client online tool.

Results: Among the derivatives, compound 1g2a possessed strong inhibitory activity against HCT116 (IC50 = 5.9 nM) and BEL-7402 (IC50 = 7.8 nM) cells. Compound 1g2a exhibited better selective antiproliferative activities and specificities than all the positive control drugs, including taxol. Compound 1g2a inhibited proliferation of HCT116 and BEL-7402 cells by arresting them in the G2/M phase of the cell cycle, inhibited the migration of HCT116 and BEL-7402 cells and the formation of cell colonies. Compound 1g2a showed excellent tubulin polymerization inhibitory activity on HCT116 and BEL-7402 cells. The results of molecular docking analyses showed that 1g2a may inhibit tubulin to exert anticancer effects.

Conclusion: Compound 1g2a shows outstanding antitumor activity both in vivo and in vitro and has the potential to be further developed into a highly effective antitumor agent with little toxicity to normal tissues.

[1]
You, L.; Lv, Z.; Li, C.; Ye, W.; Zhou, Y.; Jin, J.; Han, Q. Worldwide cancer statistics of adolescents and young adults in 2019: A systematic analysis of the Global Burden of Disease Study 2019. ESMO Open, 2021, 6(5), 100255.
[http://dx.doi.org/10.1016/j.esmoop.2021.100255] [PMID: 34481330]
[2]
Ma, J.; Li, J.; Tian, Y.S. Synthesis and bioactivity evaluation of 2,3-diaryl acrylonitrile derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(1), 81-85.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.025] [PMID: 27887843]
[3]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[4]
Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi- target drug design. Curr. Med. Chem., 2016, 23(23), 2439-2489.
[http://dx.doi.org/10.2174/0929867323666160517121629] [PMID: 27183980]
[5]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[6]
Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[7]
Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[8]
Fu, D.J.; Yang, J.J.; Li, P.; Hou, Y.H.; Huang, S.N.; Tippin, M.A.; Pham, V.; Song, L.; Zi, X.; Xue, W.L.; Zhang, L.R.; Zhang, S.Y. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur. J. Med. Chem., 2018, 157, 50-61.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.060] [PMID: 30075402]
[9]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365.
[http://dx.doi.org/10.1016/S0165-6147(03)00161-5] [PMID: 12871669]
[10]
Liang, T.; Lu, L.; Song, X.; Qi, J.; Wang, J. Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188777.
[http://dx.doi.org/10.1016/j.bbcan.2022.188777] [PMID: 35963551]
[11]
Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; LeMelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381.
[http://dx.doi.org/10.1021/jm500002k] [PMID: 24669888]
[12]
Metzler, M.; Neumann, H.G. Epoxidation of the stilbene double bond, a major pathway in aminostilbene metabolism. Xenobiotica, 1977, 7(3), 117-132.
[http://dx.doi.org/10.3109/00498257709036244] [PMID: 848044]
[13]
Brown, A.W.; Fisher, M.; Tozer, G.M.; Kanthou, C.; Harrity, J.P.A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. J. Med. Chem., 2016, 59(20), 9473-9488.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01128] [PMID: 27690431]
[14]
Carr, M.; Greene, L.M.; Knox, A.J.S.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem., 2010, 45(12), 5752-5766.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.033] [PMID: 20933304]
[15]
Chaudhary, V.; Venghateri, J.B.; Dhaked, H.P.S.; Bhoyar, A.S.; Guchhait, S.K.; Panda, D. Novel combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: Exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J. Med. Chem., 2016, 59(7), 3439-3451.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00101] [PMID: 26938120]
[16]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[17]
Sun, J.; Chen, L.; Liu, C.; Wang, Z.; Zuo, D.; Pan, J.; Qi, H.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem. Biol. Drug Des., 2015, 86(6), 1541-1547.
[http://dx.doi.org/10.1111/cbdd.12617] [PMID: 26202587]
[18]
Tsyganov, D.V.; Khrustalev, V.N.; Konyushkin, L.D.; Raihstat, M.M.; Firgang, S.I.; Semenov, R.V.; Kiselyov, A.S.; Semenova, M.N.; Semenov, V.V. 3-(5-)-amino-o-diarylisoxazoles: Regioselective synthesis and antitubulin activity. Eur. J. Med. Chem., 2014, 73, 112-125.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.006] [PMID: 24388833]
[19]
Li, J.J.; Ma, J.; Xin, Y.B.; Quan, Z.S.; Tian, Y.S. Synthesis and pharmacological evaluation of 2,3-diphenyl acrylonitriles-bearing halogen as selective anticancer agents. Chem. Biol. Drug Des., 2018, 92(2), 1419-1428.
[http://dx.doi.org/10.1111/cbdd.13180] [PMID: 29516624]
[20]
Xin, Y.B.; Li, J.J.; Zhang, H.J.; Ma, J.; Liu, X.; Gong, G.H.; Tian, Y.S. Synthesis and characterisation of ( Z )-styrylbenzene derivatives as potential selective anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1554-1564.
[http://dx.doi.org/10.1080/14756366.2018.1513925] [PMID: 30244610]
[21]
Göker, H.; Karaaslan, C.; Püsküllü, M.O.; Yildiz, S.; Duydu, Y.; Üstündağ, A.; Yalcin, C.Ö. Synthesis and in vitro activity of polyhalogenated 2-phenylbenzimidazoles as a new class of anti-MRSA and anti-VRE agents. Chem. Biol. Drug Des., 2016, 87(1), 57-68.
[http://dx.doi.org/10.1111/cbdd.12623] [PMID: 26221778]
[22]
Ma, L.; Lu, Y.; Li, Y.; Yang, Z.; Mao, Y.; Wang, Y.; Man, S. A novel halogenated adenosine analog 5′-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol. Appl. Pharmacol., 2022, 436, 115857.
[http://dx.doi.org/10.1016/j.taap.2021.115857] [PMID: 34979143]
[23]
Mukherjee, A.; Ghosh, S.; Ghosh, S.; Mahato, S.; Pal, M.; Sen, S.K.; Majee, A.; Singh, B. Molecular recognition of synthesized halogenated chalcone by calf thymus DNA through multispectroscopic studies and analysis the anti-cancer, anti-bacterial activity of the compounds. J. Mol. Liq., 2021, 337, 116504.
[http://dx.doi.org/10.1016/j.molliq.2021.116504]
[24]
Wan, D.; Yang, J.; McReynolds, C.B.; Barnych, B.; Wagner, K.M.; Morisseau, C.; Hwang, S.H.; Sun, J.; Blöcher, R.; Hammock, B.D. In vitro and in vivo metabolism of a potent inhibitor of soluble epoxide hydrolase, 1-(1-propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea. Front. Pharmacol., 2019, 10, 464.
[http://dx.doi.org/10.3389/fphar.2019.00464] [PMID: 31143115]
[25]
Wu, M.J.; Wu, D.M.; Chen, J.B.; Zhao, J.F.; Gong, L.; Gong, Y.X.; Li, Y.; Yang, X.D.; Zhang, H. Synthesis and anti-proliferative activity of allogibberic acid derivatives containing 1,2,3-triazole pharmacophore. Bioorg. Med. Chem. Lett., 2018, 28(14), 2543-2549.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.038] [PMID: 29884535]
[26]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[27]
Arshad, F.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Parvez, S.; Hasan, S.M.; Shaquiquzzaman, M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur. J. Med. Chem., 2019, 167, 324-356.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.015] [PMID: 30776694]
[28]
Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer : A review. Eur. J. Med. Chem., 2018, 157, 480-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.017] [PMID: 30114660]
[29]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021] [PMID: 29427856]
[30]
Kassem, A.F.; Nassar, I.F.; Abdel-Aal, M.T.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new ((Furan-2-yl)-1,3,4-thiadiazolyl)-1,3,4-oxadiazole acyclic sugar derivatives. Chem. Pharm. Bull., 2019, 67(8), 888-895.
[http://dx.doi.org/10.1248/cpb.c19-00280] [PMID: 31366838]
[31]
Makar, S.; Saha, T.; Singh, S.K. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem., 2019, 161, 252-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.018] [PMID: 30366253]
[32]
Zulfiqar, S.; Haroon, M.; Baig, M.W.; Tariq, M.; Ahmad, Z.; Tahir, M.N.; Akhtar, T. Synthesis, crystal structure, anti-cancer, anti-inflammatory anti-oxidant and quantum chemical studies of 4-(pyrrolidine-2,5-dione-1-yl)phenol. J. Mol. Struct., 2021, 1224, 129267.
[http://dx.doi.org/10.1016/j.molstruc.2020.129267]
[33]
Joshi, G.; Singh, P.K.; Negi, A.; Rana, A.; Singh, S.; Kumar, R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem. Biol. Interact., 2015, 240, 120-133.
[http://dx.doi.org/10.1016/j.cbi.2015.08.009] [PMID: 26297992]
[34]
Clarke, P.R.; Allan, L.A. Cell-cycle control in the face of damage : A matter of life or death. Trends Cell Biol., 2009, 19(3), 89-98.
[http://dx.doi.org/10.1016/j.tcb.2008.12.003] [PMID: 19168356]
[35]
Tian, Y.S.; Kim, H.J.; Kim, H.M. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces. Biochem. Biophys. Res. Commun., 2009, 386(3), 499-503.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.087] [PMID: 19545543]
[36]
Kamal, A.; Ashraf, M.; Basha, S.T.; Ali Hussaini, S.M.; Singh, S.; Vishnuvardhan, M.V.P.S.; Kiran, B.; Sridhar, B. Design, synthesis and antiproliferative activity of the new conjugates of E7010 and resveratrol as tubulin polymerization inhibitors. Org. Biomol. Chem., 2016, 14(4), 1382-1394.
[http://dx.doi.org/10.1039/C5OB02022K] [PMID: 26676480]
[37]
Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/534934] [PMID: 23304254]
[38]
Liu, Y.N.; Wang, J.J.; Ji, Y.T.; Zhao, G.D.; Tang, L.Q.; Zhang, C.M.; Guo, X.L.; Liu, Z.P. Design, synthesis, and biological evaluation of 1-methyl-1,4-dihydroindeno[1,2- c ]pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J. Med. Chem., 2016, 59(11), 5341-5355.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00071] [PMID: 27172319]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy