Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A Novel Approach to Diagnosis and Treatment

Author(s): Javed Khan and Shikha Yadav*

Volume 12, Issue 4, 2024

Published on: 10 October, 2023

Page: [314 - 328] Pages: 15

DOI: 10.2174/0122117385265554230919070402

Price: $65

Abstract

Epilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.

[1]
Spiciarich MC, von Gaudecker JR, Jurasek L, Clarke DF, Burneo J, Vidaurre J. Global health and epilepsy: Update and future directions. Curr Neurol Neurosci Rep 2019; 19(6): 30.
[http://dx.doi.org/10.1007/s11910-019-0947-6] [PMID: 31044322]
[2]
Kumar U, Khess CR. Marital Quality and stress in parents of children with epilepsy and normal controls: A comparative study. Int J Indian psychol 2019; 7(1)
[3]
Gernone F, Uva A, Silvestrino M, Cavalera MA, Zatelli A. Role of gut microbiota through gut–brain axis in epileptogenesis: a systematic review of human and veterinary medicine. Biology 2022; 11(9): 1290.
[http://dx.doi.org/10.3390/biology11091290] [PMID: 36138769]
[4]
Singh G, Sander JW. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav 2020; 105: 106949.
[http://dx.doi.org/10.1016/j.yebeh.2020.106949] [PMID: 32088583]
[5]
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021; 18(2): 169-85.
[http://dx.doi.org/10.1080/17425247.2021.1823965] [PMID: 32921169]
[6]
Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 2019; 295: 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[7]
Löscher W. Animal models of drug-refractory epilepsy.Models of seizures and epilepsy. Academic Press 2017; pp. 743-60.
[http://dx.doi.org/10.1016/B978-0-12-804066-9.00051-1]
[8]
Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 2006; 129(1): 18-35.
[http://dx.doi.org/10.1093/brain/awh682] [PMID: 16317026]
[9]
Ch’ang J, Claassen J. Seizures in the critically ill. Handb Clin Neurol 2017; 141: 507-29.
[http://dx.doi.org/10.1016/B978-0-444-63599-0.00028-4] [PMID: 28190433]
[10]
Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K, Elsayed MT, Hashem Y, Mohamed O. Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr Pharm Des 2016; 22(22): 3305-23.
[http://dx.doi.org/10.2174/1381612822666160204120829] [PMID: 26845323]
[11]
Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol 2015; 14(6): 615-24.
[http://dx.doi.org/10.1016/S1474-4422(15)00042-3] [PMID: 25908090]
[12]
Liu G, Slater N, Perkins A. Epilepsy: Treatment options. Am Fam Physician 2017; 96(2): 87-96.
[PMID: 28762701]
[13]
Sheng J, Liu S, Qin H, Li B, Zhang X. Drug-resistant epilepsy and surgery. Curr Neuropharmacol 2018; 16(1): 17-28.
[PMID: 28474565]
[14]
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: Excitability and inflammation. Trends Neurosci 2013; 36(3): 174-84.
[http://dx.doi.org/10.1016/j.tins.2012.11.008] [PMID: 23298414]
[15]
Upadhaya PG, Pulakkat S, Patravale VB. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res 2020; 10(4): 1044-56.
[http://dx.doi.org/10.1007/s13346-020-00747-y] [PMID: 32221847]
[16]
Huynh M, Marcu LG, Giles E, Short M, Matthews D, Bezak E. Current status of proton therapy outcome for paediatric cancers of the central nervous system – Analysis of the published literature. Cancer Treat Rev 2018; 70: 272-88.
[http://dx.doi.org/10.1016/j.ctrv.2018.10.003] [PMID: 30326423]
[17]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[18]
Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target 2017; 25(1): 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[19]
Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules 2019; 9(12): 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[20]
Raliya R, Saha D, Chadha TS, Raman B, Biswas P. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci Rep 2017; 7(1): 44718.
[http://dx.doi.org/10.1038/srep44718] [PMID: 28300204]
[21]
Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol 2018; 46(8): 2088-95.
[PMID: 29282995]
[22]
Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 2018; 13(1): 231.
[http://dx.doi.org/10.1186/s11671-018-2638-7] [PMID: 30097809]
[23]
Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics 2019; 11(3): 118.
[http://dx.doi.org/10.3390/pharmaceutics11030118] [PMID: 30871237]
[24]
Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Critical Reviews™ in Therapeutic Drug Carrier Systems 2018; 35(5): 433-67.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[25]
Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brainvianasal route. J Control Release 2014; 189: 133-40.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.053] [PMID: 24997277]
[26]
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 614-28.
[http://dx.doi.org/10.1016/j.addr.2011.11.002] [PMID: 22119441]
[27]
Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P&T 2010; 35(7): 392-415.
[PMID: 20689626]
[28]
Stafstrom CE, Carmant L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med 2015; 5(6): a022426.
[http://dx.doi.org/10.1101/cshperspect.a022426] [PMID: 26033084]
[29]
Guerrini R, Marini C, Mantegazza M. Genetic epilepsy syndromes without structural brain abnormalities: Clinical features and experimental models. Neurotherapeutics 2014; 11(2): 269-85.
[http://dx.doi.org/10.1007/s13311-014-0267-0] [PMID: 24664660]
[30]
Siarava E, Markoula S, Pelidou SH, Kyritsis AP, Hyphantis T. Psychological distress symptoms and illness perception in patients with epilepsy in Northwest Greece. Epilepsy Behav 2020; 102: 106647.
[http://dx.doi.org/10.1016/j.yebeh.2019.106647] [PMID: 31785484]
[31]
Fisher RS. The new classification of seizures by the International League Against Epilepsy 2017. Curr Neurol Neurosci Rep 2017; 17(6): 48.
[http://dx.doi.org/10.1007/s11910-017-0758-6] [PMID: 28425015]
[32]
Spencer D. Auras are frequent in patients with generalized epilepsy. Epilepsy Curr 2015; 15(2): 75-7.
[http://dx.doi.org/10.5698/1535-7597-15.2.75] [PMID: 26251645]
[33]
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017; 58(4): 512-21.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[34]
Engelborghs S, D’Hooge R, De Deyn PP. Pathophysiology of epilepsy. Acta Neurol Belg 2000; 100(4): 201-13.
[PMID: 11233674]
[35]
Hwang ST, Stevens SJ, Fu AX, Proteasa SV. Intractable generalized epilepsy: Therapeutic approaches. Curr Neurol Neurosci Rep 2019; 19(4): 16.
[http://dx.doi.org/10.1007/s11910-019-0933-z] [PMID: 30806817]
[36]
Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009; 6(2): 323-36.
[http://dx.doi.org/10.1016/j.nurt.2009.01.018] [PMID: 19332327]
[37]
Mehdizadeh A, Barzegar M, Negargar S, Yahyavi A, Raeisi S. The current and emerging therapeutic approaches in drug-resistant epilepsy management. Acta Neurol Belg 2019; 119(2): 155-62.
[http://dx.doi.org/10.1007/s13760-019-01120-8] [PMID: 30868468]
[38]
Eadie MJ. Shortcomings in the current treatment of epilepsy. Expert Rev Neurother 2012; 12(12): 1419-27.
[http://dx.doi.org/10.1586/ern.12.129] [PMID: 23237349]
[39]
Drescher J, Byne W. Gender dysphoric/gender variant (GD/GV) children and adolescents: summarizing what we know and what we have yet to learn. J Homosex 2012; 59(3): 501-10.
[http://dx.doi.org/10.1080/00918369.2012.653317] [PMID: 22455333]
[40]
Penovich PE, Glauser T. Seizure clusters: Practical aspects and clinical strategies to care for patients in the community. Epilepsia 2022; 63(S1) (Suppl. 1): S3-5.
[http://dx.doi.org/10.1111/epi.17345] [PMID: 35999177]
[41]
Charoo NA, Barakh Ali SF, Mohamed EM, et al. Selective laser sintering 3D printing-an overview of the technology and pharmaceutical applications. Drug Dev Ind Pharm 2020; 46(6): 869-77.
[http://dx.doi.org/10.1080/03639045.2020.1764027] [PMID: 32364418]
[42]
Abou-Khalil BW. Update on antiepileptic drugs 2019. Continuum 2019; 25(2): 508-36.
[http://dx.doi.org/10.1212/CON.0000000000000715] [PMID: 30921021]
[43]
Abou-Khalil B, Schmidt . Antiepileptic drugs. Handb Clin Neurol 2012; 108: 723-39.
[http://dx.doi.org/10.1016/B978-0-444-52899-5.00024-1] [PMID: 22939062]
[44]
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: A summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res 2007; 73(1): 1-52.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.10.008] [PMID: 17158031]
[45]
Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals 2010; 3(7): 2090-110.
[http://dx.doi.org/10.3390/ph3072090] [PMID: 27713344]
[46]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[47]
Bonferoni M, Rossi S, Sandri G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019; 11(2): 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[48]
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery-the potential of nanotechnology. Bioorg Med Chem 2018; 26(10): 2888-905.
[http://dx.doi.org/10.1016/j.bmc.2017.11.001] [PMID: 29170026]
[49]
Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release 2018; 270: 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.047] [PMID: 29199063]
[50]
Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 2017; 152: 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[51]
Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 2016; 92: 224-34.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[52]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[53]
Fatouh A, Elshafeey A, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther 2017; 11: 1815-25.
[http://dx.doi.org/10.2147/DDDT.S102500] [PMID: 28684900]
[54]
Bari NK, Fazil M, Hassan MQ, et al. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int J Biol Macromol 2015; 81: 49-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.041] [PMID: 26210037]
[55]
Bhatt R, Singh D, Prakash A, Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv 2015; 22(7): 931-9.
[http://dx.doi.org/10.3109/10717544.2014.880860] [PMID: 24512295]
[56]
Jafarieh O, Md S, Ali M, et al. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 2015; 41(10): 1674-81.
[http://dx.doi.org/10.3109/03639045.2014.991400] [PMID: 25496439]
[57]
Upadhyay P, Trivedi J, Pundarikakshudu K, Sheth N. Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route. Saudi Pharm J 2017; 25(3): 346-58.
[http://dx.doi.org/10.1016/j.jsps.2016.07.003] [PMID: 28344488]
[58]
Gonçalves J, Bicker J, Gouveia F, et al. Nose-to-brain delivery of levetiracetam after intranasal administration to mice. Int J Pharm 2019; 564: 329-39.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.047] [PMID: 31015006]
[59]
Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 2017; 529(1-2): 667-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.030] [PMID: 28729175]
[60]
Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: From bio adhesion to targeting. Pharmaceutics 2018; 10(1): 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[61]
Bors L, Erdő F. Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery. Sci Pharm 2019; 87(1): 6.
[http://dx.doi.org/10.3390/scipharm87010006]
[62]
Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm 2018; 122: 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[63]
Djupesland PG. Nasal drug delivery devices: Characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 2013; 3(1): 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[64]
Savale S, Mahajan H. Nose to brain: A versatile mode of drug delivery system. Asian J Biomater Res 2017; 3: 16-38.
[65]
Luppi B, Bigucci F, Corace G, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 2011; 44(4): 559-65.
[http://dx.doi.org/10.1016/j.ejps.2011.10.002] [PMID: 22009109]
[66]
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128: 337-62.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[67]
Aderibigbe B. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics 2018; 10(2): 40.
[http://dx.doi.org/10.3390/pharmaceutics10020040] [PMID: 29601486]
[68]
Oberdörster G, Elder A, Rinderknecht A. Nanoparticles and the brain: Cause for concern? J Nanosci Nanotechnol 2009; 9(8): 4996-5007.
[http://dx.doi.org/10.1166/jnn.2009.GR02] [PMID: 19928180]
[69]
Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ. Pathways and progress in improving drug delivery through the intestinal mucosa and blood–brain barriers. Ther Deliv 2014; 5(10): 1143-63.
[http://dx.doi.org/10.4155/tde.14.67] [PMID: 25418271]
[70]
Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules 2020; 25(8): 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[71]
Manish G, Vimukta S. Targeted drug delivery system: A review. Res J Chem Sci 2011; 1(2): 135-8.
[72]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[73]
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[74]
Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomater 2011; 7(12): 4169-76.
[http://dx.doi.org/10.1016/j.actbio.2011.07.025] [PMID: 21839863]
[75]
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of Frovatriptan succinate–loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019; 108(2): 851-9.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[76]
Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23(5): 1079-88.
[http://dx.doi.org/10.1016/j.drudis.2018.01.005] [PMID: 29330120]
[77]
Mistry A, Stolnik S, Illum L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm 2015; 12(8): 2755-66.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[78]
Pardeshi CV, Belgamwar VS. Improved brain pharmacokinetics following intranasal administration of N,N,N -trimethyl chitosan tailored mucoadhesive NLCs. Mater Technol 2020; 35(5): 249-66.
[http://dx.doi.org/10.1080/10667857.2019.1674522]
[79]
Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 2018; 14(2): 609-18.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[80]
Ugwoke M, Agu R, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv Drug Deliv Rev 2005; 57(11): 1640-65.
[http://dx.doi.org/10.1016/j.addr.2005.07.009] [PMID: 16182408]
[81]
Rosillo-de la Torre A, Luna-Bárcenas G, Orozco-Suárez S, et al. Pharmacoresistant epilepsy and nanotechnology. Front Biosci 2014; E6(2): 329-40.
[http://dx.doi.org/10.2741/709] [PMID: 24896209]
[82]
Alshweiat A, Ambrus R, Csóka II. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr Med Chem 2019; 26(35): 6459-92.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[83]
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111: 666-75.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[84]
Poovaiah N, Davoudi Z, Peng H, et al. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018; 10(36): 16962-83.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[85]
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018; 10(3): 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[86]
Friedman A, Claypool S, Liu R. The smart targeting of nanoparticles. Curr Pharm Des 2013; 19(35): 6315-29.
[http://dx.doi.org/10.2174/13816128113199990375] [PMID: 23470005]
[87]
Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics 2019; 11(10): 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[88]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[89]
Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Adv Drug Deliv Rev 2001; 47(1): 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[90]
Sharma A, Garg T, Aman A, et al. Nanogel—an advanced drug delivery tool: Current and future. Artif Cells Nanomed Biotechnol 2016; 44(1): 165-77.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[91]
Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today 2011; 16(9-10): 457-63.
[http://dx.doi.org/10.1016/j.drudis.2011.03.004] [PMID: 21414419]
[92]
Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M. Functional nanogels for biomedical applications. Curr Med Chem 2012; 19(29): 5029-43.
[http://dx.doi.org/10.2174/0929867311209025029] [PMID: 22963637]
[93]
de Martimprey H, Vauthier C, Malvy C, Couvreur P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur J Pharm Biopharm 2009; 71(3): 490-504.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.024] [PMID: 18977435]
[94]
Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004; 15(1): 50-60.
[http://dx.doi.org/10.1021/bc034164r] [PMID: 14733583]
[95]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[96]
Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011; 32(6): 1635-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.027] [PMID: 21131044]
[97]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016
[http://dx.doi.org/10.1155/2016/7372306]
[98]
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: Novel sustained release nonionic stable vesicular systems-an overview. Adv Colloid Interface Sci 2012; 183-184: 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[99]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[100]
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[101]
De A, Venkatesh N, Senthil M, Sanapalli BKR, Shanmugham R, Karri VVSR. Smart niosomes of temozolomide for enhancement of brain targeting. Nanobiomedicine 2018; 5.
[http://dx.doi.org/10.1177/1849543518805355] [PMID: 30344765]
[102]
Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res 2020; 30(2): 163-73.
[http://dx.doi.org/10.1080/08982104.2019.1610435] [PMID: 31039651]
[103]
Rinaldi F, Seguella L, Gigli S, et al. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release 2019; 294: 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.007] [PMID: 30529726]
[104]
Rinaldi F, Hanieh P, Chan L, et al. Chitosan glutamate-coated niosomes: A proposal for nose-to-brain delivery. Pharmaceutics 2018; 10(2): 38.
[http://dx.doi.org/10.3390/pharmaceutics10020038] [PMID: 29565809]
[105]
Mathure D, Madan JR, Gujar KN, Tupsamundre A, Ranpise HA, Dua K. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route. Pharm Nanotechnol 2018; 6(1): 69-78.
[http://dx.doi.org/10.2174/2211738506666180130105919] [PMID: 29380709]
[106]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[107]
Mayer C. Nanocapsules as drug delivery systems. Int J Artif Organs 2005; 28(11): 1163-71.
[http://dx.doi.org/10.1177/039139880502801114] [PMID: 16353123]
[108]
Iqubal MK, Iqubal A, Shuaib M, Shahryar M. An exquisite technology of pharmaceutical science: Nanotechnology. Indo Am J Pharm Res 2015; 5: 3528-40.
[109]
Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles: A mechanistic study of polymerisation and particle formation. Biomaterials 2001; 22(11): 1335-44.
[http://dx.doi.org/10.1016/S0142-9612(00)00286-6] [PMID: 11336306]
[110]
Bernardi A, Frozza RL, Horn AP, et al. Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: Involvement of neuroinflammation. Neurochem Int 2010; 57(6): 629-36.
[http://dx.doi.org/10.1016/j.neuint.2010.07.012] [PMID: 20691236]
[111]
O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem Soc Rev 2006; 35(11): 1068-83.
[http://dx.doi.org/10.1039/b514858h] [PMID: 17057836]
[112]
Sriramoju B, Kanwar R, Kanwar J. Nanomedicine based nanoparticles for neurological disorders. Curr Med Chem 2014; 21(36): 4154-68.
[http://dx.doi.org/10.2174/0929867321666140716095644] [PMID: 25039778]
[113]
Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K. Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer. Gene Ther 2002; 9(6): 407-14.
[http://dx.doi.org/10.1038/sj.gt.3301665] [PMID: 11960317]
[114]
Pai AS, Rubinstein I, Önyüksel H. PEGylated phospholipid nanomicelles interact with β-amyloid(1–42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro. Peptides 2006; 27(11): 2858-66.
[http://dx.doi.org/10.1016/j.peptides.2006.04.022] [PMID: 16762454]
[115]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[116]
Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004; 2(1): 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[117]
Zhou J, Ralston J, Sedev R, Beattie DA. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. J Colloid Interface Sci 2009; 331(2): 251-62.
[http://dx.doi.org/10.1016/j.jcis.2008.12.002] [PMID: 19135209]
[118]
McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80.
[PMID: 18686777]
[119]
Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel) 2012; 12(2): 1657-87.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[120]
Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[121]
Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 2017; 43(4): 493-507.
[http://dx.doi.org/10.1080/1040841X.2016.1267708] [PMID: 28068855]
[122]
Ghosh P, Han G, De M, Kim C, Rotello V. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[123]
Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med 2014; 6(6): 172-8.
[http://dx.doi.org/10.1016/j.jecm.2014.10.015]
[124]
Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine 2011; 6(5): 815-35.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[125]
Gao Y, Li Y. Gold nanostructures for cancer imaging and therapy.Advances in Nanotheranostics I. Berlin, Heidelberg: Springer 2016; pp. 53-101.
[http://dx.doi.org/10.1007/978-3-662-48544-6_2]
[126]
Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 2010; 26(8): 5428-34.
[http://dx.doi.org/10.1021/la903893n] [PMID: 20095619]
[127]
Sukumar UK, Bose RJC, Malhotra M, et al. Intranasal delivery of targeted polyfunctional gold–iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019; 218: 119342.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119342] [PMID: 31326657]
[128]
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 2019; 27(10): 1127-34.
[http://dx.doi.org/10.1080/1061186X.2019.1608553] [PMID: 31094230]
[129]
Ealia SA, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: materials science and engineering 2017 Nov 1 (Vol 263, No 3, p 032019).
[130]
Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 2008; 179(2): 93-100.
[http://dx.doi.org/10.1016/j.toxlet.2008.04.009] [PMID: 18508209]
[131]
Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res Genet Toxicol Environ Mutagen 2011; 726(2): 129-35.
[http://dx.doi.org/10.1016/j.mrgentox.2011.08.008] [PMID: 21945414]
[132]
Tang J, Xiong L, Zhou G, et al. Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol 2010; 10(10): 6313-7.
[http://dx.doi.org/10.1166/jnn.2010.2625] [PMID: 21137724]
[133]
Loeschner K, Hadrup N, Qvortrup K, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 2011; 8(1): 18.
[http://dx.doi.org/10.1186/1743-8977-8-18] [PMID: 21631937]
[134]
Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 2009; 108(2): 452-61.
[http://dx.doi.org/10.1093/toxsci/kfn246] [PMID: 19033393]
[135]
Patchin ES, Anderson DS, Silva RM, et al. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 2016; 124(12): 1870-5.
[http://dx.doi.org/10.1289/EHP234] [PMID: 27152509]
[136]
Falconer JL, Grainger DW. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. J Control Release 2018; 269: 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.018] [PMID: 29061510]
[137]
Sun C, Yin N, Wen R, et al. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 2016; 52: 210-21.
[http://dx.doi.org/10.1016/j.neuro.2015.09.007] [PMID: 26702581]
[138]
Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 2017; 7(1): 42871.
[http://dx.doi.org/10.1038/srep42871] [PMID: 28127051]
[139]
Lakshmanan S, Gupta GK, Avci P, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71: 98-114.
[http://dx.doi.org/10.1016/j.addr.2013.05.010] [PMID: 23751778]
[140]
Dan M, Bae Y, Pittman TA, Yokel RA. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Pharm Res 2015; 32(5): 1615-25.
[http://dx.doi.org/10.1007/s11095-014-1561-6] [PMID: 25377069]
[141]
Villate-Beitia I, Puras G, Soto-Sánchez C, et al. Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells. Int J Pharm 2017; 521(1-2): 130-40.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.016] [PMID: 28185961]
[142]
Bu L, Xie J, Chen K, et al. Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media Mol Imaging 2012; 7(4): 363-72.
[http://dx.doi.org/10.1002/cmmi.494] [PMID: 22649042]
[143]
Niu S, Zhang LK, Zhang L, et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 2017; 7(2): 344-56.
[http://dx.doi.org/10.7150/thno.16562] [PMID: 28042339]
[144]
Salama M, Sobh M, Emam M, et al. Effect of intranasal stem cell administration on the nigrostriatal system in a mouse model of Parkinson’s disease. Exp Ther Med 2017; 13(3): 976-82.
[http://dx.doi.org/10.3892/etm.2017.4073] [PMID: 28450929]
[145]
Chung TH, Hsu SC, Wu SH, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 2018; 10(6): 2998-3007.
[http://dx.doi.org/10.1039/C7NR06976F] [PMID: 29372743]
[146]
Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev 2009; 109(1): 49-87.
[http://dx.doi.org/10.1021/cr068212n] [PMID: 19099452]
[147]
Marcos M, Giménez R, Serrano JL, Donnio B, Heinrich B, Guillon D. Dendromesogens: liquid crystal organizations of poly(amidoamine) dendrimers versus starburst structures. Chemistry 2001; 7(5): 1006-13.
[http://dx.doi.org/10.1002/1521-3765(20010302)7:5<1006::AID-CHEM1006>3.0.CO;2-N] [PMID: 11303861]
[148]
Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009; 38(3): 185-96.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[149]
Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005; 23(12): 1517-26.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[150]
Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 2009; 61(6): 457-66.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[151]
Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 2012; 69(1): 29-38.
[http://dx.doi.org/10.1001/archneurol.2011.233] [PMID: 21911655]
[152]
Godfrey L, Iannitelli A, Garrett NL, et al. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. J Control Release 2018; 270: 135-44.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.041] [PMID: 29191784]
[153]
Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH II. Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience 2008; 152(3): 785-97.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.013] [PMID: 18304744]
[154]
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5(6): 514-6.
[http://dx.doi.org/10.1038/nn0602-849] [PMID: 11992114]
[155]
Parker KJ, Oztan O, Libove RA, et al. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci USA 2017; 114(30): 8119-24.
[http://dx.doi.org/10.1073/pnas.1705521114] [PMID: 28696286]
[156]
Sigurdsson PÁL, Thorvaldsson T, Gizurarson S, Gunnarsson E. Olfactory absorption of insulin to the brain. Drug Deliv 1997; 4(3): 195-200.
[http://dx.doi.org/10.3109/10717549709051892]
[157]
Karasulu HY. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv 2008; 5(1): 119-35.
[http://dx.doi.org/10.1517/17425247.5.1.119] [PMID: 18095932]
[158]
Vyas TK, Babbar AK, Sharma RK, Misra A. Intranasal mucoadhesive microemulsions of zolmitriptan: Preliminary studies on brain-targeting. J Drug Target 2005; 13(5): 317-24.
[http://dx.doi.org/10.1080/10611860500246217] [PMID: 16199375]
[159]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[160]
Musumeci T, Serapide MF, Pellitteri R, et al. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 2018; 133: 309-20.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.002] [PMID: 30399400]
[161]
Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014; 461(1-2): 192-202.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.049] [PMID: 24300213]
[162]
Bonaccorso A, Musumeci T, Serapide MF, Pellitteri R, Uchegbu IF, Puglisi G. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf B Biointerfaces 2017; 154: 297-306.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.035] [PMID: 28363190]
[163]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[164]
Agid Y, Destée A, Durif F, Montastruc J-L, Group PPF. Tolcapone, bromocriptine, and Parkinson’s disease. Lancet 1997; 350(9079): 712-3.
[http://dx.doi.org/10.1016/S0140-6736(05)63511-8] [PMID: 9291909]
[165]
Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J 2007; 83(980): 384-8.
[http://dx.doi.org/10.1136/pgmj.2006.054759] [PMID: 17551069]
[166]
Kumar A, Singh A, Ekavali . A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[167]
Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy