Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nucleoside Scaffolds and Carborane Clusters for Boron Neutron Capture Therapy: Developments and Future Perspective

Author(s): Ahmed Khalil* and Mohamed Shaker S. Adam

Volume 31, Issue 35, 2024

Published on: 10 October, 2023

Page: [5739 - 5754] Pages: 16

DOI: 10.2174/0109298673245020230929152030

Price: $65

Abstract

Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.

[1]
Chou, F.I.; Chung, H.P.; Liu, H.M.; Chi, C.W.; Lui, W.Y. Suitability of boron carriers for BNCT: Accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA. Appl. Radiat. Isot., 2009, 67(S7-8), S105-S108.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.025] [PMID: 19375330]
[2]
Pozzi, E.C.C.; Cardoso, J.E.; Colombo, L.L.; Thorp, S.; Monti Hughes, A.; Molinari, A.J.; Garabalino, M.A.; Heber, E.M.; Miller, M.; Itoiz, M.E.; Aromando, R.F.; Nigg, D.W.; Quintana, J.; Trivillin, V.A.; Schwint, A.E. Boron neutron capture therapy (BNCT) for liver metastasis: Therapeutic efficacy in an experimental model. Radiat. Environ. Biophys., 2012, 51(3), 331-339.
[http://dx.doi.org/10.1007/s00411-012-0419-8] [PMID: 22544068]
[3]
Garabalino, M.A.; Monti Hughes, A.; Molinari, A.J.; Heber, E.M.; Pozzi, E.C.C.; Cardoso, J.E.; Colombo, L.L.; Nievas, S.; Nigg, D.W.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E. Boron neutron capture therapy (BNCT) for the treatment of liver metastases: Biodistribution studies of boron compounds in an experimental model. Radiat. Environ. Biophys., 2011, 50(1), 199-207.
[http://dx.doi.org/10.1007/s00411-010-0345-6] [PMID: 21132507]
[4]
Suzuki, M.; Masunaga, S.I.; Kinashi, Y.; Takagaki, M.; Sakurai, Y.; Kobayashi, T.; Ono, K. The effects of boron neutron capture therapy on liver tumors and normal hepatocytes in mice. Jpn. J. Cancer Res., 2000, 91(10), 1058-1064.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb00885.x] [PMID: 11050478]
[5]
Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron neutron capture therapy: A review of clinical applications. Front. Oncol., 2021, 11, 601820.
[http://dx.doi.org/10.3389/fonc.2021.601820] [PMID: 33718149]
[6]
Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The chemistry of neutron capture therapy. Chem. Rev., 1998, 98(4), 1515-1562.
[http://dx.doi.org/10.1021/cr941195u] [PMID: 11848941]
[7]
Barth, R.F.; H., Vicente M.G.; Harling, O.K.; Kiger, W.S., III; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; Kawabata, S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol., 2012, 7(1), 146.
[http://dx.doi.org/10.1186/1748-717X-7-146] [PMID: 22929110]
[8]
Yamamoto, T.; Nakai, K.; Matsumura, A. Boron neutron capture therapy for glioblastoma. Cancer Lett., 2008, 262(2), 143-152.
[http://dx.doi.org/10.1016/j.canlet.2008.01.021] [PMID: 18313207]
[9]
Luderer, M.J.; de la Puente, P.; Azab, A.K. Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm. Res., 2015, 32(9), 2824-2836.
[http://dx.doi.org/10.1007/s11095-015-1718-y] [PMID: 26033767]
[10]
Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0035] [PMID: 15930333]
[11]
Tjarks, W.; Tiwari, R.; Byun, Y.; Narayanasamy, S.; Barth, R.F. Carboranyl thymidine analogues for neutron capture therapy. Chem. Commun. , 2007, (47), 4978-4991.
[http://dx.doi.org/10.1039/b707257k] [PMID: 18049729]
[12]
Lin, S.Y.; Lin, C.J.; Liao, J.W.; Peir, J.J.; Chen, W.L.; Chi, C.W.; Lin, Y.C.; Liu, Y.M.; Chou, F.I. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer Res., 2013, 33(11), 4799-4809.
[PMID: 24222116]
[13]
Suzuki, M.; Nagata, K.; Masunaga, S.; Kinashi, Y.; Sakurai, Y.; Maruhashi, A.; Ono, K. Biodistribution of 10B in a rat liver tumor model following intra-arterial administration of sodium borocaptate (BSH)/degradable starch microspheres (DSM) emulsion. Appl. Radiat. Isot., 2004, 61(5), 933-937.
[http://dx.doi.org/10.1016/j.apradiso.2004.05.014] [PMID: 15308171]
[14]
Suzuki, M.; Sakurai, Y.; Hagiwara, S.; Masunaga, S.; Kinashi, Y.; Nagata, K.; Maruhashi, A.; Kudo, M.; Ono, K. First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma. Jpn. J. Clin. Oncol., 2007, 37(5), 376-381.
[http://dx.doi.org/10.1093/jjco/hym039] [PMID: 17578894]
[15]
Yanagië, H.; Ogata, A.; Sugiyama, H.; Eriguchi, M.; Takamoto, S.; Takahashi, H. Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin. Drug Deliv., 2008, 5(4), 427-443.
[http://dx.doi.org/10.1517/17425247.5.4.427] [PMID: 18426384]
[16]
Yanagie, H.; Kumada, H.; Nakamura, T.; Higashi, S.; Ikushima, I.; Morishita, Y.; Shinohara, A.; Fijihara, M.; Suzuki, M.; Sakurai, Y.; Sugiyama, H.; Kajiyama, T.; Nishimura, R.; Ono, K.; Nakajima, J.; Ono, M.; Eriguchi, M.; Takahashi, H. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intraarterial administration of boron-entrapped water-in-oil-in-water emulsion. Appl. Radiat. Isot., 2011, 69(12), 1854-1857.
[http://dx.doi.org/10.1016/j.apradiso.2011.04.022] [PMID: 21752660]
[17]
Yanagië, H.; Fujii, Y.; Sekiguchi, M.; Nariuchi, H.; Kobayashi, T.; Kanda, K. A targeting model of boron neutron-capture therapy to hepatoma cells in vivo with a boronated anti-(alpha-fetoprotein) monoclonal antibody. J. Cancer Res. Clin. Oncol., 1994, 120(11), 636-640.
[http://dx.doi.org/10.1007/BF01245373] [PMID: 7525592]
[18]
Khalil, A.; Ishita, K.; Ali, T.; Tjarks, W. N3-substituted thymidine bioconjugates for cancer therapy and imaging. Future Med. Chem., 2013, 5(6), 677-692.
[http://dx.doi.org/10.4155/fmc.13.31] [PMID: 23617430]
[19]
Hosmane, N.S. Ed.; Boron Science: New Technologies and Applications; CRC Press, 2012, p. 850.
[20]
Scholz, M.; Hey-Hawkins, E. Carbaboranes as pharmacophores: Properties, synthesis, and application strategies. Chem. Rev., 2011, 111(11), 7035-7062.
[http://dx.doi.org/10.1021/cr200038x] [PMID: 21780840]
[21]
Justus, E.; Awad, D.; Hohnholt, M.; Schaffran, T.; Edwards, K.; Karlsson, G.; Damian, L.; Gabel, D. Synthesis, liposomal preparation, and in vitro toxicity of two novel dodecaborate cluster lipids for boron neutron capture therapy. Bioconjug. Chem., 2007, 18(4), 1287-1293.
[http://dx.doi.org/10.1021/bc070040t] [PMID: 17569498]
[22]
Lee, J.D.; Ueno, M.; Miyajima, Y.; Nakamura, H. Synthesis of boron cluster lipids: Closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org. Lett., 2007, 9(2), 323-326.
[http://dx.doi.org/10.1021/ol062840+] [PMID: 17217295]
[23]
Nakamura, H.; Ueno, M.; Lee, J.D.; Ban, H.S.; Justus, E.; Fan, P.; Gabel, D. Synthesis of dodecaborate-conjugated cholesterols for efficient boron delivery in neutron capture therapy. Tetrahedron Lett., 2007, 48(18), 3151-3154.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.043]
[24]
Schaffran, T.; Li, J.; Karlsson, G.; Edwards, K.; Winterhalter, M.; Gabel, D. Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem. Phys. Lipids, 2010, 163(1), 64-73.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.09.004] [PMID: 19800875]
[25]
Awad, D.; Damian, L.; Winterhalter, M.; Karlsson, G.; Edwards, K.; Gabel, D. Interaction of Na2B12H11SH with dimyristoyl phosphatidylcholine liposomes. Chem. Phys. Lipids, 2009, 157(2), 78-85.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.11.006] [PMID: 19100246]
[26]
Scholz, M.; Blobaum, A.L.; Marnett, L.J.; Hey-Hawkins, E. Synthesis and evaluation of carbaborane derivatives of indomethacin as cyclooxygenase inhibitors. Bioorg. Med. Chem., 2011, 19(10), 3242-3248.
[http://dx.doi.org/10.1016/j.bmc.2011.03.054] [PMID: 21524587]
[27]
Cígler, P.; Kožíšek, M.; Řezáčová, P.; Brynda, J.; Otwinowski, Z.; Pokorná, J.; Plešek, J.; Grüner, B.; Dolečková-Marešová, L.; Máša, M.; Sedláček, J.; Bodem, J.; Kräusslich, H.G.; Král, V.; Konvalinka, J. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. , 2005, 102(43), 15394-15399.
[http://dx.doi.org/10.1073/pnas.0507577102] [PMID: 16227435]
[28]
Řezáčová, P.; Pokorná, J.; Brynda, J.; Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáč, J.; Grantz Šašková, K.; Sieglová, I.; Plešek, J.; Šícha, V.; Grüner, B.; Oberwinkler, H.; Sedláček’, J.; Kräusslich, H.G.; Hobza, P.; Král, V.; Konvalinka, J. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J. Med. Chem., 2009, 52(22), 7132-7141.
[http://dx.doi.org/10.1021/jm9011388] [PMID: 19874035]
[29]
Nicoud, J.F.; Bolze, F.; Sun, X.H.; Hayek, A.; Baldeck, P. Boron-containing two-photon-absorbing chromophores. 3. One- and two-photon photophysical properties of p-carborane-containing fluorescent bioprobes. Inorg. Chem., 2011, 50(10), 4272-4278.
[http://dx.doi.org/10.1021/ic102043v] [PMID: 21491927]
[30]
Al-Madhoun, A.; Tjarks, W.; Eriksson, S. The role of thymidine kinases in the activation of pyrimidine nucleoside analogues. Mini Rev. Med. Chem., 2004, 4(4), 341-350.
[http://dx.doi.org/10.2174/1389557043403963] [PMID: 15134537]
[31]
Johansson, M.; Karlsson, A. Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. J. Biol. Chem., 1997, 272(13), 8454-8458.
[http://dx.doi.org/10.1074/jbc.272.13.8454] [PMID: 9079672]
[32]
Kauffman, M.G.; Kelly, T.J. Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol. Cell. Biol., 1991, 11(5), 2538-2546.
[PMID: 1708095]
[33]
Welin, M.; Kosinska, U.; Mikkelsen, N.E.; Carnrot, C.; Zhu, C.; Wang, L.; Eriksson, S.; Munch-Petersen, B.; Eklund, H. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc. Natl. Acad. Sci. , 2004, 101(52), 17970-17975.
[http://dx.doi.org/10.1073/pnas.0406332102] [PMID: 15611477]
[34]
Hanan, S.; Jagarlamudi, K.K.; Liya, W.; Ellen, H.; Staffan, E. Quaternary structures of recombinant, cellular, and serum forms of thymidine kinase 1 from dogs and humans. BMC Biochem., 2012, 13(1), 12.
[http://dx.doi.org/10.1186/1471-2091-13-12] [PMID: 22741536]
[35]
Birringer, M.S.; Claus, M.T.; Folkers, G.; Kloer, D.P.; Schulz, G.E.; Scapozza, L. Structure of a type II thymidine kinase with bound dTTP. FEBS Lett., 2005, 579(6), 1376-1382.
[http://dx.doi.org/10.1016/j.febslet.2005.01.034] [PMID: 15733844]
[36]
Eriksson, S.; Kierdaszuk, B.; Munch-Petersen, B.; Oberg, B.; Gunnar Johansson, N. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun., 1991, 176(2), 586-592.
[http://dx.doi.org/10.1016/S0006-291X(05)80224-4] [PMID: 2025274]
[37]
Johansson, N.G.; Eriksson, S. Structure-activity relationships for phosphorylation of nucleoside analogs to monophosphates by nucleoside kinases. Acta Biochim. Pol., 1996, 43(1), 143-160.
[http://dx.doi.org/10.18388/abp.1996_4573] [PMID: 8790720]
[38]
Al-Madhoun, A.S.; Johnsamuel, J.; Barth, R.F.; Tjarks, W.; Eriksson, S. Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Cancer Res., 2004, 64(17), 6280-6286.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0197] [PMID: 15342416]
[39]
Tietze, L.F.; Griesbach, U.; Bothe, U.; Nakamura, H.; Yamamoto, Y. Novel carboranes with a DNA binding unit for the treatment of cancer by boron neutron capture therapy. ChemBioChem, 2002, 3(2-3), 219-225.
[http://dx.doi.org/10.1002/1439-7633(20020301)3:2/3<219:AID-CBIC219>3.0.CO;2-#] [PMID: 11921401]
[40]
Isaac, M.F.; Kahl, S.B. Synthesis of ether- and carbon-linked polycarboranyl porphyrin dimers for cancer therapies. J. Organomet. Chem., 2003, 680(1-2), 232-243.
[http://dx.doi.org/10.1016/S0022-328X(03)00391-7]
[41]
Tietze, L.F.; Griesbach, U.; Schuberth, I.; Bothe, U.; Marra, A.; Dondoni, A. Novel carboranyl C-glycosides for the treatment of cancer by boron neutron capture therapy. Chemistry, 2003, 9(6), 1296-1302.
[http://dx.doi.org/10.1002/chem.200390148] [PMID: 12645018]
[42]
Olsson, P.; Gedda, L.; Goike, H.; Liu, L.; Collins, V.P.; Pontén, J.; Carlsson, J. Uptake of a boronated epidermal growth factor-dextran conjugate in CHO xenografts with and without human EGF-receptor expression. Anticancer Drug Des., 1998, 13(4), 279-289.
[PMID: 9627668]
[43]
Carlsson, J.; Kullberg, E.B.; Capala, J.; Sjöberg, S.; Edwards, K.; Gedda, L. Ligand liposomes and boron neutron capture therapy. J. Neurooncol., 2003, 62(1-2), 47-59.
[http://dx.doi.org/10.1007/BF02699933] [PMID: 12749702]
[44]
Altieri, S.; Balzi, M.; Bortolussi, S.; Bruschi, P.; Ciani, L.; Clerici, A.M.; Faraoni, P.; Ferrari, C.; Gadan, M.A.; Panza, L.; Pietrangeli, D.; Ricciardi, G.; Ristori, S. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J. Med. Chem., 2009, 52(23), 7829-7835.
[http://dx.doi.org/10.1021/jm900763b] [PMID: 19954249]
[45]
Li, R.; Zhang, J.; Guo, J.; Xu, Y.; Duan, K.; Zheng, J.; Wan, H.; Yuan, Z.; Chen, H. Application of nitroimidazole–carbobane-modified phenylalanine derivatives as dual-target boron carriers in boron neutron capture therapy. Mol. Pharm., 2020, 17(1), 202-211.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00898] [PMID: 31763850]
[46]
Abet, V.; Filace, F.; Recio, J.; Alvarez-Builla, J.; Burgos, C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem., 2017, 127, 810-827.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.061] [PMID: 27823878]
[47]
Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sárosi, M.B.; Hey-Hawkins, E. New keys for old locks: Carborane-containing drugs as platforms for mechanism-based therapies. Chem. Soc. Rev., 2019, 48(13), 3497-3512.
[http://dx.doi.org/10.1039/C9CS00197B] [PMID: 31214680]
[48]
Hu, K.; Yang, Z.; Zhang, L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S.H.; Zhang, M.R. Boron agents for neutron capture therapy. Coord. Chem. Rev., 2020, 405, 213139.
[http://dx.doi.org/10.1016/j.ccr.2019.213139]
[49]
Zharkov, D.O.; Yudkina, A.V.; Riesebeck, T.; Loshchenova, P.S.; Mostovich, E.A.; Dianov, G.L. Boron-containing nucleosides as tools for boron-neutron capture therapy. Am. J. Cancer Res., 2021, 11(10), 4668-4682.
[PMID: 34765286]
[50]
Wang, S.; Zhang, Z.; Miao, L.; Li, Y. Boron neutron capture therapy: Current status and challenges. Front. Oncol., 2022, 12, 788770.
[http://dx.doi.org/10.3389/fonc.2022.788770] [PMID: 35433432]
[51]
Calabrese, G.; Daou, A.; Barbu, E.; Tsibouklis, J. Towards carborane-functionalised structures for the treatment of brain cancer. Drug Discov. Today, 2018, 23(1), 63-75.
[http://dx.doi.org/10.1016/j.drudis.2017.08.009] [PMID: 28886331]
[52]
Messner, K.; Vuong, B.; Tranmer, G.K. The boron advantage: The evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals., 2022, 15(3), 264.
[http://dx.doi.org/10.3390/ph15030264] [PMID: 35337063]
[53]
Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem., 2022, 6(7), 486-504.
[http://dx.doi.org/10.1038/s41570-022-00400-x] [PMID: 37117309]
[54]
Dewar, M.J.S.; Maitlis, P.M. A boron-containing purine analog. J. Am. Chem. Soc., 1959, 81(23), 6329-6330.
[http://dx.doi.org/10.1021/ja01532a053]
[55]
Chissick, S.S.; Dewar, M.J.S.; Maitlis, P.M. New heteroaromatic compounds. XIV. 1 boron-containing analogs of purine, quinazoline and perimidine. J. Am. Chem. Soc., 1961, 83(12), 2708-2711.
[http://dx.doi.org/10.1021/ja01473a025]
[56]
Liao, T.K.; Podrebarac, E.G.; Cheng, C.C. Boron-substituted pyrimidines. J. Am. Chem. Soc., 1964, 86(9), 1869-1870.
[http://dx.doi.org/10.1021/ja01063a054]
[57]
Schinazi, R.F.; Prusoff, W.H. Synthesis of 5-(dihydroxyboryl)-2′-deoxyuridine and related boron-containing pyrimidines. J. Org. Chem., 1985, 50(6), 841-847.
[http://dx.doi.org/10.1021/jo00206a024]
[58]
Yamamoto, Y.; Seko, T.; Nakamura, H.; Nemoto, H.; Hojo, H.; Mukai, N.; Hashmioto, Y. Synthesis of carboranes containing nucleoside bases. Unexpectedly high cytostatic and cytocidal toxicity towards cancer cells. J. Chem. Soc. Chem. Commun., 1992, (2), 157-158.
[http://dx.doi.org/10.1039/c39920000157]
[59]
Tjarks, W. The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer. J. Organomet. Chem., 2000, 614-615, 37-47.
[http://dx.doi.org/10.1016/S0022-328X(00)00574-X]
[60]
Byun, Y.; Narayanasamy, S.; Johnsamuel, J.; Bandyopadhyaya, A.K.; Tiwari, R.; Al-Madhoun, A.S.; Barth, R.F.; Eriksson, S.; Tjarks, W. 3-Carboranyl thymidine analogues (3CTAs) and other boronated nucleosides for boron neutron capture therapy. Anticancer. Agents Med. Chem., 2006, 6(2), 127-144.
[http://dx.doi.org/10.2174/187152006776119171] [PMID: 16529536]
[61]
Goudgaon, N.M.; El-Kattan, G.F.; Schinazi, R.F. Boron containing pyrimidines, nucleosides, and oligonucleotides for neutron capture therapy. Nucleosides Nucleotides, 1994, 13(1-3), 849-880.
[http://dx.doi.org/10.1080/15257779408013283]
[62]
Schinazi, R.F.; Goudgaon, N.M.; Fulcrand, G.; El Kattan, Y.; Lesnikowski, Z.; Ullas, G.; Moravek, J.; Liotta, D.C. Cellular pharmacology and biological activity of 5-carboranyl-2′-deoxyuridine. Int. J. Radiat. Oncol. Biol. Phys., 1994, 28(5), 1113-1120.
[http://dx.doi.org/10.1016/0360-3016(94)90485-5] [PMID: 8175396]
[63]
Burnham, B.S.; Chen, S.Y.; Sood, A.; Spielvogel, B.F.; Miller, M.C., III; Hall, I.H. The cytotoxicity of 3′-aminocyanoborane-2′, 3′-dideoxypyrimidines in murine and human tissue cultured cell lines. Anticancer Res., 1995, 15(3), 951-958.
[PMID: 7645985]
[64]
Lin, T.S.; Prusoff, W.H. Synthesis and biological activity of several amino analogs of thymidine. J. Med. Chem., 1978, 21(1), 109-112.
[http://dx.doi.org/10.1021/jm00199a020] [PMID: 563460]
[65]
Soloway, A.H.; Zhuo, J.C.; Rong, F.G.; Lunato, A.J.; Ives, D.H.; Barth, R.F.; Anisuzzaman, A.K.M.; Barth, C.D.; Barnum, B.A. Identification, development, synthesis and evaluation of boron-containing nucleosides for neutron capture therapy. J. Organomet. Chem., 1999, 581(1-2), 150-155.
[http://dx.doi.org/10.1016/S0022-328X(99)00085-6]
[66]
Anisuzzaman, A.K.M.; Alam, F.; Soloway, A.H. Synthesis of a carboranyl nucleoside for potential use in neutron capture therapy of cancer. Polyhedron, 1990, 9(6), 891-892.
[http://dx.doi.org/10.1016/S0277-5387(00)81356-X]
[67]
Tjarks, W.; Anisuzzaman, A.K.M.; Soloway, A.H. Synthesis of 1,3-Dl-O-Acetyl-5-O-Benzoyl-2-O -(O-Carboran-1-Ylmethyl)- D-Ribofuranose. A general precursor for the preparation of carborane-containing nucleosides for boron neutron capture therapy. Nucleosides Nucleotides, 1992, 11(10), 1765-1779.
[http://dx.doi.org/10.1080/07328319208017822]
[68]
Tjarks, W.; Anisuzzaman, A.K.M.; Liu, L.; Soloway, A.H.; Barth, R.F.; Perkins, D.J.; Adams, D.M. Synthesis and in vitro evaluation of boronated uridine and glucose derivatives for boron neutron capture therapy. J. Med. Chem., 1992, 35(9), 1628-1633.
[http://dx.doi.org/10.1021/jm00087a019] [PMID: 1578491]
[69]
Nemoto, H.; Rong, F.G.; Yamamoto, Y. The first alkylation of o-carboranes under essentially neutral conditions. Application to the synthesis of boron-10 carriers. J. Org. Chem., 1990, 55(25), 6065-6066.
[http://dx.doi.org/10.1021/jo00312a002]
[70]
Nemoto, H.; Cai, J.; Yamamoto, Y. Synthesis of a water-soluble o-carbaborane bearing a uracil moiety via a palladium-catalysed reaction under essentially neutral conditions. J. Chem. Soc. Chem. Commun., 1994, 577-578(5), 577.
[http://dx.doi.org/10.1039/c39940000577]
[71]
Rong, F.G.; Soloway, A.H.; Ikeda, S.; Ives, D.H. Synthesis and biochemical activity of hydrophilic carborane-containing pyrimidine nucleosides as potential agents for DNA incorporation and BNCT. Nucleosides Nucleotides, 1997, 16(4), 379-401.
[http://dx.doi.org/10.1080/07328319708001357]
[72]
Rong, F.G.; Soloway, A.H. Synthesis of 5-tethered carborane-containing pyrimidine nucleosides as potential agents for DNA incorporation. Nucleosides Nucleotides, 1994, 13(9), 2021-2034.
[http://dx.doi.org/10.1080/15257779408010680]
[73]
Rong, F.G.; Soloway, A.H.; Ikeda, S.; Ives, D.H. Synthesis and biochemical activity of 5-tethered carborane-containing pyrimidine nucleosides as potential agents for DNA incorporation. Nucleosides Nucleotides, 1995, 14(9-10), 1873-1887.
[http://dx.doi.org/10.1080/15257779508010710]
[74]
Al-Madhoun, A.S.; Johnsamuel, J.; Yan, J.; Ji, W.; Wang, J.; Zhuo, J.C.; Lunato, A.J.; Woollard, J.E.; Hawk, A.E.; Cosquer, G.Y.; Blue, T.E.; Eriksson, S.; Tjarks, W. Synthesis of a small library of 3-(carboranylalkyl)thymidines and their biological evaluation as substrates for human thymidine kinases 1 and 2. J. Med. Chem., 2002, 45(18), 4018-4028.
[http://dx.doi.org/10.1021/jm020047q] [PMID: 12190323]
[75]
Barth, R.F.; Yang, W.; Al-Madhoun, A.S.; Johnsamuel, J.; Byun, Y.; Chandra, S.; Smith, D.R.; Tjarks, W.; Eriksson, S. Boron-containing nucleosides as potential delivery agents for neutron capture therapy of brain tumors. Cancer Res., 2004, 64(17), 6287-6295.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0437] [PMID: 15342417]
[76]
Byun, Y.; Thirumamagal, B.T.; Yang, W.; Eriksson, S.; Barth, R.F.; Tjarks, W. Preparation and biological evaluation of 10B-enriched 3-[5-{2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for boron neutron capture therapy of brain tumors. J. Med. Chem., 2006, 49, 5513-5523.
[http://dx.doi.org/10.1021/jm060413w] [PMID: 16942024]
[77]
Lowe, C.R.; Harvey, M.J.; Craven, D.B.; Dean, P.D.G. Some parameters relevant to affinity chromatography on immobilized nucleotides. Biochem. J., 1973, 133(3), 499-506.
[http://dx.doi.org/10.1042/bj1330499] [PMID: 4354739]
[78]
Lunato, A.J.; Wang, J.; Woollard, J.E.; Anisuzzaman, A.K.M.; Ji, W.; Rong, F.G.; Ikeda, S.; Soloway, A.H.; Eriksson, S.; Ives, D.H.; Blue, T.E.; Tjarks, W. Synthesis of 5-(carboranylalkylmercapto)-2′-deoxyuridines and 3-(carboranylalkyl)thymidines and their evaluation as substrates for human thymidine kinases 1 and 2. J. Med. Chem., 1999, 42(17), 3378-3389.
[http://dx.doi.org/10.1021/jm990125i] [PMID: 10464024]
[79]
Tjarks, W.; Wang, J.; Chandra, S.; Ji, W.; Zhuo, J.; Lunato, A.J.; Boyer, C.; Li, Q.; Usova, E.V.; Eriksson, S.; Morrison, G.H.; Cosquer, G.Y. Synthesis and biological evaluation of boronated nucleosides for boron neutron capture therapy (BNCT) of cancer. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 695-698.
[http://dx.doi.org/10.1081/NCN-100002353] [PMID: 11563094]
[80]
Tiwari, R.; Toppino, A.; Agarwal, H.K.; Huo, T.; Byun, Y.; Gallucci, J.; Hasabelnaby, S.; Khalil, A.; Goudah, A.; Baiocchi, R.A.; Darby, M.V.; Barth, R.F.; Tjarks, W. Synthesis, biological evaluation, and radioiodination of halogenated closo-carboranylthymidine analogues. Inorg. Chem., 2012, 51(1), 629-639.
[http://dx.doi.org/10.1021/ic202150b] [PMID: 22175713]
[81]
Yamamoto, K.; Endo, Y. Utility of boron clusters for drug design. Hansch–fujita hydrophobic parameters π of dicarba-closo-dodecaboranyl groups. Bioorg. Med. Chem. Lett., 2001, 11(17), 2389-2392.
[http://dx.doi.org/10.1016/S0960-894X(01)00438-3] [PMID: 11527738]
[82]
Johnsamuel, J.; Lakhi, N.; Al-Madhoun, A.S.; Byun, Y.; Yan, J.; Eriksson, S.; Tjarks, W. Synthesis of ethyleneoxide modified 3-carboranyl thymidine analogues and evaluation of their biochemical, physicochemical, and structural properties. Bioorg. Med. Chem., 2004, 12(18), 4769-4781.
[http://dx.doi.org/10.1016/j.bmc.2004.07.032] [PMID: 15336255]
[83]
Thirumamagal, B.T.S.; Johnsamuel, J.; Cosquer, G.Y.; Byun, Y.; Yan, J.; Narayanasamy, S.; Tjarks, W.; Barth, R.F.; Al-Madhoun, A.S.; Eriksson, S. Boronated thymidine analogues for boron neutron capture therapy. Nucleosides Nucleotides Nucleic Acids, 2006, 25(8), 861-866.
[http://dx.doi.org/10.1080/15257770600793844] [PMID: 16901817]
[84]
Narayanasamy, S.; Thirumamagal, B.T.S.; Johnsamuel, J.; Byun, Y.; Al-Madhoun, A.S.; Usova, E.; Cosquer, G.Y.; Yan, J.; Bandyopadhyaya, A.K.; Tiwari, R.; Eriksson, S.; Tjarks, W. Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer. Bioorg. Med. Chem., 2006, 14(20), 6886-6899.
[http://dx.doi.org/10.1016/j.bmc.2006.06.039] [PMID: 16831554]
[85]
Johnsamuel, J.; Eriksson, S.; Oliveira, M.; Tjarks, W. Docking simulation with a purine nucleoside specific homology model of deoxycytidine kinase, a target enzyme for anticancer and antiviral therapy. Bioorg. Med. Chem., 2005, 13(13), 4160-4167.
[http://dx.doi.org/10.1016/j.bmc.2005.04.037] [PMID: 15876539]
[86]
Byun, Y.; Yan, J.; Al-Madhoun, A.S.; Johnsamuel, J.; Yang, W.; Barth, R.F.; Eriksson, S.; Tjarks, W. The synthesis and biochemical evaluation of thymidine analogues substituted with nido carborane at the N-3 position. Appl. Radiat. Isot., 2004, 61(5), 1125-1130.
[http://dx.doi.org/10.1016/j.apradiso.2004.05.023] [PMID: 15308203]
[87]
Tjarks, W.; Ghaneolhosseini, H.; Henssen, C.L.A.; Malmquist, J.; Sjöberg, S. Synthesis of para- and nido-carboranyl phenanthridinium compounds for neutron capture therapy. Tetrahedron Lett., 1996, 37(38), 6905-6908.
[http://dx.doi.org/10.1016/0040-4039(96)01512-2]
[88]
Fox, M.A.; Wade, K. Deboronation of 9-substituted-ortho- and -meta-carboranes. J. Organomet. Chem., 1999, 573(1-2), 279-291.
[http://dx.doi.org/10.1016/S0022-328X(98)00881-X]
[89]
Byun, Y.; Yan, J.; Al-Madhoun, A.S.; Johnsamuel, J.; Yang, W.; Barth, R.F.; Eriksson, S.; Tjarks, W. Synthesis and biological evaluation of neutral and zwitterionic 3-carboranyl thymidine analogues for boron neutron capture therapy. J. Med. Chem., 2005, 48(4), 1188-1198.
[http://dx.doi.org/10.1021/jm0491896] [PMID: 15715485]
[90]
Wojtczak, B.A.; Andrysiak, A.; Grüner, B.; Lesnikowski, Z.J. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chemistry, 2008, 14(34), 10675-10682.
[http://dx.doi.org/10.1002/chem.200801053] [PMID: 18942698]
[91]
Semioshkin, A.; Laskova, J.; Wojtczak, B.; Andrysiak, A.; Godovikov, I.; Bregadze, V.; Lesnikowski, Z.J. Synthesis of closo-dodecaborate based nucleoside conjugates.J. Organomet. Chem., 2009, 694(9-10), 1375-1379.
[http://dx.doi.org/10.1016/j.jorganchem.2008.12.024]
[92]
Padwa, A. Ed. 1,3-Dipolar Cycloaddition Chemistry; John Wiley and Sons, 1984, 1, p. 817.
[93]
Agarwal, H.K.; McElroy, C.A.; Sjuvarsson, E.; Eriksson, S.; Darby, M.V.; Tjarks, W. Synthesis of N3-substituted carboranyl thymidine bioconjugates and their evaluation as substrates of recombinant human thymidine kinase 1. Eur. J. Med. Chem., 2013, 60, 456-468.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.041] [PMID: 23318906]
[94]
Agarwal, H.K.; Khalil, A.; Ishita, K.; Yang, W.; Nakkula, R.J.; Wu, L.C.; Ali, T.; Tiwari, R.; Byun, Y.; Barth, R.F.; Tjarks, W. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer. Eur. J. Med. Chem., 2015, 100, 197-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.042] [PMID: 26087030]
[95]
Wojtczak, B.A.; Olejniczak, A.B.; Wang, L.; Eriksson, S.; Lesnikowski, Z.J. Phosphorylation of nucleoside-metallacarborane and carborane conjugates by nucleoside kinases. Nucleosides Nucleotides Nucleic Acids, 2013, 32(10), 571-588.
[http://dx.doi.org/10.1080/15257770.2013.838259] [PMID: 24124690]
[96]
Hasabelnaby, S.; Goudah, A.; Agarwal, H.K.; Abd alla, M.S.M.; Tjarks, W. Synthesis, chemical and enzymatic hydrolysis, and aqueous solubility of amino acid ester prodrugs of 3-carboranyl thymidine analogs for boron neutron capture therapy of brain tumors. Eur. J. Med. Chem., 2012, 55, 325-334.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.033] [PMID: 22889558]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy