Abstract
Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Macrophages and dendritic cells present in the inflammatory infiltrate contribute to the angiogenic process by multiple mechanisms. Macrophages produce a broad array of angiogenic growth factors and cytokines, generate conduits for blood flow through proteolytic mechanisms, and promote the remodeling of arterioles into arteries. They can also inhibit angiogenesis and cause reabsorption of neovessels by inducing endothelial cell death. Dendritic cells can stimulate or inhibit angiogenesis depending on their activation status and subset specificity. Dendritic cells stimulate angiogenesis by secreting angiogenic factors and cytokines, promoting the proangiogenic activity of T lymphocytes, and trans-differentiating into endothelial cells. Inflammatory infiltrates associated with angiogenesis also contain Tie2+, VEGFR2+, and GR1+ myelomonocytic cells which actively regulate the angiogenic process through paracrine mechanisms. In this paper we review our current knowledge of this field and discuss how recent advances have provided the rationale for novel therapeutic approaches against cancer.
Keywords: Macrophages, dendritic cells, myeloid cells, neovascularization, arteriogenesis
Current Pharmaceutical Design
Title: Regulation of Angiogenesis by Macrophages, Dendritic Cells, and Circulating Myelomonocytic Cells
Volume: 15 Issue: 4
Author(s): Zhao Ming (David) Dong, Alfred C. Aplin and Roberto F. Nicosia
Affiliation:
Keywords: Macrophages, dendritic cells, myeloid cells, neovascularization, arteriogenesis
Abstract: Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Macrophages and dendritic cells present in the inflammatory infiltrate contribute to the angiogenic process by multiple mechanisms. Macrophages produce a broad array of angiogenic growth factors and cytokines, generate conduits for blood flow through proteolytic mechanisms, and promote the remodeling of arterioles into arteries. They can also inhibit angiogenesis and cause reabsorption of neovessels by inducing endothelial cell death. Dendritic cells can stimulate or inhibit angiogenesis depending on their activation status and subset specificity. Dendritic cells stimulate angiogenesis by secreting angiogenic factors and cytokines, promoting the proangiogenic activity of T lymphocytes, and trans-differentiating into endothelial cells. Inflammatory infiltrates associated with angiogenesis also contain Tie2+, VEGFR2+, and GR1+ myelomonocytic cells which actively regulate the angiogenic process through paracrine mechanisms. In this paper we review our current knowledge of this field and discuss how recent advances have provided the rationale for novel therapeutic approaches against cancer.
Export Options
About this article
Cite this article as:
(David) Dong Ming Zhao, Aplin C. Alfred and Nicosia F. Roberto, Regulation of Angiogenesis by Macrophages, Dendritic Cells, and Circulating Myelomonocytic Cells, Current Pharmaceutical Design 2009; 15 (4) . https://dx.doi.org/10.2174/138161209787315783
DOI https://dx.doi.org/10.2174/138161209787315783 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Development of NGR-Based Anti-Cancer Agents for Targeted Therapeutics and Imaging
Anti-Cancer Agents in Medicinal Chemistry Finding Recurrent Copy Number Alteration Regions: A Review of Methods
Current Bioinformatics Peptidergic Regulation of Pheochromocytoma
Current Pharmacogenomics Chemotherapeutic Targeting of Cell Death Pathways
Anti-Cancer Agents in Medicinal Chemistry Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives
Current Pharmaceutical Design Role of Cannabinoids and Endocannabinoids in Cerebral Ischemia
Current Pharmaceutical Design Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents
Current Medicinal Chemistry Role of Progastrins and Gastrins and Their Receptors in GI and Pancreatic Cancers: Targets for Treatment
Current Pharmaceutical Design Matrix Metalloproteinases as Potential Targets in the Venous Dilation Associated with Varicose Veins
Current Drug Targets Targeting mTOR Pathways in Human Malignancies
Current Pharmaceutical Design Scorpion Toxin Polyptides as Therapeutic Agents: An Overview
Protein & Peptide Letters Potentials of ES Cell Therapy in Neurodegenerative Diseases
Current Pharmaceutical Design Heterologous Production of Death Ligands’ and Death Receptors’ Extracellular Domains: Structural Features and Efficient Systems
Protein & Peptide Letters Cachexia and Herbal Medicine: Perspective
Current Pharmaceutical Design Protection Mechanisms Against Aβ42 Aggregation
Current Alzheimer Research The Synergistic Cytotoxic and Apoptotic Effect of Resveratrol and Naringenin on Y79 Retinoblastoma Cell Line
Anti-Cancer Agents in Medicinal Chemistry Stem Cell-Like Brain Cancer Cells
Current Cancer Therapy Reviews Integrin-Targeted Peptide- and Peptidomimetic-Drug Conjugates for the Treatment of Tumors
Recent Patents on Anti-Cancer Drug Discovery Isolation, Structural Determination, and Evaluation of the Biological Activity of 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol [20(S)-25-OCH3-PPD], a Novel Natural Product from Panax notoginseng
Medicinal Chemistry Isolation, Characterization and Preliminary Cytotoxic and Antifungal Evaluations of Novel Lancifoliate Isolated from Methanol Extract of <i>Conocarpus lancifolius</i>
Anti-Cancer Agents in Medicinal Chemistry