Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Early Detection of Colorectal Cancer: Conventional Techniques and Current Biomarkers

Author(s): Sajjad Ahmadpour, Mohammad Amin Habibi, Mohammad Reza Pashaei, Yousef Mohammadpour, Kimia Jazi and Mehdi Pezeshgi Modarres*

Volume 20, Issue 4, 2024

Published on: 12 October, 2023

Page: [327 - 340] Pages: 14

DOI: 10.2174/0115733947259130231003044741

Price: $65

Abstract

Colorectal cancer (CRC) is the third most common cancer worldwide, and the incidence of CRC seems to increase gradually. The survival of CRC varies in different countries, attributed to the screening program. Generally, diagnostic approaches for CRC can be divided into visual detection methods and laboratory methods. Colonoscopy, sigmoidoscopy, and computed tomography colonography are considered visual methods widely used in cancer detection. Although visual methods provide some benefits, some disadvantages such as late detection, are present, making them useless in rapidly progressing CRC patients. On the other hand, laboratory tests are developed to compensate for the disadvantages of visual methods. More recent progression in laboratory tests makes them able to superfine detection of CRC. For instance, molecular and genetic methods based on the components of cancer cells, like nucleic acid and proteins, can prognosticate further cancer development in susceptible patients. Alongside new therapeutic approaches developed within decades, the number of CRC detection methods has increased, which aims to reduce the duration between cancer initiation and detection. This review sought to survey the CRC detection methods, including conventional and recently-developed methods, to provide better insight into CRC screening.

Next »
Graphical Abstract

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[3]
Nikbakht HA, Hassanipour S, Shojaie L, et al. Survival rate of colorectal cancer in eastern mediterranean region countries: A systematic review and meta-analysis Cancer Control 2020; 27(1): 1073274820964146.
[http://dx.doi.org/10.1177/1073274820964146]
[4]
Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology 2010; 138(6): 2029-2043.e10.
[http://dx.doi.org/10.1053/j.gastro.2010.01.057] [PMID: 20420944]
[5]
Provenzale D, Gupta S, Ahnen DJ, et al. Genetic/familial high-risk assessment: Colorectal version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2016; 14(8): 1010-30.
[http://dx.doi.org/10.6004/jnccn.2016.0108] [PMID: 27496117]
[6]
Bretthauer M, Kalager M. Principles, effectiveness and caveats in screening for cancer. Br J Surg 2012; 100(1): 55-65.
[http://dx.doi.org/10.1002/bjs.8995] [PMID: 23212620]
[7]
Force UPST. Final update summary: colorectal cancer: screening. US Preventive Services Task Force 2017.
[8]
Jodal HC, Helsingen LM, Anderson JC, Lytvyn L, Vandvik PO, Emilsson L. Colorectal cancer screening with faecal testing, sigmoidoscopy or colonoscopy: A systematic review and network meta-analysis. BMJ Open 2019; 9(10): e032773.
[http://dx.doi.org/10.1136/bmjopen-2019-032773] [PMID: 31578199]
[9]
Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst 2017; 109(8): djw322.
[http://dx.doi.org/10.1093/jnci/djw322] [PMID: 28376186]
[10]
Adams LB, Richmond J, Corbie-Smith G, Powell W. Medical mistrust and colorectal cancer screening among African Americans. J Community Health 2017; 42(5): 1044-61.
[http://dx.doi.org/10.1007/s10900-017-0339-2] [PMID: 28439739]
[11]
Katabathina VS, Menias CO, Khanna L, et al. Hereditary gastrointestinal cancer syndromes: Role of imaging in screening, diagnosis, and management. Radiographics 2019; 39(5): 1280-301.
[http://dx.doi.org/10.1148/rg.2019180185] [PMID: 31373866]
[12]
Bray C, Bell LN, Liang H, Collins D, Yale SH. Colorectal cancer screening. WMJ 2017; 116(1): 27-33.
[PMID: 29099566]
[13]
Brenner AT, Dougherty M, Reuland DS. Colorectal cancer screening in average risk patients. Med Clin North Am 2017; 101(4): 755-67.
[http://dx.doi.org/10.1016/j.mcna.2017.03.007] [PMID: 28577625]
[14]
Qaseem A, Crandall CJ, Mustafa RA, et al. Screening for colorectal cancer in asymptomatic average-risk adults: A guidance statement from the American college of physicians. Ann Intern Med 2019; 171(9): 643-54.
[http://dx.doi.org/10.7326/M19-0642] [PMID: 31683290]
[15]
Zheng S, Schrijvers JJA, Greuter MJW, Kats-Ugurlu G, Lu W, de Bock GH. Effectiveness of colorectal cancer (CRC) screening on all-cause and CRC-specific mortality reduction: A systematic review and meta-analysis. Cancers 2023; 15(7): 1948.
[http://dx.doi.org/10.3390/cancers15071948] [PMID: 37046609]
[16]
Issa IA, Noureddine M. Colorectal cancer screening: An updated review of the available options. World J Gastroenterol 2017; 23(28): 5086-96.
[http://dx.doi.org/10.3748/wjg.v23.i28.5086] [PMID: 28811705]
[17]
Chan PW, Ngu JH, Poh Z, Soetikno R. Colorectal cancer screening. Singapore Med J 2017; 58(1): 24-8.
[http://dx.doi.org/10.11622/smedj.2017004] [PMID: 28111691]
[18]
Hadjipetrou A, Anyfantakis D, Galanakis CG, Kastanakis M, Kastanakis S. Colorectal cancer, screening and primary care: A mini literature review. World J Gastroenterol 2017; 23(33): 6049-58.
[http://dx.doi.org/10.3748/wjg.v23.i33.6049] [PMID: 28970720]
[19]
Loktionov A, Soubieres A, Bandaletova T, et al. Biomarker measurement in non-invasively sampled colorectal mucus as a novel approach to colorectal cancer detection: Screening and triage implications. Br J Cancer 2020; 123(2): 252-60.
[http://dx.doi.org/10.1038/s41416-020-0893-8] [PMID: 32398859]
[20]
Bosch LJW, de Wit M, Pham TV, et al. Novel stool-based protein biomarkers for improved colorectal cancer screening. Ann Intern Med 2017; 167(12): 855-66.
[http://dx.doi.org/10.7326/M17-1068] [PMID: 29159365]
[21]
Wolf AMD, Fontham ETH, Church TR, et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin 2018; 68(4): 250-81.
[http://dx.doi.org/10.3322/caac.21457] [PMID: 29846947]
[22]
Brenner H, Chen C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br J Cancer 2018; 119(7): 785-92.
[http://dx.doi.org/10.1038/s41416-018-0264-x] [PMID: 30287914]
[23]
Gies A, Bhardwaj M, Stock C, Schrotz-King P, Brenner H. Quantitative fecal immunochemical tests for colorectal cancer screening. Int J Cancer 2018; 143(2): 234-44.
[http://dx.doi.org/10.1002/ijc.31233] [PMID: 29277897]
[24]
Ferlizza E, Solmi R, Sgarzi M, Ricciardiello L, Lauriola M. The roadmap of colorectal cancer screening. Cancers 2021; 13(5): 1101.
[http://dx.doi.org/10.3390/cancers13051101] [PMID: 33806465]
[25]
Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452(7184): 230-3.
[http://dx.doi.org/10.1038/nature06734] [PMID: 18337823]
[26]
Sithambaram S, Hilmi I, Goh KL. The diagnostic accuracy of the M2 pyruvate kinase quick stool test: A rapid office based assay test for the detection of colorectal cancer. PLoS One 2015; 10(7): e0131616.
[http://dx.doi.org/10.1371/journal.pone.0131616] [PMID: 26158845]
[27]
Haug U, Hundt S, Brenner H. Sensitivity and specificity of faecal tumour M2 pyruvate kinase for detection of colorectal adenomas in a large screening study. Br J Cancer 2008; 99(1): 133-5.
[http://dx.doi.org/10.1038/sj.bjc.6604427] [PMID: 18542075]
[28]
Shastri YM, Povse N, Schröder O, Stein J. Comparison of a novel fecal marker: Fecal tumor pyruvate kinase type M2 (M2-PK) with fecal calprotectin in patients with inflammatory bowel disease: A prospective study. Clin Lab 2008; 54(9-10): 389-90.
[PMID: 19097497]
[29]
Rigi F, Jannatabad A, Izanloo A, Roshanravan R, Hashemian HR, Kerachian MA. Expression of tumor pyruvate kinase M2 isoform in plasma and stool of patients with colorectal cancer or adenomatous polyps. BMC Gastroenterol 2020; 20(1): 241.
[http://dx.doi.org/10.1186/s12876-020-01377-x] [PMID: 32727566]
[30]
Uppara M, Adaba F, Askari A, et al. A systematic review and meta-analysis of the diagnostic accuracy of pyruvate kinase M2 isoenzymatic assay in diagnosing colorectal cancer. World J Surg Oncol 2015; 13(1): 48.
[http://dx.doi.org/10.1186/s12957-015-0446-4] [PMID: 25888768]
[31]
Yang B, Tang F, Zhang B, Zhao Y, Feng J, Rao Z. Matrix metalloproteinase-9 overexpression is closely related to poor prognosis in patients with colon cancer. World J Surg Oncol 2014; 12(1): 24.
[http://dx.doi.org/10.1186/1477-7819-12-24] [PMID: 24476461]
[32]
Annaházi A, Ábrahám S, Farkas K, et al. A pilot study on faecal MMP-9: A new noninvasive diagnostic marker of colorectal cancer. Br J Cancer 2016; 114(7): 787-92.
[http://dx.doi.org/10.1038/bjc.2016.31] [PMID: 26908323]
[33]
Łukaszewicz-Zając M, Mroczko B. Circulating biomarkers of colorectal cancer (CRC) : Their utility in diagnosis and prognosis. J Clin Med 2021; 10(11): 2391.
[http://dx.doi.org/10.3390/jcm10112391] [PMID: 34071492]
[34]
Groblewska M, Mroczko B, Gryko M, Kędra B, Szmitkowski M. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients. Folia Histochem Cytobiol 2010; 48(4): 564-71.
[PMID: 21478099]
[35]
Ushigome M, Nabeya Y, Soda H, et al. Multi-panel assay of serum autoantibodies in colorectal cancer. Int J Clin Oncol 2018; 23(5): 917-23.
[http://dx.doi.org/10.1007/s10147-018-1278-3] [PMID: 29691673]
[36]
Chauvin A, Boisvert FM. Clinical proteomics in colorectal cancer, a promising tool for improving personalised medicine. Proteomes 2018; 6(4): 49.
[http://dx.doi.org/10.3390/proteomes6040049] [PMID: 30513835]
[37]
Ahn SB, Sharma S, Mohamedali A, et al. Potential early clinical stage colorectal cancer diagnosis using a proteomics blood test panel. Clin Proteomics 2019; 16(1): 34.
[http://dx.doi.org/10.1186/s12014-019-9255-z] [PMID: 31467500]
[38]
Ivancic MM, Megna BW, Sverchkov Y, et al. Noninvasive detection of colorectal carcinomas using serum protein biomarkers. J Surg Res 2020; 246: 160-9.
[http://dx.doi.org/10.1016/j.jss.2019.08.004] [PMID: 31586890]
[39]
Bosch LJW, Carvalho B, Fijneman RJA, et al. Molecular tests for colorectal cancer screening. Clin Colorectal Cancer 2011; 10(1): 8-23.
[http://dx.doi.org/10.3816/CCC.2011.n.002] [PMID: 21609931]
[40]
Chen H, Zucknick M, Werner S, Knebel P, Brenner H. Head-to-head comparison and evaluation of 92 plasma protein biomarkers for early detection of colorectal cancer in a true screening setting. Clin Cancer Res 2015; 21(14): 3318-26.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3051] [PMID: 26015516]
[41]
Loktionov A, Soubieres A, Bandaletova T, Mathur J, Poullis A. Colorectal cancer detection by biomarker quantification in noninvasively collected colorectal mucus: preliminary comparison of 24 protein biomarkers. Eur J Gastroenterol Hepatol 2019; 31(10): 1220-7.
[http://dx.doi.org/10.1097/MEG.0000000000001535] [PMID: 31498281]
[42]
Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24(33): 5313-27.
[http://dx.doi.org/10.1200/JCO.2006.08.2644] [PMID: 17060676]
[43]
Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. Systematic review of blood diagnostic markers in colorectal cancer. Tech Coloproctol 2018; 22(7): 481-98.
[http://dx.doi.org/10.1007/s10151-018-1820-3] [PMID: 30022330]
[44]
Overholt BF, Wheeler DJ, Jordan T, Fritsche HA. CA11-19: A tumor marker for the detection of colorectal cancer. Gastrointest Endosc 2016; 83(3): 545-51.
[http://dx.doi.org/10.1016/j.gie.2015.06.041] [PMID: 26318832]
[45]
Xue H, Lü B, Zhang J, et al. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 2010; 9(1): 545-55.
[http://dx.doi.org/10.1021/pr9008817] [PMID: 19924834]
[46]
Li Q, Wang K, Su C, Fang J. Serum trefoil factor 3 as a protein biomarker for the diagnosis of colorectal cancer. Technol Cancer Res Treat 2017; 16(4): 440-5.
[http://dx.doi.org/10.1177/1533034616674323] [PMID: 27760866]
[47]
Fei W, Chen L, Chen J, et al. RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer. Oncotarget 2017; 8(54): 92254-64.
[http://dx.doi.org/10.18632/oncotarget.21173] [PMID: 29190912]
[48]
Wang XQ, Tang ZX, Yu D, et al. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma. Oncotarget 2016; 7(8): 8823-38.
[http://dx.doi.org/10.18632/oncotarget.6815] [PMID: 26741506]
[49]
Noy N, Li L, Abola MV, Berger NA. Is retinol binding protein 4 a link between adiposity and cancer? Horm Mol Biol Clin Investig 2015; 23(2): 39-46.
[http://dx.doi.org/10.1515/hmbci-2015-0019] [PMID: 26136304]
[50]
Chen KC, Hsueh WT, Ou CY, et al. Alcohol drinking obliterates the inverse association between serum retinol and risk of head and neck cancer. Medicine 2015; 94(26): e1064.
[http://dx.doi.org/10.1097/MD.0000000000001064] [PMID: 26131827]
[51]
Bornstein P, Kyriakides TR, Yang Z, Armstrong LC, Birk DE. Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. J Investig Dermatol Symp Proc 2000; 5(1): 61-6.
[http://dx.doi.org/10.1046/j.1087-0024.2000.00005.x] [PMID: 11147677]
[52]
Rieder D, Ploner C, Krogsdam AM, et al. Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 2014; 71(9): 1741-59.
[http://dx.doi.org/10.1007/s00018-013-1465-3] [PMID: 24026398]
[53]
Tilman G, Mattiussi M, Brasseur F, van Baren N, Decottignies A. Human periostin gene expression in normal tissues, tumors and melanoma: Evidences for periostin production by both stromal and melanoma cells. Mol Cancer 2007; 6(1): 80.
[http://dx.doi.org/10.1186/1476-4598-6-80] [PMID: 18086302]
[54]
Mroczko B, Groblewska M, Wereszczyńska-Siemiątkowska U, et al. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta 2007; 380(1-2): 208-12.
[http://dx.doi.org/10.1016/j.cca.2007.02.037] [PMID: 17368603]
[55]
Xu J, Ye Y, Zhang H, et al. Diagnostic and prognostic value of serum interleukin-6 in colorectal cancer. Medicine 2016; 95(2): e2502.
[http://dx.doi.org/10.1097/MD.0000000000002502] [PMID: 26765465]
[56]
Xia W, Chen W, Zhang Z, et al. Prognostic value, clinicopathologic features and diagnostic accuracy of interleukin-8 in colorectal cancer: A meta-analysis. PLoS One 2015; 10(4): e0123484.
[http://dx.doi.org/10.1371/journal.pone.0123484] [PMID: 25856316]
[57]
Jaberie H, Hosseini SV, Naghibalhossaini F. Evaluation of alpha 1-antitrypsin for the early diagnosis of colorectal cancer. Pathol Oncol Res 2020; 26(2): 1165-73.
[http://dx.doi.org/10.1007/s12253-019-00679-0] [PMID: 31183614]
[58]
Fayazfar S, Zali H, Arefi Oskouie A, Asadzadeh Aghdaei H, Rezaei Tavirani M, Nazemalhosseini Mojarad E. Early diagnosis of colorectal cancer via plasma proteomic analysis of CRC and advanced adenomatous polyp. Gastroenterol Hepatol Bed Bench 2019; 12(4): 328-39.
[PMID: 31749922]
[59]
Quinchia J, Echeverri D, Cruz-Pacheco A, Maldonado M, Orozco J. Electrochemical biosensors for determination of colorectal tumor biomarkers. Micromachines 2020; 11(4): 411.
[http://dx.doi.org/10.3390/mi11040411] [PMID: 32295170]
[60]
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12(2): 124-48.
[http://dx.doi.org/10.4251/wjgo.v12.i2.124] [PMID: 32104546]
[61]
Gharib E, Nazemalhosseini-Mojarad E, Baghdar K, et al. Identification of a stool long non‐coding RNAs panel as a potential biomarker for early detection of colorectal cancer. J Clin Lab Anal 2021; 35(2): e23601.
[http://dx.doi.org/10.1002/jcla.23601] [PMID: 33094859]
[62]
Connelly CM, Deiters A. Control of oncogenic miRNA function by light-activated miRNA antagomirs. Methods Mol Biol 2014; 1165: 99-114.
[http://dx.doi.org/10.1007/978-1-4939-0856-1_9] [PMID: 24839022]
[63]
Vafaee F, Diakos C, Kirschner MB, et al. A data-driven, knowledge-based approach to biomarker discovery: Application to circulating microRNA markers of colorectal cancer prognosis. NPJ Syst Biol Appl 2018; 4(1): 20.
[http://dx.doi.org/10.1038/s41540-018-0056-1] [PMID: 29872543]
[64]
Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: Translation of molecular biology into clinical application. Mol Cancer 2009; 8(1): 102.
[http://dx.doi.org/10.1186/1476-4598-8-102] [PMID: 19912656]
[65]
Madhavan D, Cuk K, Burwinkel B, Yang R. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet 2013; 4: 116.
[http://dx.doi.org/10.3389/fgene.2013.00116] [PMID: 23802013]
[66]
Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12): 882-91.
[PMID: 14573789]
[67]
Pichler M, Winter E, Stotz M, et al. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer 2012; 106(11): 1826-32.
[http://dx.doi.org/10.1038/bjc.2012.175] [PMID: 22549179]
[68]
Zhang Y, Wang Z, Chen M, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer 2012; 11(1): 23.
[http://dx.doi.org/10.1186/1476-4598-11-23] [PMID: 22533346]
[69]
Sheng N, Tan G, You W, et al. MiR-145 inhibits human colorectal cancer cell migration and invasion via PAK4-dependent pathway. Cancer Med 2017; 6(6): 1331-40.
[http://dx.doi.org/10.1002/cam4.1029] [PMID: 28440035]
[70]
Qin J, Wang F, Jiang H, Xu J, Jiang Y, Wang Z. MicroRNA-145 suppresses cell migration and invasion by targeting paxillin in human colorectal cancer cells. Int J Clin Exp Pathol 2015; 8(2): 1328-40.
[PMID: 25973017]
[71]
Zhu J, Xu Y, Liu S, Qiao L, Sun J, Zhao Q. Micrornas associated with colon cancer: New potential prognostic markers and targets for therapy. Front Bioeng Biotechnol 2020; 8(176): 176.
[http://dx.doi.org/10.3389/fbioe.2020.00176] [PMID: 32211396]
[72]
Caritg O, Navarro A, Moreno I, et al. Identifying high-risk stage II colon cancer patients: A three-MicroRNA-based score as a prognostic biomarker. Clin Colorectal Cancer 2016; 15(4): e175-82.
[http://dx.doi.org/10.1016/j.clcc.2016.04.008] [PMID: 27247088]
[73]
Bobowicz M, Skrzypski M, Czapiewski P, et al. Prognostic value of 5-microRNA based signature in T2-T3N0 colon cancer. Clin Exp Metastasis 2016; 33(8): 765-73.
[http://dx.doi.org/10.1007/s10585-016-9810-1] [PMID: 27485175]
[74]
Maierthaler M, Benner A, Hoffmeister M, et al. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int J Cancer 2017; 140(1): 176-87.
[http://dx.doi.org/10.1002/ijc.30433] [PMID: 27632639]
[75]
Chang PY, Chen CC, Chang YS, et al. MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget 2016; 7(9): 10663-75.
[http://dx.doi.org/10.18632/oncotarget.7119] [PMID: 26848774]
[76]
Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 2013; 42(1): 219-28.
[http://dx.doi.org/10.3892/ijo.2012.1707] [PMID: 23174819]
[77]
Slaby O, Svoboda M, Fabian P, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007; 72(5-6): 397-402.
[http://dx.doi.org/10.1159/000113489] [PMID: 18196926]
[78]
Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 2010; 79(3-4): 313-20.
[http://dx.doi.org/10.1159/000323283] [PMID: 21412018]
[79]
Valeri N, Gasparini P, Braconi C, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci 2010; 107(49): 21098-103.
[http://dx.doi.org/10.1073/pnas.1015541107] [PMID: 21078976]
[80]
Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010; 127(1): 118-26.
[http://dx.doi.org/10.1002/ijc.25007] [PMID: 19876917]
[81]
Van Roosbroeck K, Fanini F, Setoyama T, et al. Combining Anti-Mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res 2017; 23(11): 2891-904.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1025] [PMID: 27903673]
[82]
Ulivi P, Canale M, Passardi A, et al. Circulating plasma levels of miR-20b, miR-29b and miR-155 as predictors of bevacizumab efficacy in patients with metastatic colorectal cancer. Int J Mol Sci 2018; 19(1): 307.
[http://dx.doi.org/10.3390/ijms19010307] [PMID: 29361687]
[83]
Zhu Y, Xu A, Li J, et al. Fecal miR-29a and miR-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark 2016; 16(2): 259-64.
[http://dx.doi.org/10.3233/CBM-150563] [PMID: 26756616]
[84]
Zheng GX, Qu AL, Yang YM, Zhang X, Zhang SC, Wang CX. miR-422a is an independent prognostic factor and functions as a potential tumor suppressor in colorectal cancer. World J Gastroenterol 2016; 22(24): 5589-97.
[http://dx.doi.org/10.3748/wjg.v22.i24.5589] [PMID: 27350737]
[85]
Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T. Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 2011; 300(2): 197-204.
[http://dx.doi.org/10.1016/j.canlet.2010.10.006] [PMID: 21067862]
[86]
Li XM, Wang AM, Zhang J, Yi H. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol 2011; 28(4): 1054-7.
[http://dx.doi.org/10.1007/s12032-010-9637-6] [PMID: 20680522]
[87]
Zhang Y, Wang X, Xu B, et al. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 2013; 30(4): 1976-84.
[http://dx.doi.org/10.3892/or.2013.2633] [PMID: 23900443]
[88]
Luo Y, Yu SY, Chen JJ, et al. MiR-27b directly targets Rab3D to inhibit the malignant phenotype in colorectal cancer. Oncotarget 2018; 9(3): 3830-41.
[http://dx.doi.org/10.18632/oncotarget.23237] [PMID: 29423086]
[89]
Ye J, Wu X, Wu D, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 2013; 8(4): e60687.
[http://dx.doi.org/10.1371/journal.pone.0060687] [PMID: 23593282]
[90]
Wu Q-B, Sheng X, Zhang N, Yang M-W, Wang F. Role of microRNAs in the resistance of colorectal cancer to chemoradiotherapy. Mol Clin Oncol 2018; 8(4): 523-7.
[PMID: 29556386]
[91]
Zhang Q, Wang J, Li N, et al. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo. Am J Cancer Res 2018; 8(2): 280-90.
[PMID: 29511598]
[92]
Wu X, Li S, Xu X, et al. The potential value of miR-1 and miR-374b as biomarkers for colorectal cancer. Int J Clin Exp Pathol 2015; 8(3): 2840-51.
[PMID: 26045793]
[93]
Chai J, Dong W, Xie C, et al. MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life 2015; 67(3): 191-201.
[http://dx.doi.org/10.1002/iub.1361] [PMID: 25873402]
[94]
Wu H, Liang Y, Shen L, Shen L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol Open 2016; 5(5): 563-70.
[http://dx.doi.org/10.1242/bio.015008] [PMID: 27095441]
[95]
Ghanbari R, Mosakhani N, Asadi J, et al. Decreased expression of fecal miR-4478 and miR-1295b-3p in early-stage colorectal cancer. Cancer Biomark 2015; 15(2): 189-95.
[http://dx.doi.org/10.3233/CBM-140453] [PMID: 25519020]
[96]
Wu Z, Li Y, Zhang Y, et al. Colorectal cancer screening methods and molecular markers for early detection. Technol Cancer Res Treat 2020; 19: 1533033820980426.
[http://dx.doi.org/10.1177/1533033820980426] [PMID: 33353503]
[97]
Stanczak A, Stec R, Bodnar L, et al. Prognostic significance of Wnt-1, β-catenin and E-cadherin expression in advanced colorectal carcinoma. Pathol Oncol Res 2011; 17(4): 955-63.
[http://dx.doi.org/10.1007/s12253-011-9409-4] [PMID: 21678109]
[98]
van Lanschot MCJ, Bosch LJW, de Wit M, Carvalho B, Meijer GA. Early detection: The impact of genomics. Virchows Arch 2017; 471(2): 165-73.
[http://dx.doi.org/10.1007/s00428-017-2159-2] [PMID: 28573511]
[99]
Li XL, Zhou J, Chen Z-R, Chng W-J. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21(1): 84-93.
[http://dx.doi.org/10.3748/wjg.v21.i1.84] [PMID: 25574081]
[100]
Tejpar S, Bertagnolli M, Bosman F, et al. Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into biomarker discovery. Oncologist 2010; 15(4): 390-404.
[http://dx.doi.org/10.1634/theoncologist.2009-0233] [PMID: 20350999]
[101]
Perry JM, He XC, Sugimura R, et al. Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 2011; 25(18): 1928-42.
[http://dx.doi.org/10.1101/gad.17421911] [PMID: 21890648]
[102]
Nagel R, le Sage C, Diosdado B, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 2008; 68(14): 5795-802.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0951] [PMID: 18632633]
[103]
Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med 2004; 351(26): 2704-14.
[http://dx.doi.org/10.1056/NEJMoa033403] [PMID: 15616205]
[104]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 2017; 23(8): 2061-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1599] [PMID: 27697996]
[105]
Liu R, Su X, Long Y, et al. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. Mutat Res Rev Mutat Res 2019; 779: 45-57.
[http://dx.doi.org/10.1016/j.mrrev.2019.01.003] [PMID: 31097151]
[106]
Cao Y, Zhao G, Cao Y, et al. Feasibility of methylated CLIP4 in stool for early detection of colorectal cancer: A training study in chinese population. Front Oncol 2021; 11: 647066.
[http://dx.doi.org/10.3389/fonc.2021.647066] [PMID: 33968748]
[107]
Cao Y, Zhao G, Yuan M, et al. KCNQ5 and C9orf50 methylation in stool DNA for early detection of colorectal cancer. Front Oncol 2021; 10: 621295.
[http://dx.doi.org/10.3389/fonc.2020.621295] [PMID: 33585248]
[108]
Ahlquist DA, Zou H, Domanico M, et al. Next-generation stool DNA test accurately detects colorectal cancer and large adenomas. Gastroenterology 2012; 142(2): 248-56.
[http://dx.doi.org/10.1053/j.gastro.2011.10.031] [PMID: 22062357]
[109]
Tepus M, Yau TO. Non-invasive colorectal cancer screening: An overview. Gastrointest Tumors 2020; 7(3): 62-73.
[http://dx.doi.org/10.1159/000507701] [PMID: 32903904]
[110]
Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014; 370(14): 1287-97.
[http://dx.doi.org/10.1056/NEJMoa1311194] [PMID: 24645800]
[111]
Moradi K, Babaei E, Rezvani N, Safaralizadeh R, Bashiri H, Feizi MAH. High potential of SOX21 gene promoter methylation as an epigenetic biomarker for early detection of colorectal cancer. Indian J Cancer 2020; 57(2): 166-71.
[PMID: 32445320]
[112]
Salehi R, Atapour N, Vatandoust N, Farahani N, Ahangari F, Salehi A. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer. Adv Biomed Res 2015; 4(1): 252.
[http://dx.doi.org/10.4103/2277-9175.170677] [PMID: 26918234]
[113]
Salehi R, Salehi AR, Emami MH, Mohammadi M. Methylation pattern of SFRP1 promoter in stool sample is a potential marker for early detection of colorectal cancer. Adv Biomed Res 2012; 1(1): 87.
[http://dx.doi.org/10.4103/2277-9175.105169] [PMID: 23946935]
[114]
Garrido-Ramos M. Satellite DNA: An evolving topic. Genes 2017; 8(9): 230.
[http://dx.doi.org/10.3390/genes8090230] [PMID: 28926993]
[115]
Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: Old ideas, new approaches. Curr Opin Genet Dev 2018; 49: 70-8.
[http://dx.doi.org/10.1016/j.gde.2018.03.003] [PMID: 29579574]
[116]
Bonneville R, Krook MA, Chen HZ, et al. Detection of microsatellite instability biomarkers via next-generation sequencing. Methods Mol Biol 2020; 2055: 119-32.
[http://dx.doi.org/10.1007/978-1-4939-9773-2_5] [PMID: 31502149]
[117]
Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: Different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 1998; 58(8): 1713-8.
[PMID: 9563488]
[118]
Nikanjam M, Arguello D, Gatalica Z, Swensen J, Barkauskas DA, Kurzrock R. Relationship between protein biomarkers of chemotherapy response and microsatellite status, tumor mutational burden and PD‐L1 expression in cancer patients. Int J Cancer 2020; 146(11): 3087-97.
[http://dx.doi.org/10.1002/ijc.32661] [PMID: 31479512]
[119]
Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. J Clin Oncol 2019; 37(4): 286-95.
[http://dx.doi.org/10.1200/JCO.18.00283] [PMID: 30376427]
[120]
Sæterdal I, Bjørheim J, Lislerud K, et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci 2001; 98(23): 13255-60.
[http://dx.doi.org/10.1073/pnas.231326898] [PMID: 11687624]
[121]
Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016; 60(1): 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[122]
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2017; 91: 15-23.
[http://dx.doi.org/10.1016/j.bios.2016.12.014] [PMID: 27984706]
[123]
Huang G, Su C, Wang L, Fei Y, Yang J. The application of nucleic acid probe–based fluorescent sensing and imaging in cancer diagnosis and therapy. Front Chem 2021; 9: 705458.
[http://dx.doi.org/10.3389/fchem.2021.705458] [PMID: 34141699]
[124]
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical biosensors for detection of microrna as a cancer biomarker: Pros and Cons Biosensors 2020; 10(11): 186.
[http://dx.doi.org/10.3390/bios10110186] [PMID: 33233700]
[125]
Cui F, Zhou Z, Zhou HS. Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc 2020; 167(3): 037525.
[http://dx.doi.org/10.1149/2.0252003JES]
[126]
Li J, Si Y, Lee HJ. Recent research trend of biosensors for colorectal cancer specific protein biomarkers. Appl Chem Eng 2021; 32(3): 253-9.
[127]
Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer. Nat Rev Dis Primers 2015; 1(1): 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[128]
Alves Martins BA, de Bulhões GF, Cavalcanti IN, Martins MM, de Oliveira PG, Martins AMA. Biomarkers in colorectal cancer: The role of translational proteomics research. Front Oncol 2019; 9(1284): 1284.
[http://dx.doi.org/10.3389/fonc.2019.01284] [PMID: 31828035]
[129]
Li J, Si Y, Lee Hye J. Latest research trends in biosensor development for measuring protein biomarkers for colorectal cancer diagnosis. Ind chem 2021; 32(3): 253-9.
[130]
Butmee P, Tumcharern G, Thouand G, Kalcher K, Samphao A. An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe3O4@Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry 2020; 132: 107452.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107452] [PMID: 31927189]
[131]
Gharatape A, Yari Khosroushahi A. Optical biomarker-based biosensors for cancer/infectious disease medical diagnoses. Appl Immunohistochem Mol Morphol 2019; 27(4): 278-86.
[http://dx.doi.org/10.1097/PAI.0000000000000586] [PMID: 28968262]
[132]
Zhou H, Du X, Zhang Z. Electrochemical sensors for detection of markers on tumor cells. Int J Mol Sci 2021; 22(15): 8184.
[http://dx.doi.org/10.3390/ijms22158184] [PMID: 34360949]
[133]
Kim JH, Suh YJ, Park D, et al. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett 2021; 11(4): 309-34.
[http://dx.doi.org/10.1007/s13534-021-00204-w] [PMID: 34466275]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy