Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress of Pyroptosis in Renal Diseases

In Press, (this is not the final "Version of Record"). Available online 11 October, 2023
Author(s): Boyan Hu, Kuai Ma, Wei Wang, Zhongyu Han, Mingxuan Chi, Moussa Ide Nasser* and Chi Liu*
Published on: 11 October, 2023

DOI: 10.2174/0109298673255656231003111621

Price: $95

Abstract

Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.

[1]
de Vasconcelos, N.M.; Lamkanfi, M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb. Perspect. Biol., 2020, 12(5), a036392.
[http://dx.doi.org/10.1101/cshperspect.a036392] [PMID: 31570336]
[2]
Xia, S.; Hollingsworth, L.R., IV; Wu, H. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb. Perspect. Biol., 2020, 12(3), a036400.
[http://dx.doi.org/10.1101/cshperspect.a036400] [PMID: 31451512]
[3]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[4]
Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671.
[http://dx.doi.org/10.1038/nature15541] [PMID: 26375259]
[5]
Lin, J.; Cheng, A.; Cheng, K.; Deng, Q.; Zhang, S.; Lan, Z.; Wang, W.; Chen, J. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. Int. J. Mol. Sci., 2020, 21(19), 7057.
[http://dx.doi.org/10.3390/ijms21197057] [PMID: 32992874]
[6]
Guo, H.; Xie, M.; Zhou, C.; Zheng, M. The relevance of pyroptosis in the pathogenesis of liver diseases. Life Sci., 2019, 223, 69-73.
[http://dx.doi.org/10.1016/j.lfs.2019.02.060] [PMID: 30831126]
[7]
Cuevas, S.; Pelegrín, P. Pyroptosis and redox balance in kidney diseases. Antioxid. Redox Signal., 2021, 35(1), 40-60.
[http://dx.doi.org/10.1089/ars.2020.8243] [PMID: 33559516]
[8]
Yang, C.; Long, J.; Shi, Y.; Zhou, Z.; Wang, J.; Zhao, M.H.; Wang, H.; Zhang, L.; Coresh, J. Healthcare resource utilisation for chronic kidney disease and other major non-communicable chronic diseases in China: A cross-sectional study. BMJ Open, 2022, 12(1), e051888.
[http://dx.doi.org/10.1136/bmjopen-2021-051888] [PMID: 35027417]
[9]
Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res., 2018, 39(2), 72-86.
[PMID: 29515089]
[10]
Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184(26), 6299-6312.e22.
[http://dx.doi.org/10.1016/j.cell.2021.11.011] [PMID: 34861190]
[11]
Niu, T.; De Rosny, C.; Chautard, S.; Rey, A.; Patoli, D.; Groslambert, M.; Cosson, C.; Lagrange, B.; Zhang, Z.; Visvikis, O.; Hacot, S.; Hologne, M.; Walker, O.; Wong, J.; Wang, P.; Ricci, R.; Henry, T.; Boyer, L.; Petrilli, V.; Py, B.F. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat. Commun., 2021, 12(1), 5862.
[http://dx.doi.org/10.1038/s41467-021-26142-w] [PMID: 34615873]
[12]
Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T.M.; Jacobson, M.P.; Greka, A.; Lieberman, J.; Ruan, J.; Wu, H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860), 607-611.
[http://dx.doi.org/10.1038/s41586-021-03478-3] [PMID: 33883744]
[13]
Levey, A.S.; James, M.T. Acute kidney injury. Ann. Intern. Med., 2017, 167(9), ITC66-ITC80.
[http://dx.doi.org/10.7326/AITC201711070] [PMID: 29114754]
[14]
Faubel, S.; Edelstein, C.L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol., 2016, 12(1), 48-60.
[http://dx.doi.org/10.1038/nrneph.2015.158] [PMID: 26434402]
[15]
Sawhney, S.; Tan, Z.; Black, C.; Marks, A.; Mclernon, D.J.; Ronksley, P.; James, M.T. Validation of risk prediction models to inform clinical decisions after acute kidney injury. Am. J. Kidney Dis., 2021, 78(1), 28-37.
[http://dx.doi.org/10.1053/j.ajkd.2020.12.008] [PMID: 33428996]
[16]
Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/967826] [PMID: 25165721]
[17]
Gómez, H.; Kellum, J.A. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care, 2016, 22(6), 546-553.
[http://dx.doi.org/10.1097/MCC.0000000000000356] [PMID: 27661757]
[18]
Fähling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol., 2017, 13(3), 169-180.
[http://dx.doi.org/10.1038/nrneph.2016.196] [PMID: 28138128]
[19]
Yang, K.; Li, W.F.; Yu, J.F.; Yi, C.; Huang, W.F. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J. Surg. Res., 2017, 214, 69-78.
[http://dx.doi.org/10.1016/j.jss.2017.02.067] [PMID: 28624062]
[20]
Xiao, C.; Zhao, H.; Zhu, H.; Zhang, Y.; Su, Q.; Zhao, F.; Wang, R. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling. Front. Physiol., 2020, 11, 906.
[http://dx.doi.org/10.3389/fphys.2020.00906] [PMID: 32903383]
[21]
Xia, W.; Li, Y.; Wu, M.; Jin, Q.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Jia, Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis., 2021, 12(2), 139.
[http://dx.doi.org/10.1038/s41419-021-03431-2] [PMID: 33542198]
[22]
Zang, Z-D.; Yan, J. An analysis of clinical characteristics of septic acute kidney injury by using criteria of kidney disease: Improving Global Outcomes. Zhonghua Nei Ke Za Zhi, 2013, 52(4), 299-304.
[PMID: 23925356]
[23]
Wang, Z.; Gu, Z.; Hou, Q.; Chen, W.; Mu, D.; Zhang, Y.; Liu, Q.; Liu, Z.; Yang, D. Zebrafish GSDMEb cleavage- gated pyroptosis drives septic acute kidney injury in vivo. J. Immunol., 2020, 204(7), 1929-1942.
[http://dx.doi.org/10.4049/jimmunol.1901456] [PMID: 32111733]
[24]
Dai, X.G.; Li, Q.; Li, T.; Huang, W.B.; Zeng, Z.H.; Yang, Y.; Duan, Z.P.; Wang, Y.J.; Ai, Y.H. The interaction between C/EBPβ and TFAM promotes acute kidney injury via regulating NLRP3 inflammasome-mediated pyroptosis. Mol. Immunol., 2020, 127, 136-145.
[http://dx.doi.org/10.1016/j.molimm.2020.08.023] [PMID: 32971400]
[25]
Tamura, A.; Hirai, H.; Yokota, A.; Kamio, N.; Sato, A.; Shoji, T.; Kashiwagi, T.; Torikoshi, Y.; Miura, Y.; Tenen, D.G.; Maekawa, T. C/EBPβ is required for survival of Ly6C monocytes. Blood, 2017, 130(16), 1809-1818.
[http://dx.doi.org/10.1182/blood-2017-03-772962] [PMID: 28807982]
[26]
Guo, J.; Wang, R.; Liu, D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front. Endocrinol., 2021, 12, 639165.
[http://dx.doi.org/10.3389/fendo.2021.639165] [PMID: 34248837]
[27]
Chen, B.; Ni, Y.; Liu, J.; Zhang, Y.; Yan, F. Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/8348121] [PMID: 30140291]
[28]
Juan, C.X.; Mao, Y.; Cao, Q.; Chen, Y.; Zhou, L.B.; Li, S.; Chen, H.; Chen, J.H.; Zhou, G.P.; Jin, R. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury. J. Cell. Mol. Med., 2021, 25(10), 4786-4799.
[http://dx.doi.org/10.1111/jcmm.16449] [PMID: 33745232]
[29]
Sun, J.; Ge, X.; Wang, Y.; Niu, L.; Tang, L.; Pan, S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol. Res., 2022, 176, 105962.
[http://dx.doi.org/10.1016/j.phrs.2021.105962] [PMID: 34756923]
[30]
Wang, Q.L.; Xing, W.; Yu, C.; Gao, M.; Deng, L.T. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol. Immunol., 2021, 138, 99-109.
[http://dx.doi.org/10.1016/j.molimm.2021.07.022] [PMID: 34365196]
[31]
Chen, B.; Huang, S.; Su, Y.; Wu, Y.J.; Hanna, A.; Brickshawana, A.; Graff, J.; Frangogiannis, N.G. Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ. Res., 2019, 125(1), 55-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315069] [PMID: 31092129]
[32]
Zhou, M.; Yang, L.; Zhuo, Y.; Li, D.; Zhang, L.; Cui, L.; Li, J. Effect of Liangxue Huoxue decoction on intestinal flora and NLRP3/caspase-1/GSDMD signaling pathway in mice model of sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2023, 35(3), 250-255.
[PMID: 36916336]
[33]
Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Allegretti, A.S.; Liberman, R.N.; Sesma, J.; Kalim, S.; Wall, S.M.; Bonventre, J.V.; Lazarowski, E.R.; Brown, D.; Breton, S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J. Clin. Invest., 2020, 130(7), 3734-3749.
[http://dx.doi.org/10.1172/JCI134791] [PMID: 32287042]
[34]
Shigeoka, A.A.; Mueller, J.L.; Kambo, A.; Mathison, J.C.; King, A.J.; Hall, W.F.; Correia, J.S.; Ulevitch, R.J.; Hoffman, H.M.; McKay, D.B. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol., 2010, 185(10), 6277-6285.
[http://dx.doi.org/10.4049/jimmunol.1002330] [PMID: 20962258]
[35]
Yang, J.R.; Yao, F.H.; Zhang, J.G.; Ji, Z.Y.; Li, K.L.; Zhan, J.; Tong, Y.N.; Lin, L.R.; He, Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84.
[http://dx.doi.org/10.1152/ajprenal.00117.2013] [PMID: 24133119]
[36]
Bai, T.; Cui, Y.; Yang, X.; Cui, X.; Yan, C.; Tang, Y.; Cao, X.; Dong, C. miR-302a-3p targets FMR1 to regulate pyroptosis of renal tubular epithelial cells induced by hypoxia–reoxygenation injury. Exp. Physiol., 2021, 106(12), 2531-2541.
[http://dx.doi.org/10.1113/EP089887] [PMID: 34605097]
[37]
Wang, R.; Zhao, H.; Zhang, Y.; Zhu, H.; Su, Q.; Qi, H.; Deng, J.; Xiao, C. Identification of MicroRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1. Front. Genet., 2021, 11, 616947.
[http://dx.doi.org/10.3389/fgene.2020.616947] [PMID: 33505436]
[38]
Tajima, T.; Yoshifuji, A.; Matsui, A.; Itoh, T.; Uchiyama, K.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int., 2019, 95(5), 1120-1137.
[http://dx.doi.org/10.1016/j.kint.2018.11.034] [PMID: 30826015]
[39]
Pang, Y.; Zhang, P.; Lu, R.; Li, H.; Li, J.; Fu, H.; Cao, Y.W.; Fang, G.; Liu, B.; Wu, J.; Zhou, J.; Zhou, Y. Andrade-oliveira salvianolic acid B modulates caspase-1–mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front. Pharmacol., 2020, 11, 541426.
[http://dx.doi.org/10.3389/fphar.2020.541426] [PMID: 33013384]
[40]
Miao, N.; Yin, F.; Xie, H.; Wang, Y.; Xu, Y.; Shen, Y.; Xu, D.; Yin, J.; Wang, B.; Zhou, Z.; Cheng, Q.; Chen, P.; Xue, H.; Zhou, L.; Liu, J.; Wang, X.; Zhang, W.; Lu, L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int., 2019, 96(5), 1105-1120.
[http://dx.doi.org/10.1016/j.kint.2019.04.035] [PMID: 31405732]
[41]
Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11- mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983.
[http://dx.doi.org/10.1038/s41419-018-1023-x] [PMID: 30250284]
[42]
Abu Jawdeh, B.G.; Kanso, A.A.; Schelling, J.R. Evidence-based approach for prevention of radiocontrast-induced nephropathy. J. Hosp. Med., 2009, 4(8), 500-506.
[http://dx.doi.org/10.1002/jhm.477] [PMID: 19824094]
[43]
Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-induced acute kidney injury: Review and practical update. Clin. Med. Insights Cardiol., 2019, 13, 1179546819878680.
[http://dx.doi.org/10.1177/1179546819878680] [PMID: 31700251]
[44]
Chen, F.; Lu, J.; Yang, X.; Xiao, B.; Chen, H.; Pei, W.; Jin, Y.; Wang, M.; Li, Y.; Zhang, J.; Liu, F.; Gu, G.; Cui, W. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci. Rep., 2020, 40(2), BSR20193253.
[http://dx.doi.org/10.1042/BSR20193253] [PMID: 31998952]
[45]
Vilaysane, A.; Chun, J.; Seamone, M.E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S.A.; Tschopp, J.; Trpkov, K.; Hemmelgarn, B.R.; Beck, P.L.; Muruve, D.A. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol., 2010, 21(10), 1732-1744.
[http://dx.doi.org/10.1681/ASN.2010020143] [PMID: 20688930]
[46]
Mulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int., 2019, 96(1), 58-66.
[http://dx.doi.org/10.1016/j.kint.2019.01.014] [PMID: 30922667]
[47]
Kong, Y.; Feng, W.; Zhao, X.; Zhang, P.; Li, S.; Li, Z.; Lin, Y.; Liang, B.; Li, C.; Wang, W.; Huang, H. Statins ameliorate cholesterol-induced inflammation and improve AQP2 expression by inhibiting NLRP3 activation in the kidney. Theranostics, 2020, 10(23), 10415-10433.
[http://dx.doi.org/10.7150/thno.49603] [PMID: 32929357]
[48]
Zhu, Y.; Huang, G.; Yang, Y.; Yong, C.; Yu, X.; Wang, G.; Yi, L.; Gao, K.; Tian, F.; Qian, S.; Zhou, E.; Zou, Y. Chinese herbal medicine suyin detoxification granule inhibits pyroptosis and epithelial-mesenchymal transition by downregulating MAVS/NLRP3 to alleviate renal injury. J. Inflamm. Res., 2021, 14, 6601-6618.
[http://dx.doi.org/10.2147/JIR.S341598] [PMID: 34908861]
[49]
Geng, W.; Tu, C.; Chen, D.; Lu, Z.; Mao, W.; Zhu, H. Huaier attenuates the adverse effects of pyroptosis by regulating the methylation of rat mesangial cells: An in vitro study. BMC Complem. Med. Therap., 2022, 22(1), 92.
[http://dx.doi.org/10.1186/s12906-022-03559-4] [PMID: 35351070]
[50]
Pang, Q.; Wang, P.; Pan, Y.; Dong, X.; Zhou, T.; Song, X.; Zhang, A. Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis., 2022, 13(3), 283.
[http://dx.doi.org/10.1038/s41419-022-04735-7] [PMID: 35354793]
[51]
Sigrist, M.K.; Taal, M.W.; Bungay, P.; McIntyre, C.W. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(6), 1241-1248.
[http://dx.doi.org/10.2215/CJN.02190507] [PMID: 17928470]
[52]
Miao, N.; Xie, H.; Xu, D.; Yin, J.; Wang, Y.; Wang, B.; Yin, F.; Zhou, Z.; Cheng, Q.; Chen, P.; Zhou, L.; Xue, H.; Zhang, W.; Wang, X.; Liu, J.; Lu, L. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol. Sin., 2019, 40(6), 790-800.
[http://dx.doi.org/10.1038/s41401-018-0177-5] [PMID: 30382182]
[53]
Zhang, H.; Wang, Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis. Front. Cell Dev. Biol., 2020, 7, 379.
[http://dx.doi.org/10.3389/fcell.2019.00379] [PMID: 32039201]
[54]
Guo, H.; Bi, X.; Zhou, P.; Zhu, S.; Ding, W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators Inflamm., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/8316560] [PMID: 28348462]
[55]
Anders, H.J.; Suarez-Alvarez, B.; Grigorescu, M.; Foresto-Neto, O.; Steiger, S.; Desai, J.; Marschner, J.A.; Honarpisheh, M.; Shi, C.; Jordan, J.; Müller, L.; Burzlaff, N.; Bäuerle, T.; Mulay, S.R. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney Int., 2018, 93(3), 656-669.
[http://dx.doi.org/10.1016/j.kint.2017.09.022] [PMID: 29241624]
[56]
Wu, M.; Xia, W.; Jin, Q.; Zhou, A.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Li, Y.; Jia, Z.; Gasdermin, E. Gasdermin E deletion attenuates ureteral obstruction and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction. Front. Cell Dev. Biol., 2021, 9, 754134.
[http://dx.doi.org/10.3389/fcell.2021.754134] [PMID: 34746148]
[57]
Tang, Y.S.; Zhao, Y.H.; Zhong, Y.; Li, X.Z.; Pu, J.X.; Luo, Y.C.; Zhou, Q.L. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflamm. Res., 2019, 68(9), 727-738.
[http://dx.doi.org/10.1007/s00011-019-01256-6] [PMID: 31172209]
[58]
Flyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol., 2017, 13(5), 311-318.
[http://dx.doi.org/10.1038/nrneph.2017.31] [PMID: 28262777]
[59]
Ke, R.; Wang, Y.; Hong, S.; Xiao, L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3- mediated pyroptosis in diabetic nephropathy. Exp. Cell Res., 2020, 396(2), 112293.
[http://dx.doi.org/10.1016/j.yexcr.2020.112293] [PMID: 32950473]
[60]
Cheng, Q.; Pan, J.; Zhou, Z.; Yin, F.; Xie, H.; Chen, P.; Li, J.; Zheng, P.; Zhou, L.; Zhang, W.; Liu, J.; Lu, L. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol. Sin., 2021, 42(6), 954-963.
[http://dx.doi.org/10.1038/s41401-020-00525-z] [PMID: 32968210]
[61]
Shahzad, K.; Bock, F.; Dong, W.; Wang, H.; Kopf, S.; Kohli, S.; Al-Dabet, M.M.; Ranjan, S.; Wolter, J.; Wacker, C.; Biemann, R.; Stoyanov, S.; Reymann, K.; Söderkvist, P.; Groß, O.; Schwenger, V.; Pahernik, S.; Nawroth, P.P.; Gröne, H.J.; Madhusudhan, T.; Isermann, B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int., 2015, 87(1), 74-84.
[http://dx.doi.org/10.1038/ki.2014.271] [PMID: 25075770]
[62]
Chen, X.; He, W.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020.
[http://dx.doi.org/10.1038/cr.2016.100] [PMID: 27573174]
[63]
Wang, Y.; Zhu, X.; Yuan, S.; Wen, S.; Liu, X.; Wang, C.; Qu, Z.; Li, J.; Liu, H.; Sun, L.; Liu, F. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol., 2019, 10, 603.
[http://dx.doi.org/10.3389/fendo.2019.00603] [PMID: 31608008]
[64]
Liu, P.; Zhang, Z.; Li, Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front. Immunol., 2021, 12, 603416.
[http://dx.doi.org/10.3389/fimmu.2021.603416] [PMID: 33692782]
[65]
Zhan, J.F.; Huang, H.W.; Huang, C.; Hu, L.L.; Xu, W.W.; Long Non-Coding, R.N.A. Long Non-Coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 Axis. Kidney Blood Press. Res., 2020, 45(4), 589-602.
[http://dx.doi.org/10.1159/000508372] [PMID: 32721950]
[66]
Wang, J.; Zhao, S.M. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci., 2021, 264, 118728.
[http://dx.doi.org/10.1016/j.lfs.2020.118728] [PMID: 33160992]
[67]
Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216.
[http://dx.doi.org/10.3389/fphys.2021.663216] [PMID: 34012408]
[68]
Ding, X.; Jing, N.; Shen, A.; Guo, F.; Song, Y.; Pan, M.; Ma, X.; Zhao, L.; Zhang, H.; Wu, L.; Qin, G.; Zhao, Y. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Invest., 2021, 44(6), 1175-1184.
[http://dx.doi.org/10.1007/s40618-020-01401-7] [PMID: 32930981]
[69]
Xie, C.; Wu, W.; Tang, A.; Luo, N.; Tan, Y. lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diabetes Metab. Syndr. Obes., 2019, 12, 2609-2617.
[http://dx.doi.org/10.2147/DMSO.S228654] [PMID: 31849505]
[70]
Zhu, B.; Cheng, X.; Jiang, Y.; Cheng, M.; Chen, L.; Bao, J.; Tang, X. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells. Diabetes Metab. Syndr. Obes., 2020, 13, 365-375.
[http://dx.doi.org/10.2147/DMSO.S225791] [PMID: 32104033]
[71]
Bai, Y.; Mu, Q.; Bao, X.; Zuo, J.; Fang, X.; Hua, J.; Zhang, D.; Jiang, G.; Li, P.; Gao, S.; Zhao, D. Targeting NLRP3 inflammasome in the treatment of diabetes and diabetic complications: Role of natural compounds from herbal medicine. Aging Dis., 2021, 12(7), 1587-1604.
[http://dx.doi.org/10.14336/AD.2021.0318] [PMID: 34631209]
[72]
Wen, S.; Li, S.; Li, L.; Fan, Q. circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol. Pharm. Bull., 2020, 43(3), 558-564.
[http://dx.doi.org/10.1248/bpb.b19-00901] [PMID: 32115515]
[73]
Ram, C.; Jha, A.K.; Ghosh, A.; Gairola, S.; Syed, A.M.; Murty, U.S.; Naidu, V.G.M.; Sahu, B.D. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol., 2020, 885, 173503.
[http://dx.doi.org/10.1016/j.ejphar.2020.173503] [PMID: 32858047]
[74]
Gu, J.; Huang, W.; Zhang, W.; Zhao, T.; Gao, C.; Gan, W.; Rao, M.; Chen, Q.; Guo, M.; Xu, Y.; Xu, Y.H. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int. Immunopharmacol., 2019, 75, 105832.
[http://dx.doi.org/10.1016/j.intimp.2019.105832] [PMID: 31473434]
[75]
Wang, B.; Dai, Z.; Gao, Q.; Liu, Y.; Gu, G.; Zheng, H. Spop ameliorates diabetic nephropathy through restraining NLRP3 inflammasome. Biochem. Biophys. Res. Commun., 2022, 594, 131-138.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.068] [PMID: 35081502]
[76]
Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53.
[http://dx.doi.org/10.1016/j.phymed.2018.01.026] [PMID: 29519318]
[77]
Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002] [PMID: 27266851]
[78]
Song, W.; Wei, L.; Du, Y.; Wang, Y.; Jiang, S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int. Immunopharmacol., 2018, 63, 227-238.
[http://dx.doi.org/10.1016/j.intimp.2018.07.027] [PMID: 30107367]
[79]
Zhu, Y.; Zhu, C.; Yang, H.; Deng, J.; Fan, D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol. Res., 2020, 155, 104746.
[http://dx.doi.org/10.1016/j.phrs.2020.104746] [PMID: 32156650]
[80]
Ka, S.M.; Lin, J.C.; Lin, T.J.; Liu, F.C.; Chao, L.K.; Ho, C.L.; Yeh, L.T.; Sytwu, H.K.; Hua, K.F.; Chen, A. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis Res. Ther., 2015, 17(1), 331.
[http://dx.doi.org/10.1186/s13075-015-0844-6] [PMID: 26584539]
[81]
Peng, X.; Yang, T.; Liu, G.; Liu, H.; Peng, Y.; He, L. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int. Immunopharmacol., 2018, 65, 448-457.
[http://dx.doi.org/10.1016/j.intimp.2018.10.025] [PMID: 30388519]
[82]
He, J.; Sun, M.; Tian, S. Procyanidin B2 prevents lupus nephritis development in mice by inhibiting NLRP3 inflammasome activation. Innate Immun., 2018, 24(5), 307-315.
[http://dx.doi.org/10.1177/1753425918780985] [PMID: 29874961]
[83]
Zhao, J.; Wang, J.; Zhou, M.; Li, M.; Li, M.; Tan, H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int. Immunopharmacol., 2019, 69, 213-216.
[http://dx.doi.org/10.1016/j.intimp.2019.01.046] [PMID: 30738291]
[84]
Che, Y.; Li, Y.; Zheng, F.; Zou, K.; Li, Z.; Chen, M.; Hu, S.; Tian, C.; Yu, W.; Guo, W.; Luo, M.; Deng, W.; Zou, L. TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett., 2019, 452, 1-13.
[http://dx.doi.org/10.1016/j.canlet.2019.03.017] [PMID: 30905820]
[85]
Huang, J.; An, Q.; Ju, B.; Zhang, J.; Fan, P.; He, L.; Wang, L. Role of vitamin D/VDR nuclear translocation in down-regulation of NF-κB/NLRP3/caspase-1 axis in lupus nephritis. Int. Immunopharmacol., 2021, 100, 108131.
[http://dx.doi.org/10.1016/j.intimp.2021.108131] [PMID: 34536747]
[86]
Bonomini, F.; Dos Santos, M.; Veronese, F.V.; Rezzani, R. NLRP3 inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. Int. J. Mol. Sci., 2019, 20(14), 3466.
[http://dx.doi.org/10.3390/ijms20143466] [PMID: 31311094]
[87]
Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63.
[http://dx.doi.org/10.1002/2211-5463.12161] [PMID: 28097088]
[88]
Yang, S.M.; Ka, S.M.; Hua, K.F.; Wu, T.H.; Chuang, Y.P.; Lin, Y.W.; Yang, F.L.; Wu, S.H.; Yang, S.S.; Lin, S.H.; Chang, J.M.; Chen, A. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic. Biol. Med., 2013, 61, 285-297.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.024] [PMID: 23567192]
[89]
Wu, C.Y.; Hua, K.F.; Hsu, W.H.; Suzuki, Y.; Chu, L.J.; Lee, Y.C.; Takahata, A.; Lee, S.L.; Wu, C.C.; Nikolic-Paterson, D.J.; Ka, S.M.; Chen, A. IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1. J. Immunol., 2020, 205(1), 202-212.
[http://dx.doi.org/10.4049/jimmunol.1900284] [PMID: 32482710]
[90]
Hua, K.F.; Yang, S.M.; Kao, T.Y.; Chang, J.M.; Chen, H.L.; Tsai, Y.J.; Chen, A.; Yang, S.S.; Chao, L.K.; Ka, S.M. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PLoS One, 2013, 8(10), e77794.
[http://dx.doi.org/10.1371/journal.pone.0077794] [PMID: 24204969]
[91]
Li, H.; Lu, R.; Pang, Y.; Li, J.; Cao, Y.; Fu, H.; Fang, G.; Chen, Q.; Liu, B.; Wu, J.; Zhou, Y.; Zhou, J. Zhen-Wu-Tang protects IgA nephropathy in rats by regulating exosomes to inhibit NF-κB/NLRP3 pathway. Front. Pharmacol., 2020, 11, 1080.
[http://dx.doi.org/10.3389/fphar.2020.01080] [PMID: 32765277]
[92]
Goldwich, A.; Burkard, M.; Ölke, M.; Daniel, C.; Amann, K.; Hugo, C.; Kurts, C.; Steinkasserer, A.; Gessner, A. Podocytes are nonhematopoietic professional antigen-presenting cells. J. Am. Soc. Nephrol., 2013, 24(6), 906-916.
[http://dx.doi.org/10.1681/ASN.2012020133] [PMID: 23539760]
[93]
Zhang, W.; Cai, Y.; Xu, W.; Yin, Z.; Gao, X.; Xiong, S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J. Clin. Immunol., 2013, 33(5), 925-937.
[http://dx.doi.org/10.1007/s10875-013-9881-6] [PMID: 23479181]
[94]
Guo, C.; Fu, R.; Zhou, M.; Wang, S.; Huang, Y.; Hu, H.; Zhao, J.; Gaskin, F.; Yang, N.; Fu, S.M. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J. Autoimmun., 2019, 103, 102286.
[http://dx.doi.org/10.1016/j.jaut.2019.05.014] [PMID: 31133359]
[95]
Mistry, P.; Kaplan, M.J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol., 2017, 185, 59-73.
[http://dx.doi.org/10.1016/j.clim.2016.08.010] [PMID: 27519955]
[96]
Zhang, H.; Liu, L.; Li, L. Lentivirus-mediated knockdown of FcγRI (CD64) attenuated lupus nephritis via inhibition of NF-κB regulating NLRP3 inflammasome activation in MRL/lpr mice. J. Pharmacol. Sci., 2018, 137(4), 342-349.
[http://dx.doi.org/10.1016/j.jphs.2018.05.012] [PMID: 30190171]
[97]
Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Man Fu, S. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum., 2013, 65(12), 3176-3185.
[http://dx.doi.org/10.1002/art.38174] [PMID: 24022661]
[98]
Magistroni, R.; D’Agati, V.D.; Appel, G.B.; Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int., 2015, 88(5), 974-989.
[http://dx.doi.org/10.1038/ki.2015.252] [PMID: 26376134]
[99]
Chun, J.; Chung, H.; Wang, X.; Barry, R.; Taheri, Z.M.; Platnich, J.M.; Ahmed, S.B.; Trpkov, K.; Hemmelgarn, B.; Benediktsson, H.; James, M.T.; Muruve, D.A. NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci. Rep., 2016, 6(1), 24667.
[http://dx.doi.org/10.1038/srep24667] [PMID: 27093923]
[100]
Pétrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The inflammasome: A danger sensing complex triggering innate immunity. Curr. Opin. Immunol., 2007, 19(6), 615-622.
[http://dx.doi.org/10.1016/j.coi.2007.09.002] [PMID: 17977705]
[101]
Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[102]
Sun, Q.; Fan, J.; Billiar, T.R.; Scott, M.J. Inflammasome and autophagy regulation: A two-way street. Mol. Med., 2017, 23(1), 188-195.
[http://dx.doi.org/10.2119/molmed.2017.00077] [PMID: 28741645]
[103]
Chang, Y.P.; Ka, S.M.; Hsu, W.H.; Chen, A.; Chao, L.K.; Lin, C.C.; Hsieh, C.C.; Chen, M.C.; Chiu, H.W.; Ho, C.L.; Chiu, Y.C.; Liu, M.L.; Hua, K.F. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J. Cell. Physiol., 2015, 230(7), 1567-1579.
[http://dx.doi.org/10.1002/jcp.24903] [PMID: 25535911]
[104]
Tsai, Y.L.; Hua, K.F.; Chen, A.; Wei, C.W.; Chen, W.S.; Wu, C.Y.; Chu, C.L.; Yu, Y.L.; Lo, C.W.; Ka, S.M. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci. Rep., 2017, 7(1), 41123.
[http://dx.doi.org/10.1038/srep41123] [PMID: 28117341]
[105]
Peng, W.; Pei, G.; Tang, Y.; Tan, L.; Qin, W. IgA1 deposition may induce NLRP3 expression and macrophage transdifferentiation of podocyte in IgA nephropathy. J. Transl. Med., 2019, 17(1), 406.
[http://dx.doi.org/10.1186/s12967-019-02157-2] [PMID: 31796125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy