Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Mitochondrial Dysfunction and Imeglimin: A New Ray of Hope for the Treatment of Type-2 Diabetes Mellitus

Author(s): Jayshree Swain, Pooja Jadhao, S. L. Sravya, Brij Teli, Kasukurti Lavanya, Jaspreet Singh, Abhay Sahoo and Srijit Das*

Volume 24, Issue 17, 2024

Published on: 10 October, 2023

Page: [1575 - 1589] Pages: 15

DOI: 10.2174/0113895575260225230921062013

Price: $65

Abstract

Diabetes is a rapidly growing health challenge and epidemic in many developing countries, including India. India, being the diabetes capital of the world, has the dubious dual distinction of being the leading nations for both undernutrition and overnutrition. Diabetes prevalence has increased in both rural and urban areas, affected the younger population and increased the risk of complications and economic burden. These alarming statistics ring an alarm bell to achieve glycemic targets in the affected population in order to decrease diabetes-related morbidity and mortality. In the recent years, diabetes pathophysiology has been extended from an ominous triad through octet and dirty dozen etc. There is a new scope to target multiple pathways at the molecular level to achieve a better glycemic target and further prevent micro- and macrovascular complications. Mitochondrial dysfunction has a pivotal role in both β-cell failure and insulin resistance. Hence, targeting this molecular pathway may help with both insulin secretion and peripheral tissue sensitization to insulin. Imeglimin is the latest addition to our anti-diabetic armamentarium. As imeglimin targets, this root cause of defective energy metabolism and insulin resistance makes it a new add-on therapy in different diabetic regimes to achieve the proper glycemic targets. Its good tolerability and efficacy profiles in recent studies shows a new ray of hope in the journey to curtail diabetes-related morbidity.

[1]
World Health Organization Global action plan for the prevention and control of noncommunicable diseases 2013–2020; World Health Organization: Geneva, 2013.
[2]
International Diabetes Federation IDF Diabetes Atlas, 8th ed; International Diabetes Federation: Brussels, Belgium, 2017.
[3]
IDF Diabetes Atlas 2021 10th edition, 2021. Available from: https://diabetesatlas.org/atlas/tenth-edition/ (Accessed on: January 17, 2022).
[4]
King, H.; Aubert, R.E.; Herman, W.H. Global Burden of Diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care, 1998, 21(9), 1414-1431.
[http://dx.doi.org/10.2337/diacare.21.9.1414] [PMID: 9727886]
[5]
Green, A.; Hede, S.M.; Patterson, C.C.; Wild, S.H.; Imperatore, G.; Roglic, G.; Beran, D. Type 1 diabetes in 2017: Global estimates of incident and prevalent cases in children and adults. Diabetologia, 2021, 64(12), 2741-2750.
[http://dx.doi.org/10.1007/s00125-021-05571-8] [PMID: 34599655]
[6]
Viswanathan, Mohan Initiation and intensification of insulin therapy in type 2 diabetes mellitus: Physician barriers and solutions – An Indian perspective. Endocrinol. Metab., 2021, 4, 100103.
[http://dx.doi.org/10.1016/j.endmts.2021.100103]
[7]
Anjana, R.M.; Pradeepa, R.; Deepa, M.; Datta, M.; Sudha, V.; Unnikrishnan, R.; Nath, L.M.; Das, A.K.; Madhu, V.; Rao, P.V.; Shukla, D.K.; Kaur, T.; Ali, M.K.; Mohan, V. The Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study: Methodological details. J. Diabetes Sci. Technol., 2011, 5(4), 906-914.
[http://dx.doi.org/10.1177/193229681100500413] [PMID: 21880233]
[8]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[9]
DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of β-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab., 2011, 96(8), 2354-2366.
[http://dx.doi.org/10.1210/jc.2011-0246] [PMID: 21697254]
[10]
DeFronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009, 58(4), 773-795.
[http://dx.doi.org/10.2337/db09-9028] [PMID: 19336687]
[11]
Wilson, D.F. Oxidative phosphorylation: Regulation and role in cellular and tissue metabolism. J. Physiol., 2017, 595(23), 7023-7038.
[http://dx.doi.org/10.1113/JP273839] [PMID: 29023737]
[12]
Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet., 2005, 39(1), 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[13]
Larsson, N.G.; Wang, J.; Wilhelmsson, H.; Oldfors, A.; Rustin, P.; Lewandoski, M.; Barsh, G.S.; Clayton, D.A. Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice. Nat. Genet., 1998, 18(3), 231-236.
[http://dx.doi.org/10.1038/ng0398-231] [PMID: 9500544]
[14]
Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta Bioenerg., 1999, 1410(2), 103-123.
[http://dx.doi.org/10.1016/S0005-2728(98)00161-3] [PMID: 10076021]
[15]
Siekevitz, P. Powerhouse of the Cell. Sci. Am., 1957, 197(1), 131-144.
[http://dx.doi.org/10.1038/scientificamerican0757-131]
[16]
Patti, M.E.; Corvera, S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev., 2010, 31(3), 364-395.
[http://dx.doi.org/10.1210/er.2009-0027] [PMID: 20156986]
[17]
Saraste, M. Oxidative Phosphorylation at the fin de siècle. Science, 1999, 283(5407), 1488-1493.
[http://dx.doi.org/10.1126/science.283.5407.1488] [PMID: 10066163]
[18]
Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun., 2020, 11(1), 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[19]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. (Review) Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[20]
Shadel, G.S.; Horvath, T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell, 2015, 163(3), 560-569.
[http://dx.doi.org/10.1016/j.cell.2015.10.001] [PMID: 26496603]
[21]
Sauer, H.; Wartenberg, M.; Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem., 2001, 11(4), 173-186.
[http://dx.doi.org/10.1159/000047804] [PMID: 11509825]
[22]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[23]
Green, K.; Brand, M.D.; Murphy, M.P. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes, 2004, 53(S1), S110-S118.
[http://dx.doi.org/10.2337/diabetes.53.2007.S110] [PMID: 14749275]
[24]
Skulachev, V.P. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta Bioenerg., 1998, 1363(2), 100-124.
[http://dx.doi.org/10.1016/S0005-2728(97)00091-1] [PMID: 9507078]
[25]
Hamanaka, R.B.; Chandel, N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci., 2010, 35(9), 505-513.
[http://dx.doi.org/10.1016/j.tibs.2010.04.002] [PMID: 20430626]
[26]
Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and reactive oxygen species. Free Radic. Biol. Med., 2009, 47(4), 333-343.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004] [PMID: 19427899]
[27]
Greaves, L.C.; Turnbull, D.M. Mitochondrial DNA mutations and ageing. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(10), 1015-1020.
[http://dx.doi.org/10.1016/j.bbagen.2009.04.018] [PMID: 19409965]
[28]
Kokoszka, J.E.; Waymire, K.G.; Levy, S.E.; Sligh, J.E.; Cai, J.; Jones, D.P.; MacGregor, G.R.; Wallace, D.C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 2004, 427(6973), 461-465.
[http://dx.doi.org/10.1038/nature02229] [PMID: 14749836]
[29]
Finck, B.N.; Kelly, D.P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 2006, 116(3), 615-622.
[http://dx.doi.org/10.1172/JCI27794] [PMID: 16511594]
[30]
Wikstrom, J.D.; Twig, G.; Shirihai, O.S. What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int. J. Biochem. Cell Biol., 2009, 41(10), 1914-1927.
[http://dx.doi.org/10.1016/j.biocel.2009.06.006] [PMID: 19549572]
[31]
Lu, H.; Koshkin, V.; Allister, E.M.; Gyulkhandanyan, A.V.; Wheeler, M.B. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes, 2010, 59(2), 448-459.
[http://dx.doi.org/10.2337/db09-0129] [PMID: 19903739]
[32]
Nicolson, G.L. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr. Med., 2014, 13(4), 35-43.
[PMID: 26770107]
[33]
Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front. Physiol., 2019, 10, 532.
[http://dx.doi.org/10.3389/fphys.2019.00532] [PMID: 31130874]
[34]
Phielix, E.; Schrauwen-Hinderling, V.B.; Mensink, M.; Lenaers, E.; Meex, R.; Hoeks, J.; Kooi, M.E.; Moonen-Kornips, E.; Sels, J.P.; Hesselink, M.K.C.; Schrauwen, P. Lower intrinsic ADPstimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes., 2008, w57(11), 2943-2949.
[http://dx.doi.org/10.2337/db08-0391] [PMID: 18678616]
[35]
Li, R.; Guan, M.X. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol. Cell. Biol., 2010, 30(9), 2147-2154.
[http://dx.doi.org/10.1128/MCB.01614-09] [PMID: 20194621]
[36]
Hales, C.N.; Barker, D.J.P. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 1992, 35(7), 595-601.
[http://dx.doi.org/10.1007/BF00400248] [PMID: 1644236]
[37]
Fisher, B.E. Most Unwanted. Environ. Health Perspect., 1999, 107(1), A18-A23.
[http://dx.doi.org/10.2307/3434279] [PMID: 9872725]
[38]
Kwak, S.H.; Park, K.S.; Lee, K.U.; Lee, H.K. Mitochondrial metabolism and diabetes. J. Diabetes Investig., 2010, 1(5), 161-169.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00047.x] [PMID: 24843427]
[39]
Diaz, F.; Moraes, C. Mitochondrial biogenesis and turnover. Cell Calcium, 2008, 44(1), 24-35.
[http://dx.doi.org/10.1016/j.ceca.2007.12.004] [PMID: 18395251]
[40]
Choksi, K.B.; Boylston, W.H.; Rabek, J.P.; Widger, W.R.; Papaconstantinou, J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim. Biophys. Acta Mol. Basis Dis., 2004, 1688(2), 95-101.
[http://dx.doi.org/10.1016/j.bbadis.2003.11.007] [PMID: 14990339]
[41]
Maassen, J.A.; ’t Hart, L.M.; van Essen, E.; Heine, R.J.; Nijpels, G.; Jahangir Tafrechi, R.S.; Raap, A.K.; Janssen, G.M.C.; Lemkes, H.H.P.J. Mitochondrial Diabetes. Diabetes, 2004, 53(S1), S103-S109.
[http://dx.doi.org/10.2337/diabetes.53.2007.S103] [PMID: 14749274]
[42]
Morino, K.; Petersen, K.F.; Dufour, S.; Befroy, D.; Frattini, J.; Shatzkes, N.; Neschen, S.; White, M.F.; Bilz, S.; Sono, S.; Pypaert, M.; Shulman, G.I. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J. Clin. Invest., 2005, 115(12), 3587-3593.
[http://dx.doi.org/10.1172/JCI25151] [PMID: 16284649]
[43]
Cooper, S.A.; Whaley-Connell, A.; Habibi, J.; Wei, Y.; Lastra, G.; Manrique, C.; Stas, S.; Sowers, J.R. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(4), H2009-H2023.
[http://dx.doi.org/10.1152/ajpheart.00522.2007] [PMID: 17586614]
[44]
Smith, S.C., Jr Multiple risk factors for cardiovascular disease and diabetes mellitus. Am. J. Med., 2007, 120(3), S3-S11.
[http://dx.doi.org/10.1016/j.amjmed.2007.01.002] [PMID: 17320520]
[45]
Sowers, J.R. Insulin resistance and hypertension. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(5), H1597-H1602.
[http://dx.doi.org/10.1152/ajpheart.00026.2004] [PMID: 15072967]
[46]
Lowell, B.B.; Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science, 2005, 307(5708), 384-387.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[47]
Rong, J.X.; Qiu, Y.; Hansen, M.K.; Zhu, L.; Zhang, V.; Xie, M.; Okamoto, Y.; Mattie, M.D.; Higashiyama, H.; Asano, S.; Strum, J.C.; Ryan, T.E. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes, 2007, 56(7), 1751-1760.
[http://dx.doi.org/10.2337/db06-1135] [PMID: 17456854]
[48]
Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci., 2005, 102(15), 5618-5623.
[http://dx.doi.org/10.1073/pnas.0501559102] [PMID: 15800038]
[49]
Cross, C.; Halliwell, B.; Borish, E.T.; Pryor, W.A.; Ames, B.N.; Saul, R.L.; McCord, J.M.; Harman, D. Oxygen radicals and human disease. Ann. Intern. Med., 1987, 107(4), 526-545.
[http://dx.doi.org/10.7326/0003-4819-107-4-526] [PMID: 3307585]
[50]
Anderson, E.J.; Lustig, M.E.; Boyle, K.E.; Woodlief, T.L.; Kane, D.A.; Lin, C.T.; Price, J.W., III; Kang, L.; Rabinovitch, P.S.; Szeto, H.H.; Houmard, J.A.; Cortright, R.N.; Wasserman, D.H.; Neufer, P.D. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest., 2009, 119(3), 573-581.
[http://dx.doi.org/10.1172/JCI37048] [PMID: 19188683]
[51]
Rabøl, R.; Højberg, P.M.; Almdal, T.; Boushel, R.; Haugaard, S.B.; Madsbad, S.; Dela, F. Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J. Clin. Endocrinol. Metab., 2009, 94, 1372-1378.
[52]
Krebs, M.; Roden, M. Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes. Metab., 2005, 7(6), 621-632.
[http://dx.doi.org/10.1111/j.1463-1326.2004.00439.x] [PMID: 16219006]
[53]
Duncan, J.G.; Fong, J.L.; Medeiros, D.M.; Finck, B.N.; Kelly, D.P. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation, 2007, 115(7), 909-917.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.662296] [PMID: 17261654]
[54]
Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; Spiegelman, B.M. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98(1), 115-124.
[http://dx.doi.org/10.1016/S0092-8674(00)80611-X] [PMID: 10412986]
[55]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[56]
Ide, T.; Tsutsui, H.; Kinugawa, S.; Utsumi, H.; Kang, D.; Hattori, N.; Uchida, K.; Arimura, K.; Egashira, K.; Takeshita, A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res., 1999, 85(4), 357-363.
[http://dx.doi.org/10.1161/01.RES.85.4.357] [PMID: 10455064]
[57]
Brown, G.C.; Borutaite, V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion, 2012, 12(1), 1-4.
[http://dx.doi.org/10.1016/j.mito.2011.02.001] [PMID: 21303703]
[58]
Simmons, E.C.; Scholpa, N.E.; Schnellmann, R.G. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp. Neurol., 2020, 329, 113309.
[http://dx.doi.org/10.1016/j.expneurol.2020.113309] [PMID: 32289315]
[59]
Ward, W.K.; Beard, J.C.; Porte, D. Jr Clinical aspects of islet B-cell function in non-insulin-dependent diabetes mellitus. Diabetes Metab. Rev., 1986, 2(3-4), 297-313.
[http://dx.doi.org/10.1002/dmr.5610020305] [PMID: 3527617]
[60]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol., 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[61]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[62]
Kalra, S.; Chawla, R.; Madhu, S.V. The dirty dozen of diabetes. Indian J. Endocrinol. Metab., 2013, 17(3), 367-369.
[http://dx.doi.org/10.4103/2230-8210.111593] [PMID: 23869290]
[63]
Leahy, J.L. Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res., 2005, 36(3), 197-209.
[http://dx.doi.org/10.1016/j.arcmed.2005.01.003] [PMID: 15925010]
[64]
Ma, Z.A.; Zhao, Z.; Turk, J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/703538] [PMID: 22110477]
[65]
Ježek, P.; Hlavatá, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol., 2005, 37(12), 2478-2503.
[http://dx.doi.org/10.1016/j.biocel.2005.05.013] [PMID: 16103002]
[66]
Anello, M.; Lupi, R.; Spampinato, D.; Piro, S.; Masini, M.; Boggi, U.; Del Prato, S.; Rabuazzo, A.M.; Purrello, F.; Marchetti, P. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia, 2005, 48(2), 282-289.
[http://dx.doi.org/10.1007/s00125-004-1627-9] [PMID: 15654602]
[67]
Patanè, G.; Anello, M.; Piro, S.; Vigneri, R.; Purrello, F.; Rabuazzo, A.M. Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-γ inhibition. Diabetes, 2002, 51(9), 2749-2756.
[http://dx.doi.org/10.2337/diabetes.51.9.2749] [PMID: 12196468]
[68]
Maechler, P.; Wollheim, C.B. Mitochondrial function in normal and diabetic β-cells. Nature, 2001, 414(6865), 807-812.
[http://dx.doi.org/10.1038/414807a] [PMID: 11742413]
[69]
Sha, W.; Hu, F.; Bu, S. Mitochondrial dysfunction and pancreatic islet β cell failure. (Review) Exp. Ther. Med., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/etm.2020.9396] [PMID: 33199991]
[70]
Ballinger, S.W.; Shoffner, J.M.; Hedaya, E.V.; Trounce, I.; Polak, M.A.; Koontz, D.A.; Wallace, D.C. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat. Genet., 1992, 1(1), 11-15.
[http://dx.doi.org/10.1038/ng0492-11] [PMID: 1301992]
[71]
Kim, J.; Wei, Y.; Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res., 2008, 102(4), 401-414.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.165472] [PMID: 18309108]
[72]
Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol., 2014, 6(1), a009191.
[http://dx.doi.org/10.1101/cshperspect.a009191] [PMID: 24384568]
[73]
Itani, S.I.; Ruderman, N.B.; Schmieder, F.; Boden, G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-α. Diabetes, 2002, 51(7), 2005-2011.
[http://dx.doi.org/10.2337/diabetes.51.7.2005] [PMID: 12086926]
[74]
Hallakou-Bozec, S.; Kergoat, M.; Fouqueray, P.; Bolze, S.; Moller, D.E. Imeglimin amplifies glucose-stimulated insulin release from diabetic islets via a distinct mechanism of action. PLoS One, 2021, 16(2), e0241651.
[http://dx.doi.org/10.1371/journal.pone.0241651] [PMID: 33606677]
[75]
Kato, I.; Takasawa, S.; Akabane, A.; Tanaka, O.; Abe, H.; Takamura, T.; Suzuki, Y.; Nata, K.; Yonekura, H.; Yoshimoto, T.; Okamoto, H. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic β cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J. Biol. Chem., 1995, 270(50), 30045-30050.
[http://dx.doi.org/10.1074/jbc.270.50.30045] [PMID: 8530408]
[76]
Vial, G.; Chauvin, M.A.; Bendridi, N.; Durand, A.; Meugnier, E.; Madec, A.M.; Bernoud-Hubac, N.; Pais de Barros, J.P.; Fontaine, É.; Acquaviva, C.; Hallakou-Bozec, S.; Bolze, S.; Vidal, H.; Rieusset, J. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes, 2015, 64(6), 2254-2264.
[http://dx.doi.org/10.2337/db14-1220] [PMID: 25552598]
[77]
Detaille, D.; Vial, G.; Borel, A-L.; Cottet-Rouselle, C.; Hallakou-Bozec, S.; Bolze, S.; Fouqueray, P.; Fontaine, E. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov., 2016, 2(1), 15072.
[http://dx.doi.org/10.1038/cddiscovery.2015.72] [PMID: 27551496]
[78]
Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J., 2000, 348(3), 607-614.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[79]
Hallakou-Bozec, S.; Vial, G.; Kergoat, M.; Fouqueray, P.; Bolze, S.; Borel, A.L.; Fontaine, E.; Moller, D.E. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes. Metab., 2021, 23(3), 664-673.
[http://dx.doi.org/10.1111/dom.14277] [PMID: 33269554]
[80]
Pirags, V.; Lebovitz, H.; Fouqueray, P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes. Metab., 2012, 14(9), 852-858.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01611.x] [PMID: 22519919]
[81]
Giruzzi, M. Imeglimin. Clin. Diabetes, 2021, 39(4), 439-440.
[http://dx.doi.org/10.2337/cd21-0085] [PMID: 34866787]
[82]
Fouqueray, P.; Leverve, X.; Fontaine, E.; Baquié, M.; Wollheim, C.; Lebovitz, H.; Bozec, S. Imeglimin - A new oral anti-diabetic that targets the three key defects of type 2 diabetes. J. Diabetes Metab., 2011, 2(4), 126.
[http://dx.doi.org/10.4172/2155-6156.1000126]
[83]
Theurey, P.; Vial, G.; Fontaine, E.; Monternier, P.A.; Fouqueray, P.; Bolze, S.; Moller, D.E.; Hallakou-Bozec, S. Reduced lactic acidosis risk with Imeglimin: Comparison with Metformin. Physiol. Rep., 2022, 10(5), e15151.
[http://dx.doi.org/10.14814/phy2.15151] [PMID: 35274817]
[84]
Raczyńska, E.D.; Gal, J.F.; Maria, P.C.; Fontaine-Vive, F. Biguanide antidiabetic drugs: Imeglimin exhibits higher proton basicity but smaller lithium-cation basicity than metformin in vacuo. ACS Omega, 2018, 3(12), 17842-17852.
[http://dx.doi.org/10.1021/acsomega.8b02507]
[85]
Nowak, M.; Grzeszczak, W. Imeglimin: A new antidiabetic drug with potential future in the treatment of patients with type 2 diabetes. Endokrynol. Pol., 2022, 73(2), 361-370.
[http://dx.doi.org/10.5603/EP.a2022.0014] [PMID: 35381095]
[86]
Konkwo, C.; Perry, R.J. Imeglimin: Current development and future potential in type 2 diabetes. Drugs, 2021, 81(2), 185-190.
[http://dx.doi.org/10.1007/s40265-020-01434-5] [PMID: 33247829]
[87]
Fauzi, M.; Murakami, T.; Fujimoto, H.; Botagarova, A.; Sakaki, K.; Kiyobayashi, S.; Ogura, M.; Inagaki, N. Preservation effect of imeglimin on pancreatic β-cell mass: Noninvasive evaluation using 111In-exendin-4 SPECT/CT imaging and the perspective of mitochondrial involvements. Front. Endocrinol., 2022, 13, 1010825.
[http://dx.doi.org/10.3389/fendo.2022.1010825] [PMID: 36246910]
[88]
Hallakou-Bozec, S.; Kergoat, M.; Moller, D.E.; Bolze, S. Imeglimin preserves islet β‐cell mass in Type 2 diabetic ZDF rats. Endocrinol. Diabetes Metab., 2021, 4(2), e00193.
[http://dx.doi.org/10.1002/edm2.193] [PMID: 33855202]
[89]
Dubourg, J. Clinical evidence to support the safety and efficacy of imeglimin in various populations of patients with type 2 diabetes; , 2023. Available from: https://www.easd.org/media-centre/home.html#!resources/38568
[90]
Johansson, K.S.; Brønden, A.; Knop, F.K.; Christensen, M.B. Clinical pharmacology of imeglimin for the treatment of type 2 diabetes. Expert Opin. Pharmacother., 2020, 21(8), 871-882.
[http://dx.doi.org/10.1080/14656566.2020.1729123]
[91]
Doupis, J.; Baris, N.; Avramidis, K. Imeglimin: A new promising and effective weapon in the treatment of type 2 diabetes. Eur. Endocrinol., 2021, 17(2), 88-91.
[http://dx.doi.org/10.17925/EE.2021.17.2.88] [PMID: 35118453]
[92]
Nomoto, H.; Takahashi, A.; Nakamura, A.; Kurihara, H.; Takeuchi, J.; Nagai, S.; Taneda, S.; Miya, A.; Kameda, H.; Cho, K.Y.; Miyoshi, H.; Atsumi, T. Add-on imeglimin versus metformin dose escalation regarding glycemic control in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor plus low-dose metformin: Study protocol for a multicenter, prospective, randomized, open-label, parallel-group comparison study (MEGMI study). BMJ Open Diabetes Res. Care, 2022, 10(6), e002988.
[http://dx.doi.org/10.1136/bmjdrc-2022-002988] [PMID: 36379585]
[93]
Fouqueray, P.; Chevalier, C.; Bolze, S. Pharmacokinetics of imeglimin in caucasian and japanese healthy subjects. Clin. Drug Investig., 2022, 42(9), 721-732.
[http://dx.doi.org/10.1007/s40261-022-01181-3] [PMID: 35867199]
[94]
Dubourg, J.; Fouqueray, P.; Thang, C.; Grouin, J.M.; Ueki, K. Efficacy and safety of imeglimin monotherapy versus placebo in Japanese patients with type 2 diabetes (TIMES 1): a double-blind, randomized, placebocontrolled, parallel-group, multicenter phase 3 trial. Diabetes Care, 2021, 44(4), 952-959.
[http://dx.doi.org/10.2337/dc20-0763] [PMID: 33574125]
[95]
Dubourg, J.; Fouqueray, P.; Quinslot, D.; Grouin, J.M.; Kaku, K. Long‐term safety and efficacy of imeglimin as monotherapy or in combination with existing antidiabetic agents in Japanese patients with type 2 diabetes (TIMES 2): A 52‐week, open‐label, multicentre phase 3 trial. Diabetes Obes. Metab., 2022, 24(4), 609-619.
[http://dx.doi.org/10.1111/dom.14613] [PMID: 34866306]
[96]
Tomita, Y.; Hansson, E.; Mazuir, F.; Wellhagen, G.J.; Ooi, Q.X.; Mezzalana, E.; Kitamura, A.; Nemoto, D.; Bolze, S. Imeglimin population pharmacokinetics and dose adjustment predictions for renal impairment in Japanese and Western patients with type 2 diabetes. Clin. Transl. Sci., 2022, 15(4), 1014-1026.
[http://dx.doi.org/10.1111/cts.13221] [PMID: 34962074]
[97]
Reilhac, C.; Dubourg, J.; Thang, C.; Grouin, J.M.; Fouqueray, P.; Watada, H. Efficacy and safety of imeglimin add‐on to insulin monotherapy in Japanese patients with type 2 diabetes (TIMES 3): A randomized, double‐blind, placebo‐controlled phase 3 trial with a 36‐week open‐label extension period. Diabetes Obes. Metab., 2022, 24(5), 838-848.
[http://dx.doi.org/10.1111/dom.14642] [PMID: 34984815]
[98]
Oda, T.; Satoh, M.; Nagasawa, K.; Sasaki, A.; Hasegawa, Y.; Takebe, N.; Ishigaki, Y. The effects of imeglimin on the daily glycemic profile evaluated by intermittently scanned continuous glucose monitoring: Retrospective, single-center, observational study. Diabetes Ther., 2022, 13(9), 1635-1643.
[http://dx.doi.org/10.1007/s13300-022-01298-w] [PMID: 35895275]
[99]
Fouqueray, P.; Pirags, V.; Inzucchi, S.E.; Bailey, C.J.; Schernthaner, G.; Diamant, M.; Lebovitz, H.E. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care, 2013, 36(3), 565-568.
[http://dx.doi.org/10.2337/dc12-0453] [PMID: 23160726]
[100]
Fouqueray, P.; Pirags, V.; Diamant, M.; Schernthaner, G.; Lebovitz, H.E.; Inzucchi, S.E.; Bailey, C.J. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care, 2014, 37(7), 1924-1930.
[http://dx.doi.org/10.2337/dc13-2349] [PMID: 24722500]
[101]
Crabtree, T.S.J.; DeFronzo, R.A.; Ryder, R.E.J.; Bailey, C.J. Imeglimin, a novel, first in-class, blood glucose-lowering agent: A systematic review and meta-analysis of clinical evidence. B. J. Diabet., 2020, 20(1), 28-31.
[http://dx.doi.org/10.15277/bjd.2020.247]
[102]
Abdelhaleem, I.A.; Salamah, H.M.; Alsabbagh, F.A.; Eid, A.M.; Hussien, H.M.; Mohamed, N.I.; Ebada, M.A. Efficacy and safety of imeglimin in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized clinical trials. Diabetes Metab. Syndr., 2021, 15(6), 102323.
[http://dx.doi.org/10.1016/j.dsx.2021.102323] [PMID: 34717136]
[103]
Dubourg, J.; Ueki, K.; Grouin, J.M.; Fouqueray, P. Efficacy and safety of imeglimin in Japanese patients with type 2 diabetes: A 24‐week, randomized, double‐blind, placebo‐controlled, dose‐ranging phase 2b trial. Diabetes Obes. Metab., 2021, 23(3), 800-810.
[http://dx.doi.org/10.1111/dom.14285] [PMID: 33275318]
[104]
Theurey, P.; Thang, C.; Pirags, V.; Mari, A.; Pacini, G.; Bolze, S.; Hallakou-Bozec, S.; Fouqueray, P. Phase 2 trial with imeglimin in patients with Type 2 diabetes indicates effects on insulin secretion and sensitivity. Endocrinol. Diabetes Metab., 2022, 5(6), e371.
[http://dx.doi.org/10.1002/edm2.371] [PMID: 36239048]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy