Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Streptomyces Paradigm in Anticancer Therapy: A State-of-the Art Review

Author(s): Yashendra Sethi*, Vidhi Vora, Onyekachi Emmanuel Anyagwa, Nafisa Turabi, Maya Abdelwahab, Oroshay Kaiwan, Hitesh Chopra, Mohamed Shah Attia, Galal Yahya, Talha Bin Emran* and Inderbir Padda

Volume 20, Issue 4, 2024

Published on: 10 October, 2023

Page: [386 - 401] Pages: 16

DOI: 10.2174/0115733947254550230920170230

Price: $65

Abstract

Cancer is one of the biggest threats to human health with a global incidence of 23.6 million, mortality of 10 million, and an estimated 250 million lost in disability-adjusted life years (DALYs) each year. Moreover, the incidence, mortality, and DALYs have increased over the past decade by 26.3%, 20.9%, and 16.0%, respectively. Despite significant evolutions in medical therapy and advances in the DNA microarray, proteomics technology, and targeted therapies, anticancer drug resistance continues to be a growing concern and invites regular discovery of potent agents. One such agent is the microbe-producing bioactive compounds like Streptomyces, which are proving increasingly resourceful in anticancer therapy of the future. Streptomyces, especially the species living in extreme conditions, produce bioactive compounds with cytolytic and anti-oxidative activity which can be utilized for producing anticancer and chemo-preventive agents. The efficacy of the derived compounds has been proven on cell lines and some of these have already established clinical results. These compounds can potentially be utilized in the treatment of a variety of cancers including but not limited to colon, lung, breast, GI tract, cervix, and skin cancer. The Streptomyces, thus possess the armory to fuel the anticancer agents of the future and help address the problem of rising resistance to currently available anti-cancer drugs. We conducted a state-of-art review using electronic databases of PubMed, Scopus, and Google scholar with an objective to appraise the currently available literature on Streptomyces as a source of anti-cancer agents and to compile the clinically significant literature to update the clinicians.

Graphical Abstract

[1]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021; 149(4): 778-89.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[2]
Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Eur J Pharm Sci 2000; 11(4): 265-83.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[3]
Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005; 205(2): 275-92.
[http://dx.doi.org/10.1002/path.1706] [PMID: 15641020]
[4]
Radiopharmaceuticals: Radiation therapy enters the molecular age. Available From: https://www.cancer.gov/news-events/cancer-currents-blog/2020/radiopharmaceuticals-cancer-radiation-therapy
[5]
Garrett WS. Cancer and the microbiota. Science 2015; 348: 80-6.
[http://dx.doi.org/10.1126/science.aaa4972]
[6]
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69(8): 1040-8.
[http://dx.doi.org/10.1099/jmm.0.001232] [PMID: 32692643]
[7]
Law JWF, Law LNS, Letchumanan V, et al. Anticancer drug discovery from microbial sources: The unique mangrove streptomycetes. Molecules 2020; 25(22): 5365.
[http://dx.doi.org/10.3390/molecules25225365] [PMID: 33212836]
[8]
Sneader W. Drug Discovery: A History. Wiley 2005.
[http://dx.doi.org/10.1002/0470015535]
[9]
de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by streptomyces. Braz J Infect Dis 2012; 16(5): 466-71.
[http://dx.doi.org/10.1016/j.bjid.2012.08.014] [PMID: 22975171]
[10]
Law JWF, Ser HL, Ab Mutalib NS, et al. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9(1): 3056.
[http://dx.doi.org/10.1038/s41598-019-39592-6] [PMID: 30816228]
[11]
Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: An overview. Curr Pharm Des 2010; 16(1): 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614]
[12]
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci 2012; 9(3): 193-9.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[13]
Damin DC, Lazzaron AR. Evolving treatment strategies for colorectal cancer: A critical review of current therapeutic options. World J Gastroenterol 2014; 20(4): 877-87.
[http://dx.doi.org/10.3748/wjg.v20.i4.877] [PMID: 24574762]
[14]
Lumachi F, Luisetto G, Basso SM, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast cancer. Curr Med Chem 2011; 18(4): 513-22.
[http://dx.doi.org/10.2174/092986711794480177] [PMID: 21143113]
[15]
Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273-90.
[http://dx.doi.org/10.1038/nrclinonc.2016.25] [PMID: 26977780]
[16]
Rueff J, Rodrigues AS. Cancer drug resistance: A brief overview from a genetic viewpoint. Methods Mol Biol 2016; 1395: 1-18.
[http://dx.doi.org/10.1007/978-1-4939-3347-1_1]
[17]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[18]
Ventura M, Canchaya C, Tauch A, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71(3): 495-548.
[http://dx.doi.org/10.1128/MMBR.00005-07] [PMID: 17804669]
[19]
Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42(D1): D613-6.
[http://dx.doi.org/10.1093/nar/gkt1111] [PMID: 24243842]
[20]
Anderson AS, Wellington EM. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 2001; 51(3): 797-814.
[http://dx.doi.org/10.1099/00207713-51-3-797] [PMID: 11411701]
[21]
Kämpfer P. “The Family Streptomycetaceae, Part I: Taxonomy,” The Prokaryotes. New York, NY: Springer New York 2006; pp. 538-604.
[http://dx.doi.org/10.1007/0-387-30743-5_22]
[22]
Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot 2012; 65(8): 385-95.
[http://dx.doi.org/10.1038/ja.2012.27] [PMID: 22511224]
[23]
Yagüe P, Willemse J, Koning RI, et al. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat Commun 2016; 7(1): 12467.
[http://dx.doi.org/10.1038/ncomms12467] [PMID: 27514833]
[24]
Hopwood DA. Highlights of streptomyces genetics. Heredity 2019; 123(1): 23-32.
[http://dx.doi.org/10.1038/s41437-019-0196-0] [PMID: 31189905]
[25]
Bentley SD, Chater KF, Cerdeño-Tárraga AM, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417(6885): 141-7.
[http://dx.doi.org/10.1038/417141a] [PMID: 12000953]
[26]
Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int J Microbiol 2019; 2019: 1-20.
[http://dx.doi.org/10.1155/2019/5283948] [PMID: 31354829]
[27]
Skropeta D. Deep-sea natural products. Nat Prod Rep 2008; 25(6): 1131-66.
[http://dx.doi.org/10.1039/b808743a] [PMID: 19030606]
[28]
Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 2010; 26(12): 2123-39.
[http://dx.doi.org/10.1007/s11274-010-0415-6]
[29]
Sujatha P, Bapi Raju KVVSN, Ramana T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 2005; 160(2): 119-26.
[http://dx.doi.org/10.1016/j.micres.2004.10.006] [PMID: 15881828]
[30]
El-Shatoury SA, El-Shenawy NS, Abd El-Salam IM. Antimicrobial, antitumor and in vivo cytotoxicity of actinomycetes inhabiting marine shellfish. World J Microbiol Biotechnol 2009; 25(9): 1547-55.
[http://dx.doi.org/10.1007/s11274-009-0040-4]
[31]
Ye L, Zhou Q, Liu C, Luo X, Na G, Xi T. Identification and fermentation optimization of a marine-derived Streptomyces Griseorubens with anti-tumor activity. Indian J Geo-Mar Sci 2009; 38.
[32]
Hohmann C, Schneider K, Bruntner C, et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 2009; 62(2): 99-104.
[http://dx.doi.org/10.1038/ja.2008.24] [PMID: 19198633]
[33]
Um S, Kim YJ, Kwon H, et al. Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod 2013; 76(5): 873-9.
[http://dx.doi.org/10.1021/np300902g] [PMID: 23662937]
[34]
Russo P, Del Bufalo A, Fini M. Deep sea as a source of novel-anticancer drugs: update on discovery and preclinical/clinical evaluation in a systems medicine perspective. EXCLI J 2015; 14: 228-36.
[http://dx.doi.org/10.17179/excli2015-632] [PMID: 26600744]
[35]
Elsayed SS, Trusch F, Deng H, et al. Chaxapeptin, a lasso peptide from extremotolerant Streptomyces leeuwenhoekii Strain C58 from the hyperarid atacama desert. J Org Chem 2015; 80(20): 10252-60.
[http://dx.doi.org/10.1021/acs.joc.5b01878] [PMID: 26402731]
[36]
Um S, Choi TJ, Kim H, et al. Ohmyungsamycins A and B: Cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. J Org Chem 2013; 78(24): 12321-9.
[http://dx.doi.org/10.1021/jo401974g] [PMID: 24266328]
[37]
Braña A, Sarmiento-Vizcaíno A, Osset M, et al. Lobophorin K, a new natural product with cytotoxic activity produced by streptomyces sp. M-207 associated with the deep-sea coral lophelia pertusa. Mar Drugs 2017; 15(5): 144.
[http://dx.doi.org/10.3390/md15050144] [PMID: 28534807]
[38]
Tangerina MMP, Furtado LC, Leite VMB, et al. Metabolomic study of marine Streptomyces sp.: Secondary metabolites and the production of potential anticancer compounds. PLoS One 2020; 15(12): e0244385.
[http://dx.doi.org/10.1371/journal.pone.0244385] [PMID: 33347500]
[39]
Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80(1): 1-43.
[http://dx.doi.org/10.1128/MMBR.00019-15] [PMID: 26609051]
[40]
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot 2009; 62(1): 5-16.
[http://dx.doi.org/10.1038/ja.2008.16] [PMID: 19132062]
[41]
Solecka J, Zajko J, Postek M, Rajnisz A. Biologically active secondary metabolites from Actinomycetes. Open Life Sci 2012; 7(3): 373-90.
[http://dx.doi.org/10.2478/s11535-012-0036-1]
[42]
Gorajana A, Kurada BVVSN, Peela S, et al. 1-Hydroxy-1-norresistomycin, a new cytotoxic compound from a marine actinomycete, streptomyces chibaensis AUBN1/7. ChemInform 2006; 37(9)
[http://dx.doi.org/10.1002/chin.200609223]
[43]
Holkar S, Begde D, Nashikkar N, Kadam T, Upadhyay A. Rhodomycin analogues from Streptomyces purpurascens: Isolation, characterization and biological activities. Springerplus 2013; 2(1): 93.
[http://dx.doi.org/10.1186/2193-1801-2-93] [PMID: 23741637]
[44]
Kadiri S, Yarla NS, Vidavalur S. Isolation and identification of a novel aporphine alkaloid ssv, an antitumor antibiotic from fermented broth of marine associated streptomyces sp. KS1908. J Mar Sci Res Dev 2013; 3(4)
[http://dx.doi.org/10.4172/2155-9910.1000137]
[45]
Y.S.Y.V , Jagan M. BSKP & PR. isolation, screening and characterization of actinomycetes from marine sediments for their potential to produce antifungal agents. 2013. Available From: Walshmedicalmedia.com (Accessed on September 20 2022)
[46]
Al-Ansari M, Kalaiyarasi M, Almalki MA, Vijayaraghavan P. Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. J King Saud Univ Sci 2020; 32(3): 1993-8.
[http://dx.doi.org/10.1016/j.jksus.2020.02.005]
[47]
Vijayabharathi R, Bruheim P, Andreassen T, et al. Assessment of resistomycin, as an anticancer compound isolated and characterized from Streptomyces aurantiacus AAA5. J Microbiol 2011; 49(6): 920-6.
[http://dx.doi.org/10.1007/s12275-011-1260-5] [PMID: 22203554]
[48]
Zhang H, Sun GZ, Li X, Pan HY, Zhang YS. A new geldanamycin analogue from streptomyces hygroscopicus. Molecules 2010; 15(3): 1161-7.
[http://dx.doi.org/10.3390/molecules15031161] [PMID: 20335971]
[49]
Vu HNT, Nguyen DT, Nguyen HQ, et al. Antimicrobial and cytotoxic properties of bioactive metabolites produced by streptomyces cavourensis ybq59 isolated from cinnamomum cassia prels in yen bai province of vietnam. Curr Microbiol 2018; 75(10): 1247-55.
[http://dx.doi.org/10.1007/s00284-018-1517-x] [PMID: 29869093]
[50]
Rateb ME, Houssen WE, Arnold M, et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod 2011; 74(6): 1491-9.
[http://dx.doi.org/10.1021/np200320u] [PMID: 21553813]
[51]
Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B, Goodfellow M. High altitude, hyper-arid soils of the central-andes harbor mega-diverse communities of actinobacteria. Extremophiles 2018; 22(1): 47-57.
[http://dx.doi.org/10.1007/s00792-017-0976-5] [PMID: 29101684]
[52]
Song Y, Liu G, Li J, et al. Cytotoxic and antibacterial angucycline and prodigiosin-analogues from the deep-sea derived Streptomyces sp. SCSIO 11594. Mar Drugs 2015; 13(3): 1304-16.
[http://dx.doi.org/10.3390/md13031304] [PMID: 25786061]
[53]
Hawas UW, Shaaban M, Shaaban KA, et al. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 2009; 72(12): 2120-4.
[http://dx.doi.org/10.1021/np900160g] [PMID: 19921834]
[54]
Son S, Jang M, Lee B, et al. Ulleungdin, a lasso peptide with cancer cell migration inhibitory activity discovered by the genome mining approach. J Nat Prod 2018; 81(10): 2205-11.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00449] [PMID: 30251851]
[55]
Tan LTH, Chan KG, Chan CK, Khan TM, Lee LH, Goh BH. Antioxidative potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. BioMed Res Int 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/4823126] [PMID: 29805975]
[56]
Tepe B. In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chem 2005; 90(4): 685-9.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.030]
[57]
Ser HL, Tan LTH, Palanisamy UD, et al. Streptomyces antioxidans sp. nov., a novel mangrove soil actinobacterium with antioxidative and neuroprotective potentials. Front Microbiol 2016; 7: 899.
[http://dx.doi.org/10.3389/fmicb.2016.00899] [PMID: 27379040]
[58]
Law JWF, Ser HL, Duangjai A, et al. Streptomyces colonosanans sp. nov., A novel actinobacterium isolated from malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol 2017; 8: 877.
[http://dx.doi.org/10.3389/fmicb.2017.00877] [PMID: 28559892]
[59]
Kato S, Kawai H, Kawasaki T, Toda Y, Urata T, Hayakawa Y. Studies on free radical scavenging substances from microorganisms. I. Carazostatin, a new free radical scavenger produced by Streptomyces chromofuscus DC 118. J Antibiot 1989; 42(12): 1879-81.
[http://dx.doi.org/10.7164/antibiotics.42.1879] [PMID: 2621170]
[60]
Cheng C, Othman EM, Reimer A, et al. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 2016; 57(25): 2786-9.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.042]
[61]
Ser HL, Zainal N, Palanisamy UD, et al. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil. Antonie van Leeuwenhoek 2015; 107(6): 1369-78.
[http://dx.doi.org/10.1007/s10482-015-0431-5] [PMID: 25863667]
[62]
Lee LH, Zainal N, Azman AS, et al. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillinresistant Staphylococcus aureus. Int J Syst Evol Microbiol 2014; 64(Pt_9): 3297-306.
[http://dx.doi.org/10.1099/ijs.0.065045-0] [PMID: 24994773]
[63]
Hu H, Lin HP, Xie Q, Li L, Xie XQ, Hong K. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62(Pt_3): 596-600.
[http://dx.doi.org/10.1099/ijs.0.032201-0] [PMID: 21515699]
[64]
Shandilya M, Sharma S, Prasad Das P, Charak S. Molecular-level understanding of the anticancer action mechanism of anthracyclines. In: Advances in Precision Medicine Oncology. IntechOpen 2021.
[http://dx.doi.org/10.5772/intechopen.94180]
[66]
Brandt JP. Bleomycin. Available From: https://www.ncbi.nlm.nih.gov/books/NBK555895/ (Accessed September 20 2022).
[67]
Thenmozhi M, Kannabiran K, Kumar R, Gopiesh Khanna V. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag 2 O/Ag nanoparticles against medically important Aspergillus pathogens. J Mycol Med 2013; 23(2): 97-103.
[http://dx.doi.org/10.1016/j.mycmed.2013.04.005] [PMID: 23706303]
[68]
Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 2010; 81(1): 358-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.036] [PMID: 20705438]
[69]
Sholkamy E, Ahmad M, Manal Yaser M, Ali A, Mehanni M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 2015; 3389: 3389.
[http://dx.doi.org/10.2147/IJN.S82707]
[70]
Subbaiya R, Saravanan M, Priya AR, et al. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol 2017; 11(8): 965-72.
[http://dx.doi.org/10.1049/iet-nbt.2016.0222] [PMID: 29155396]
[71]
Khan N, Yılmaz S, Aksoy S, et al. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem Biol Interact 2019; 307: 167-78.
[http://dx.doi.org/10.1016/j.cbi.2019.04.035] [PMID: 31059704]
[72]
Zhang HY, Xie ZP, Lou TT, Wang SY. Complete genome sequence of streptomyces olivoreticuli ATCC 31159 which can produce anticancer bestatin and show diverse secondary metabolic potentials. Curr Microbiol 2019; 76(3): 370-5.
[http://dx.doi.org/10.1007/s00284-019-01638-3] [PMID: 30706083]
[73]
Li XQ, Yue CW, Xu WH, et al. A milbemycin compound isolated from Streptomyces Sp. FJS31-2 with cytotoxicity and reversal of cisplatin resistance activity in A549/DDP cells. Biomed Pharmacother 2020; 128: 110322.
[http://dx.doi.org/10.1016/j.biopha.2020.110322] [PMID: 32505822]
[74]
Jennerjahn TC, Ittekkot V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 2002; 89(1): 23-30.
[http://dx.doi.org/10.1007/s00114-001-0283-x] [PMID: 12008969]
[75]
Xu DB, Ye WW, Han Y, Deng ZX, Hong K. Natural products from mangrove actinomycetes. Mar Drugs 2014; 12(5): 2590-613.
[http://dx.doi.org/10.3390/md12052590] [PMID: 24798926]
[76]
Arumugam M, Mitra A, Pramanik A, Saha M, Gachhui R, Mukherjee J. Streptomyces sundarbansensis sp. nov., an actinomycete that produces 2-allyloxyphenol. Int J Syst Evol Microbiol 2011; 61(11): 2664-9.
[http://dx.doi.org/10.1099/ijs.0.028258-0] [PMID: 21148669]
[77]
Xu J, Wang Y, Xie SJ, Xu J, Xiao J, Ruan JS. Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2009; 59(3): 472-6.
[http://dx.doi.org/10.1099/ijs.0.000497-0] [PMID: 19244424]
[78]
Tan LTH, Chan KG, Pusparajah P, et al. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol 2019; 19(1): 38.
[http://dx.doi.org/10.1186/s12866-019-1409-7] [PMID: 30760201]
[79]
Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH. Streptomyces malaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci Rep 2016; 6(1): 24247.
[http://dx.doi.org/10.1038/srep24247] [PMID: 27072394]
[80]
Amit Kunwar KIP. Free radicals, oxidative stress and importance of antioxidants in human health. J Med Appl Sci 1: 53-60.
[81]
Nguyen HT, Pokhrel AR, Nguyen CT, et al. Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci Rep 2020; 10(1): 1756.
[http://dx.doi.org/10.1038/s41598-020-58623-1] [PMID: 32019976]
[82]
Tan LT, Chan CK, Chan KG, et al. Streptomyces sp. MUM256: A source for apoptosis inducing and cell cycle-arresting bioactive compounds against colon cancer cells. Cancers 2019; 11(11): 1742.
[http://dx.doi.org/10.3390/cancers11111742] [PMID: 31698795]
[83]
Tan LTH, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH. Investigation of antioxidative and anticancer potentials of streptomyces sp. mum256 isolated from malaysia mangrove soil. Front Microbiol 2015; 6: 1316.
[http://dx.doi.org/10.3389/fmicb.2015.01316] [PMID: 26635777]
[84]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[85]
Ser HL, Yin WF, Chan KG, Khan TM, Goh BH, Lee LH. Antioxidant and cytotoxic potentials of Streptomyces gilvigriseus MUSC 26T isolated from mangrove soil in Malaysia. Progress In Microbes & Molecular Biology 2018; 1(1)
[http://dx.doi.org/10.36877/pmmb.a0000002]
[86]
Tomasz M. Mitomycin C: Small, fast and deadly (but very selective). Chem Biol 1995; 2(9): 575-9.
[http://dx.doi.org/10.1016/1074-5521(95)90120-5] [PMID: 9383461]
[87]
Gao Y, Shang Q, Li W, et al. Antibiotics for cancer treatment: A double-edged sword. J Cancer 2020; 11(17): 5135-49.
[http://dx.doi.org/10.7150/jca.47470] [PMID: 32742461]
[88]
Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 2018; 9: 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[89]
Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protocols Pharmacol 2015; 70(1): 47.1-,20.
[http://dx.doi.org/10.1002/0471141755.ph0547s70] [PMID: 26331889]
[90]
Johnson-Arbor KDR. Available From: https://www.ncbi.nlm.nih.gov/books/NBK459232/ (Accessed September 20 2022).
[91]
Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta Rev Cancer 2014; 1845(1): 84-9.
[http://dx.doi.org/10.1016/j.bbcan.2013.12.002] [PMID: 24361676]
[92]
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2012; 65(2): 157-70.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[93]
Tisman G, Herbert V, Go LT, Brenner L. Marked immunosuppression with minimal myelosuppression by bleomycin in vitro. Blood 1973; 41(5): 721-6.
[http://dx.doi.org/10.1182/blood.V41.5.721.721] [PMID: 4121004]
[94]
Carmen Avendaño JCM. Medicinal Chemistry of Anticancer Drugs. 2015. Available From: http://site.ebrary.com/id/11064655 (Accessed January 27 2023)
[95]
Lim EK, Jang E, Lee K, Haam S, Huh YM. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 2013; 5(4): 294-317.
[http://dx.doi.org/10.3390/pharmaceutics5020294] [PMID: 24300452]
[96]
Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12(5): 3303-21.
[http://dx.doi.org/10.3390/ijms12053303] [PMID: 21686186]
[97]
Rai M, Nagaonkar D. Metal Nanoparticles as Therapeutic Agents: A Paradigm Shift in Medicine. In: Metal Nanoparticles. Germany: Wiley-VCH Verlag GmbH & Co. KGaA 2017; pp. 33-48.
[http://dx.doi.org/10.1002/9783527807093.ch3]
[98]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[99]
Ma P, Mumper RJ. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today 2013; 8(3): 313-31.
[http://dx.doi.org/10.1016/j.nantod.2013.04.006] [PMID: 23888183]
[100]
Hu CM, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab 2009; 10(8): 836-41.
[http://dx.doi.org/10.2174/138920009790274540] [PMID: 20214578]
[101]
Gabizon A, Martin F. Polyethylenglykol-umhülltes (pegyliertes) liposomales Doxorubicin. Drugs 1997; 54(4): 15-21.
[http://dx.doi.org/10.2165/00003495-199700544-00005] [PMID: 9361957]
[102]
Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, Working PK. Pegylated liposomal doxorubicin: Proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol 2004; 31(6) (Suppl. 13): 16-35.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.002] [PMID: 15717736]
[103]
Minko T, Kopecková P, Kopecek J. Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer 2000; 86(1): 108-17.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000401)86:1<108::AID-IJC17>3.0.CO;2-8] [PMID: 10728603]
[104]
Danhauser-Riedl S, Hausmann E, Schick HD, et al. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest New Drugs 1993; 11(2-3): 187-95.
[http://dx.doi.org/10.1007/BF00874153] [PMID: 7505268]
[105]
Bhangu SK, Fernandes S, Beretta GL, et al. Transforming the chemical structure and bio‐nano activity of doxorubicin by ultrasound for selective killing of cancer cells. Adv Mater 2022; 34(13): 2107964.
[http://dx.doi.org/10.1002/adma.202107964] [PMID: 35100658]
[106]
Zhang Y, Huang R, Zhu X, Wang L, Wu C. Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Chin Sci Bull 2012; 57(2-3): 238-46.
[http://dx.doi.org/10.1007/s11434-011-4747-x]
[107]
Jelveh S, Chithrani DB. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers 2011; 3(1): 1081-110.
[http://dx.doi.org/10.3390/cancers3011081] [PMID: 24212654]
[108]
Ranjitha VR, Rai VR. Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 2017; 7: 299.
[http://dx.doi.org/10.1007/s13205-017-0930-3]
[109]
Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 2014; 98(19): 8083-97.
[http://dx.doi.org/10.1007/s00253-014-5953-7] [PMID: 25158833]
[110]
Murugaiah H, Teh CL, Loh KC, et al. Study of antibacterial and anticancer properties of bioAgNPs synthesized using streptomyces sp. PBD-311B and the application of bioAgNP-CNC/Alg as an antibacterial hydrogel film against P. aeruginosa USM-AR2 and MRSA. Molecules 2021; 26(21): 6414.
[http://dx.doi.org/10.3390/molecules26216414] [PMID: 34770823]
[111]
Abd-Elhady HM, Ashor MA, Hazem A, et al. Biosynthesis and characterization of extracellular silver nanoparticles from streptomyces aizuneusis: Antimicrobial, anti larval, and anticancer activities. Molecules 2021; 27(1): 212.
[http://dx.doi.org/10.3390/molecules27010212] [PMID: 35011443]
[112]
S S P , Rudayni HA, Bepari A, Niazi SK, Nayaka S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 2022; 29(1): 228-38.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.084] [PMID: 35002413]
[113]
Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 2016; 42(3): 301-12.
[http://dx.doi.org/10.1016/j.ejar.2016.05.004]
[114]
M.Hamed M, Abdelftah S. Biosynthesis of gold nanoparticles using marine Streptomyces griseus isolate (M8) and evaluating its antimicrobial and anticancer activity. Egypt J Aquat Biol Fish 2019; 23: 173-84.
[http://dx.doi.org/10.21608/ejabf.2019.26508]
[115]
Chiu CF, Chiu SJ, Bai LY, et al. A macrolide from Streptomyces sp. modulates apoptosis and autophagy through Mcl‐1 downregulation in human breast cancer cells. Environ Toxicol 2021; 36(7): 1316-25.
[http://dx.doi.org/10.1002/tox.23128] [PMID: 33713530]
[116]
Nachtigall J, Kulik A, Helaly S, et al. Atacamycins A–C, 22-membered antitumor macrolactones produced by Streptomyces sp. C38. J Antibiot 2011; 64(12): 775-80.
[http://dx.doi.org/10.1038/ja.2011.96] [PMID: 22008702]
[117]
Hughes CC, MacMillan JB, Gaudêncio SP, Jensen PR, Fenical W. The ammosamides: Structures of cell cycle modulators from a marine-derived Streptomyces species. Angew Chem Int Ed 2009; 48(4): 725-7.
[http://dx.doi.org/10.1002/anie.200804890] [PMID: 19090514]
[118]
Zhang W, Liu Z, Li S, et al. Spiroindimicins A-D: New bisindole alkaloids from a deep-sea-derived actinomycete. Org Lett 2012; 14(13): 3364-7.
[http://dx.doi.org/10.1021/ol301343n] [PMID: 22694269]
[119]
Liu Z, Ma L, Zhang L, et al. Functional characterization of the halogenase SpmH and discovery of new deschloro-tryptophan dimers. Org Biomol Chem 2019; 17(5): 1053-7.
[http://dx.doi.org/10.1039/C8OB02775G] [PMID: 30543262]
[120]
Huang H, Yang T, Ren X, et al. Cytotoxic angucycline class glycosides from the deep sea actinomycete Streptomyces lusitanus SCSIO LR32. J Nat Prod 2012; 75(2): 202-8.
[http://dx.doi.org/10.1021/np2008335] [PMID: 22304344]
[121]
Gondi CS, Rao JS. Cathepsin B as a cancer target. Expert Opin Ther Targets 2013; 17(3): 281-91.
[http://dx.doi.org/10.1517/14728222.2013.740461] [PMID: 23293836]
[122]
Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH. Evaluation of antioxidative and cytotoxic activities of streptomyces pluripotens MUSC 137 isolated from mangrove soil in malaysia. Front Microbiol 2015; 6: 1398.
[http://dx.doi.org/10.3389/fmicb.2015.01398] [PMID: 26733951]
[123]
Narendhran S. Spectroscopic analysis of bioactive compounds from streptomyces cavouresis kuv39: evaluation of antioxidant and cytotoxicity activity. Int J Pharm Pharm Sci 6(7): 319-22.
[124]
Bao J, He F, Li Y, et al. Cytotoxic antibiotic angucyclines and actinomycins from the Streptomyces sp. XZHG99T. J Antibiot 2018; 71(12): 1018-24.
[http://dx.doi.org/10.1038/s41429-018-0096-1] [PMID: 30158647]
[125]
Xie X-C, W-L M, ZY B, LH P, ZL , DH-F HK. Cytotoxic constituents from marine actinomycete streptomyces sp. 124092.
[126]
Fu P, Yang C, Wang Y, et al. Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived actinomycete strain Streptomyces sp. FMA. Org Lett 2012; 14(9): 2422-5.
[http://dx.doi.org/10.1021/ol3008638] [PMID: 22519738]
[127]
Ravikumar S, Fredimoses M, Gnanadesigan M. Anticancer property of sediment actinomycetes against MCF–7 and MDA–MB–231 cell lines. Asian Pac J Trop Biomed 2012; 2(2): 92-6.
[http://dx.doi.org/10.1016/S2221-1691(11)60199-8] [PMID: 23569875]
[128]
Yuan GJ, Hong K, Lin HP, Li J. Azalomycin F4a 2-ethylpentyl ester, a new macrocyclic lactone, from mangrove actinomycete Streptomyces sp. 211726. Chin Chem Lett 2010; 21(8): 947-50.
[http://dx.doi.org/10.1016/j.cclet.2010.03.025]
[129]
Mangamuri U, Muvva V, Poda S, et al. Bioactive metabolites produced by Streptomyces Cheonanensis VUK-A from Coringa mangrove sediments: Isolation, structure elucidation and bioactivity. 3 Biotech 2016; 6: 63.
[http://dx.doi.org/10.1007/s13205-016-0398-6]
[130]
Cibi R, Nair AJ. Purification of actinomycin D from streptomyces parvulus isolated from mangrove ecosystem of kerala, India. Int J Curr Microbiol Appl Sci 2016; 5(7): 461-7.
[http://dx.doi.org/10.20546/ijcmas.2016.507.049]
[131]
Fu S, Wang F, Li H, et al. Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21. Nat Prod Res 2016; 30(21): 2460-7.
[http://dx.doi.org/10.1080/14786419.2016.1201668] [PMID: 27379435]
[132]
Sanjivkumar M, Babu DR, Suganya AM, Silambarasan T, Balagurunathan R, Immanuel G. Investigation on pharmacological activities of secondary metabolite extracted from a mangrove associated actinobacterium Streptomyces olivaceus (MSU3). Biocatal Agric Biotechnol 2016; 6: 82-90.
[http://dx.doi.org/10.1016/j.bcab.2016.03.001]
[133]
Tian C, Jiao X, Liu X, et al. First total synthesis and determination of the absolute configuration of 1-N-methyl-3-methylamino-[N-butanoicacid-3-(9-methyl-8-propen-7-one)-amide]-benzo[f][1,7]naphthyridine-2-one, a novel benzonaphthyridine alkaloid. Tetrahedron Lett 2012; 53(36): 4892-5.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.011]
[134]
Weber GF. DNA Damaging Drugs. Molecular Therapies of Cancer. Cham: Springer International Publishing 2015; pp. 9-112.
[http://dx.doi.org/10.1007/978-3-319-13278-5_2]
[135]
Viraja R, Palwai LAE. Molecular dynamics simulations exploring the interaction between DNA and metalated bleomycin. J Biophys Chem 2011; 2(2)
[136]
Kong J, Yi L, Xiong Y, et al. The discovery and development of microbial bleomycin analogues. Appl Microbiol Biotechnol 2018; 102(16): 6791-8.
[http://dx.doi.org/10.1007/s00253-018-9129-8] [PMID: 29876605]
[137]
Remsing LL, González AM, Nur-e-Alam M, et al. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J Am Chem Soc 2003; 125(19): 5745-53.
[http://dx.doi.org/10.1021/ja034162h] [PMID: 12733914]
[138]
Abdollahi M, Hosseini A. Streptozotocin. Encyclopedia of Toxicology. Elsevier 2014; pp. 402-4.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.01170-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy