Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Numerical Investigation on Effect of Bubbles Arrangement and Volume Fraction on Apparent Viscosity of Bubbly Suspensions

Author(s): Zheng Jia, Mingjun Pang* and Ruipeng Niu

Volume 16, Issue 4, 2023

Published on: 10 October, 2023

Page: [285 - 304] Pages: 20

DOI: 10.2174/0124055204268474230922054143

Price: $65

Abstract

Background: Bubbly suspensions can be often run into in natural and industrial processes. The addition of bubbles with different sizes can lead to a significant change in the rheological properties of a matrix liquid. It is extremely significant to fully understand the rheological properties of bubbly suspensions for improving process efficiencies and optimizing productive processes.

Objective: The objective of this study is to explore qualitatively the physical law and internal mechanism of the apparent viscosity of suspensions formed by a Newtonian liquid containing different bubbles.

Methods: Based on the parallel plate model of shear flow, the volume of fluid method (VOF) was used to investigate the effect of bubble arrangement and volume fraction on the apparent viscosity of bubbly suspensions at low volume fractions. The piecewise linear interface calculation (PLIC) method was applied to reconstruct the interface based on the phase function.

Results: The present results show that the relative viscosity (ηr) of bubbly suspensions shows a nonlinear change with an increase in bubble volume fraction (Φ). When the capillary number (Ca) is less than 0.6, ηr shows a nonlinear increase with an increase in Φ (ηr increases from 1 to 1.03 with an increase in Φ from 0 to 2.94% at Ca=0.1). However, Ca is greater than or equal to 0.6, ηr shows a nonlinear decrease with an increase in Φ (ηr decreases from 1 to 0.92 with an increase in Φ from 0 to 2.94% at Ca=2.5). Even if Φ is the same, different arrangements of bubbles can lead to different magnitudes of apparent viscosity of bubbly suspensions.

Conclusion: As Φ increases, the region of low shear rate increases, which leads to a non−linear decrease in the relative viscosity. When Φ is the same, the different arrangements of bubbles can lead to different effects on bubble dynamics and flow fields. This results in different viscous dissipation in bubbly suspensions. Thus, the apparent viscosity of bubbly suspensions is different.

« Previous
Graphical Abstract

[1]
Pal R. Fundamental Rheology of disperse systems based on single-particle mechanics. Fluids 2016; 1(4): 40.
[http://dx.doi.org/10.3390/fluids1040040]
[2]
Mader HM, Llewellin EW, Mueller SP. The rheology of two-phase magmas: A review and analysis. J Volcanol Geotherm Res 2013; 257: 135-58.
[http://dx.doi.org/10.1016/j.jvolgeores.2013.02.014]
[3]
Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys 1906; 324(2): 289-306.
[http://dx.doi.org/10.1002/andp.19063240204]
[4]
Einstein A. Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Ann Phys 1911; 339(3): 591-2.
[http://dx.doi.org/10.1002/andp.19113390313]
[5]
Taylor GI. The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond, A Contain Pap Math Phys Character 1932; 138(834): 41-8.
[http://dx.doi.org/10.1098/rspa.1932.0169]
[6]
Oldroyd JG. The elastic and viscous properties of emulsions and suspensions. Proc R Soc Lond A Math Phys Sci 1953; 218(1132): 122-32.
[http://dx.doi.org/10.1098/rspa.1953.0092]
[7]
Frankel NA, Acrivos A. The constitutive equation for a dilute emulsion. J Fluid Mech 1970; 44(1): 65-78.
[http://dx.doi.org/10.1017/S0022112070001696]
[8]
Pal R. Rheological constitutive equation for bubbly suspensions. Ind Eng Chem Res 2004; 43(17): 5372-9.
[http://dx.doi.org/10.1021/ie040011r]
[9]
Tran-Duc T, Phan-Thien N, Cheong Khoo B. Rheology of bubble suspensions using dissipative particle dynamics. Part I: A hard-core DPD particle model for gas bubbles. J Rheol (NYNY) 2013; 57(6): 1715-37.
[http://dx.doi.org/10.1122/1.4824387]
[10]
Gus’kov OB. On the effective viscosity of a dilute suspension of rigid spherical particles. J Appl Math Mech 2015; 79(5): 453-8.
[http://dx.doi.org/10.1016/j.jappmathmech.2016.03.006]
[11]
Truby JM, Mueller SP, Llewellin EW, Mader HM. The rheology of three-phase suspensions at low bubble capillary number. Proc Math Phys Eng Sci 2015; 471(2173): 20140557.
[http://dx.doi.org/10.1098/rspa.2014.0557]
[12]
Stein DJ, Spera FJ. Rheology and microstructure of magmatic emulsions: Theory and experiments. J Volcanol Geotherm Res 1992; 49(1-2): 157-74.
[http://dx.doi.org/10.1016/0377-0273(92)90011-2]
[13]
Rust AC, Manga M. Effects of bubble deformation on the viscosity of dilute suspensions. J Non-Newtonian Fluid Mechanics 2002; 104(1): 53-63.
[http://dx.doi.org/10.1016/S0377-0257(02)00013-7]
[14]
Murai Y, Oiwa H. Increase of effective viscosity in bubbly liquids from transient bubble deformation. Fluid Dyn Res 2008; 40(7-8): 565-75.
[http://dx.doi.org/10.1016/j.fluiddyn.2007.12.009]
[15]
Joh SW, Lee SH, Youn JR. Rheological behavior of polydispersed bubble suspensions in shear flows. Polym Eng Sci 2010; 50(1): 128-37.
[http://dx.doi.org/10.1002/pen.21517]
[16]
Ducloué L, Pitois O, Goyon J, Chateau X, Ovarlez G. Rheological behaviour of suspensions of bubbles in yield stress fluids J. Non-Newton. Fluid Mechan 2015; 215: 31-9.
[http://dx.doi.org/10.1016/j.jnnfm.2014.10.003]
[17]
Torres MD, Hallmark B, Wilson DI. Determination of the shear and extensional rheology of bubbly liquids with a shear-thinning continuous phase. Rheol Acta 2015; 54(6): 461-78.
[http://dx.doi.org/10.1007/s00397-014-0832-9]
[18]
Tasaka Y, Kimura T, Murai Y. Estimating the effective viscosity of bubble suspensions in oscillatory shear flows by means of ultrasonic spinning rheometry. Exp Fluids 2015; 56(1): 1867.
[http://dx.doi.org/10.1007/s00348-014-1867-5]
[19]
Pistone M, Cordonnier B, Ulmer P, Caricchi L. Rheological flow laws for multiphase magmas: An empirical approach. J Volcanol Geotherm Res 2016; 321: 158-70.
[http://dx.doi.org/10.1016/j.jvolgeores.2016.04.029]
[20]
Morini R, Chateau X, Ovarlez G, Pitois O, Tocquer L. Steady shear viscosity of semi-dilute bubbly suspensions. J. Non-Newton. Fluid Mechan 2019; 264: 16-24.
[http://dx.doi.org/10.1016/j.jnnfm.2018.12.006]
[21]
Lin Y, Wang Y, Weng Z, Pan D, Chen J. Air bubbles play a role in shear thinning of non-colloidal suspensions. Phys Fluids 2021; 33(1): 011702.
[http://dx.doi.org/10.1063/5.0035599]
[22]
Pang M, Zhang S, Niu R. Experimental studies and comparative analyses on apparent viscosity of solid particle, droplet, and bubble suspensions. Recent Innov Chem Eng 2022; 15(4): 287-99.
[http://dx.doi.org/10.2174/2405520416666230102113211]
[23]
Manga M, Castro J, Cashman KV, Loewenberg M. Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 1998; 87(1-4): 15-28.
[http://dx.doi.org/10.1016/S0377-0273(98)00091-2]
[24]
Manga M, Loewenberg M. Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 2001; 105(1-2): 19-24.
[http://dx.doi.org/10.1016/S0377-0273(00)00239-0]
[25]
Pang M, Xu L. Numerical study on the influence of dispersed bubbles on liquid-phase apparent viscosity in two-dimensional parallel plate. Cancer J Chem Eng 2017; 95(6): 1192-201.
[http://dx.doi.org/10.1002/cjce.22747]
[26]
Mitrias C, Jaensson NO, Hulsen MA, Anderson PD. Direct numerical simulation of a bubble suspension in small amplitude oscillatory shear flow. Rheol Acta 2017; 56(6): 555-65.
[http://dx.doi.org/10.1007/s00397-017-1009-0]
[27]
Niu R, Pang M. Numerical study on the effect of gravity levels on apparent viscosity of bubbly suspensions. Microgravity Sci Technol 2020; 32(4): 555-77.
[http://dx.doi.org/10.1007/s12217-020-09792-1]
[28]
Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 1981; 39(1): 201-25.
[http://dx.doi.org/10.1016/0021-9991(81)90145-5]
[29]
Youngs DL. Time-dependent multi-material flow with large fluid distortion. 1982. Available From: https://cir.nii.ac.jp/crid/1570291225736112640
[30]
Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys 1992; 100(2): 335-54.
[http://dx.doi.org/10.1016/0021-9991(92)90240-Y]
[31]
Dang M, Yue J, Chen G. Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction. Chem Eng J 2015; 262: 616-27.
[http://dx.doi.org/10.1016/j.cej.2014.10.017]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy