Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Use of SP/Neurokinin-1 as a Therapeutic Target in Colon and Rectal Cancer

In Press, (this is not the final "Version of Record"). Available online 10 October, 2023
Author(s): Desirée Martín-García, Teresa Téllez, Maximino Redondo* and Marilina García-Aranda
Published on: 10 October, 2023

DOI: 10.2174/0109298673261625230924114406

Price: $95

Abstract

Different studies have highlighted the role of Substance P / Neurokinin 1 Receptor (SP/NK-1R) axis in multiple hallmarks of cancer including cell transformation, proliferation, and migration as well as angiogenesis and metastasis of a wide range of solid tumors including colorectal cancer. Until now, the selective high-affinity antagonist of human SP/NK1-R aprepitant (Emend) has been authorized by the Food and Drug Administration as a low dosage medication to manage and treat chemotherapy-induced nausea. However, increasing evidence in recent years support the potential utility of high doses of aprepitant as an antitumor agent and thus, opening the possibility to the pharmacological repositioning of SP/NK1-R antagonists as an adjuvant therapy to conventional cancer treatments. In this review, we summarize current knowledge on the molecular basis of colorectal cancer as well as the pathophysiological importance of SP/NK1-R and the potential utility of SP/NK-1R axis as a therapeutic target in this malignancy.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[3]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[4]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[5]
Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin., 2022, 72(5), 409-436.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[6]
Oncology, A.S.C. Colorectal Cancer. Statistics, 2022.
[8]
García-Osogobio, S.M. Early detection of colorectal cancer. Endoscopy, 2013, 25, 88-91.
[9]
Diaz Tasende, J.; Marín Gabriel, J. Screening for colorectal cancer by fecal occult blood test. Rev. Esp. Enferm. Dig., 2008, 100, 315-319.
[PMID: 18752358]
[10]
Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med., 2020, 9(1), 361-373.
[http://dx.doi.org/10.1002/cam4.2673] [PMID: 31693304]
[11]
Milette, S.; Sicklick, J.K.; Lowy, A.M.; Brodt, P. Molecular pathways: Targeting the microenvironment of liver metastases. Clin. Cancer Res., 2017, 23(21), 6390-6399.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1636] [PMID: 28615370]
[12]
Jin, K.; Gao, W.; Lu, Y.; Lan, H.; Teng, L.; Cao, F. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett., 2012, 3(1), 11-15.
[http://dx.doi.org/10.3892/ol.2011.432] [PMID: 22740847]
[13]
Schirripa, M.; Lenz, H.J. Biomarker in colorectal cancer. Cancer J., 2016, 22(3), 156-164.
[http://dx.doi.org/10.1097/PPO.0000000000000190] [PMID: 27341592]
[14]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[15]
Testa, U.; Pelosi, E.; Castelli, G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. (Basel), 2018, 6(2), 31.
[http://dx.doi.org/10.3390/medsci6020031] [PMID: 29652830]
[16]
Siegel, R.L.; Fedewa, S.A.; Anderson, W.F.; Miller, K.D.; Ma, J.; Rosenberg, P.S.; Jemal, A. Colorectal cancer incidence patterns in the united states, 1974–2013. J. Natl. Cancer Inst., 2017, 109(8), djw322.
[http://dx.doi.org/10.1093/jnci/djw322] [PMID: 28376186]
[17]
Whiffin, N.; Hosking, F.J.; Farrington, S.M.; Palles, C.; Dobbins, S.E.; Zgaga, L.; Lloyd, A.; Kinnersley, B.; Gorman, M.; Tenesa, A.; Broderick, P.; Wang, Y.; Barclay, E.; Hayward, C.; Martin, L.; Buchanan, D.D.; Win, A.K.; Hopper, J.; Jenkins, M.; Lindor, N.M.; Newcomb, P.A.; Gallinger, S.; Conti, D.; Schumacher, F.; Casey, G.; Liu, T.; Campbell, H.; Lindblom, A.; Houlston, R.S.; Tomlinson, I.P.; Dunlop, M.G. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum. Mol. Genet., 2014, 23(17), 4729-4737.
[http://dx.doi.org/10.1093/hmg/ddu177] [PMID: 24737748]
[18]
Hawk, E.T.; Limburg, P.J.; Viner, J.L. Epidemiology and prevention of colorectal cancer. Surg. Clin. North Am., 2002, 82(5), 905-941.
[http://dx.doi.org/10.1016/S0039-6109(02)00046-4] [PMID: 12507200]
[19]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[20]
Bower, J.J.; Vance, L.D.; Psioda, M.; Smith-Roe, S.L.; Simpson, D.A.; Ibrahim, J.G.; Hoadley, K.A.; Perou, C.M.; Kaufmann, W.K. Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer, 2017, 3(1), 9.
[http://dx.doi.org/10.1038/s41523-017-0009-7] [PMID: 28649649]
[21]
Taylor, D.P.; Burt, R.W.; Williams, M.S.; Haug, P.J.; Cannon-Albright, L.A. Population-based family history-specific risks for colorectal cancer: A constellation approach. Gastroenterology, 2010, 138(3), 877-885.
[http://dx.doi.org/10.1053/j.gastro.2009.11.044] [PMID: 19932107]
[22]
Rustgi, A.K. The genetics of hereditary colon cancer. Genes Dev., 2007, 21(20), 2525-2538.
[http://dx.doi.org/10.1101/gad.1593107] [PMID: 17938238]
[23]
Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut, 2001, 48(4), 526-535.
[http://dx.doi.org/10.1136/gut.48.4.526] [PMID: 11247898]
[24]
Gillespie, E.; Leeman, S.E.; Watts, L.A.; Coukos, J.A.; O’Brien, M.J.; Cerda, S.R.; Farraye, F.A.; Stucchi, A.F.; Becker, J.M. Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc. Natl. Acad. Sci., 2011, 108(42), 17420-17425.
[http://dx.doi.org/10.1073/pnas.1114275108] [PMID: 21969570]
[25]
Farraye, F.A.; Odze, R.D.; Eaden, J.; Itzkowitz, S.H.; McCabe, R.P.; Dassopoulos, T.; Lewis, J.D.; Ullman, T.A.; James, T., III; McLeod, R.; Burgart, L.J.; Allen, J.; Brill, J.V. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology, 2010, 138(2), 738-745.
[http://dx.doi.org/10.1053/j.gastro.2009.12.037] [PMID: 20141808]
[26]
Munkholm, P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment. Pharmacol. Ther., 2003, 18(Suppl. 2), 1-5.
[http://dx.doi.org/10.1046/j.1365-2036.18.s2.2.x] [PMID: 12950413]
[27]
Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol., 2014, 20(29), 9872-9881.
[http://dx.doi.org/10.3748/wjg.v20.i29.9872] [PMID: 25110418]
[28]
Isidro, R.A.; Cruz, M.L.; Isidro, A.A.; Baez, A.; Arroyo, A.; González-Marqués, W.A.; González-Keelan, C.; Torres, E.A.; Appleyard, C.B. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia. World J. Gastroenterol., 2015, 21(6), 1749-1758.
[http://dx.doi.org/10.3748/wjg.v21.i6.1749] [PMID: 25684939]
[29]
Nojadeh, J.N.; Behrouz Sharif, S.; Sakhinia, E. Microsatellite instability in colorectal cancer. EXCLI J., 2018, 17, 159-168.
[http://dx.doi.org/10.17179/excli2017-948] [PMID: 29743854]
[30]
Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 335-346.
[http://dx.doi.org/10.1038/nrm1907] [PMID: 16612326]
[31]
Malki, A.; ElRuz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.E. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int. J. Mol. Sci., 2020, 22(1), 130.
[http://dx.doi.org/10.3390/ijms22010130] [PMID: 33374459]
[32]
Poynter, J.N.; Siegmund, K.D.; Weisenberger, D.J.; Long, T.I.; Thibodeau, S.N.; Lindor, N.; Young, J.; Jenkins, M.A.; Hopper, J.L.; Baron, J.A.; Buchanan, D.; Casey, G.; Levine, A.J.; Marchand, L.L.; Gallinger, S.; Bapat, B.; Potter, J.D.; Newcomb, P.A.; Haile, R.W.; Laird, P.W. Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomarkers Prev., 2008, 17(11), 3208-3215.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0512] [PMID: 18990764]
[33]
Battaglin, F.; Naseem, M.; Lenz, H.J.; Salem, M.E. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin. Adv. Hematol. Oncol., 2018, 16(11), 735-745.
[PMID: 30543589]
[34]
Sahin, I.H.; Ciombor, K.K.; Diaz, L.A.; Yu, J.; Kim, R. Immunotherapy for microsatellite stable colorectal cancers: Challenges and novel therapeutic avenues. Am. Soc. Clin. Oncol. Educ. Book, 2022, 42(42), 242-253.
[http://dx.doi.org/10.1200/EDBK_349811] [PMID: 35658496]
[35]
Poulogiannis, G.; Ichimura, K.; Hamoudi, R.A.; Luo, F.; Leung, S.Y.; Yuen, S.T.; Harrison, D.J.; Wyllie, A.H.; Arends, M.J. Prognostic relevance of DNA copy number changes in colorectal cancer. J. Pathol., 2010, 220(3), 338-347.
[http://dx.doi.org/10.1002/path.2640] [PMID: 19911421]
[36]
Silva, A.L.; Dawson, S.N.; Arends, M.J.; Guttula, K.; Hall, N.; Cameron, E.A.; Huang, T.H.M.; Brenton, J.D.; Tavaré, S.; Bienz, M.; Ibrahim, A.E.K. Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer, 2014, 14(1), 891.
[http://dx.doi.org/10.1186/1471-2407-14-891] [PMID: 25432628]
[37]
Fodde, R. The APC gene in colorectal cancer. Eur. J. Cancer, 2002, 38(7), 867-871.
[http://dx.doi.org/10.1016/S0959-8049(02)00040-0] [PMID: 11978510]
[38]
Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767.
[http://dx.doi.org/10.1016/0092-8674(90)90186-I] [PMID: 2188735]
[39]
Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320.
[http://dx.doi.org/10.1016/S0092-8674(00)00122-7] [PMID: 11057903]
[40]
Müller, M.F.; Ibrahim, A.E.K.; Arends, M.J. Molecular pathological classification of colorectal cancer. Virchows Arch., 2016, 469(2), 125-134.
[http://dx.doi.org/10.1007/s00428-016-1956-3] [PMID: 27325016]
[41]
Liao, W.; Overman, M.J.; Boutin, A.T.; Shang, X.; Zhao, D.; Dey, P.; Li, J.; Wang, G.; Lan, Z.; Li, J.; Tang, M.; Jiang, S.; Ma, X.; Chen, P.; Katkhuda, R.; Korphaisarn, K.; Chakravarti, D.; Chang, A.; Spring, D.J.; Chang, Q.; Zhang, J.; Maru, D.M.; Maeda, D.Y.; Zebala, J.A.; Kopetz, S.; Wang, Y.A.; DePinho, R.A. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell, 2019, 35(4), 559-572.e7.
[http://dx.doi.org/10.1016/j.ccell.2019.02.008] [PMID: 30905761]
[42]
de Sánchez, M.T.G. Cáncer colorrectal (CCR). Rev. Colomb. Gastroenterol., 2005, 20, 43-53.
[43]
Gerstung, M.; Jolly, C.; Leshchiner, I.; Dentro, S.C.; Gonzalez, S.; Rosebrock, D.; Mitchell, T.J.; Rubanova, Y.; Anur, P.; Yu, K.; Tarabichi, M.; Deshwar, A.; Wintersinger, J.; Kleinheinz, K.; Vázquez-García, I.; Haase, K.; Jerman, L.; Sengupta, S.; Macintyre, G.; Malikic, S.; Donmez, N.; Livitz, D.G.; Cmero, M.; Demeulemeester, J.; Schumacher, S.; Fan, Y.; Yao, X.; Lee, J.; Schlesner, M.; Boutros, P.C.; Bowtell, D.D.; Zhu, H.; Getz, G.; Imielinski, M.; Beroukhim, R.; Sahinalp, S.C.; Ji, Y.; Peifer, M.; Markowetz, F.; Mustonen, V.; Yuan, K.; Wang, W.; Morris, Q.D.; Dentro, S.C.; Leshchiner, I.; Gerstung, M.; Jolly, C.; Haase, K.; Tarabichi, M.; Wintersinger, J.; Deshwar, A.G.; Yu, K.; Gonzalez, S.; Rubanova, Y.; Macintyre, G.; Adams, D.J.; Anur, P.; Beroukhim, R.; Boutros, P.C.; Bowtell, D.D.; Campbell, P.J.; Cao, S.; Christie, E.L.; Cmero, M.; Cun, Y.; Dawson, K.J.; Demeulemeester, J.; Donmez, N.; Drews, R.M.; Eils, R.; Fan, Y.; Fittall, M.; Garsed, D.W.; Getz, G.; Ha, G.; Imielinski, M.; Jerman, L.; Ji, Y.; Kleinheinz, K.; Lee, J.; Lee-Six, H.; Livitz, D.G.; Malikic, S.; Markowetz, F.; Martincorena, I.; Mitchell, T.J.; Mustonen, V.; Oesper, L.; Peifer, M.; Peto, M.; Raphael, B.J.; Rosebrock, D.; Sahinalp, S.C.; Salcedo, A.; Schlesner, M.; Schumacher, S.; Sengupta, S.; Shi, R.; Shin, S.J.; Spiro, O.; Stein, L.D.; Vázquez-García, I.; Vembu, S.; Wheeler, D.A.; Yang, T-P.; Yao, X.; Yuan, K.; Zhu, H.; Wang, W.; Morris, Q.D.; Spellman, P.T.; Wedge, D.C.; Van Loo, P.; Spellman, P.T.; Wedge, D.C.; Van Loo, P.; Aaltonen, L.A.; Abascal, F.; Abeshouse, A.; Aburatani, H.; Adams, D.J.; Agrawal, N.; Ahn, K.S.; Ahn, S-M.; Aikata, H.; Akbani, R.; Akdemir, K.C.; Al-Ahmadie, H.; Al-Sedairy, S.T.; Al-Shahrour, F.; Alawi, M.; Albert, M.; Aldape, K.; Alexandrov, L.B.; Ally, A.; Alsop, K.; Alvarez, E.G.; Amary, F.; Amin, S.B.; Aminou, B.; Ammerpohl, O.; Anderson, M.J.; Ang, Y.; Antonello, D.; Anur, P.; Aparicio, S.; Appelbaum, E.L.; Arai, Y.; Aretz, A.; Arihiro, K.; Ariizumi, S.; Armenia, J.; Arnould, L.; Asa, S.; Assenov, Y.; Atwal, G.; Aukema, S.; Auman, J.T.; Aure, M.R.R.; Awadalla, P.; Aymerich, M.; Bader, G.D.; Baez-Ortega, A.; Bailey, M.H.; Bailey, P.J.; Balasundaram, M.; Balu, S.; Bandopadhayay, P.; Banks, R.E.; Barbi, S.; Barbour, A.P.; Barenboim, J.; Barnholtz-Sloan, J.; Barr, H.; Barrera, E.; Bartlett, J.; Bartolome, J.; Bassi, C.; Bathe, O.F.; Baumhoer, D.; Bavi, P.; Baylin, S.B.; Bazant, W.; Beardsmore, D.; Beck, T.A.; Behjati, S.; Behren, A.; Niu, B.; Bell, C.; Beltran, S.; Benz, C.; Berchuck, A.; Bergmann, A.K.; Bergstrom, E.N.; Berman, B.P.; Berney, D.M.; Bernhart, S.H.; Beroukhim, R.; Berrios, M.; Bersani, S.; Bertl, J.; Betancourt, M.; Bhandari, V.; Bhosle, S.G.; Biankin, A.V.; Bieg, M.; Bigner, D.; Binder, H.; Birney, E.; Birrer, M.; Biswas, N.K.; Bjerkehagen, B.; Bodenheimer, T.; Boice, L.; Bonizzato, G.; De Bono, J.S.; Boot, A.; Bootwalla, M.S.; Borg, A.; Borkhardt, A.; Boroevich, K.A.; Borozan, I.; Borst, C.; Bosenberg, M.; Bosio, M.; Boultwood, J.; Bourque, G.; Boutros, P.C.; Bova, G.S.; Bowen, D.T.; Bowlby, R.; Bowtell, D.D.L.; Boyault, S.; Boyce, R.; Boyd, J.; Brazma, A.; Brennan, P.; Brewer, D.S.; Brinkman, A.B.; Bristow, R.G.; Broaddus, R.R.; Brock, J.E.; Brock, M.; Broeks, A.; Brooks, A.N.; Brooks, D.; Brors, B.; Brunak, S.; Bruxner, T.J.C.; Bruzos, A.L.; Buchanan, A.; Buchhalter, I.; Buchholz, C.; Bullman, S.; Burke, H.; Burkhardt, B.; Burns, K.H.; Busanovich, J.; Bustamante, C.D.; Butler, A.P.; Butte, A.J.; Byrne, N.J.; Børresen-Dale, A-L.; Caesar-Johnson, S.J.; Cafferkey, A.; Cahill, D.; Calabrese, C.; Caldas, C.; Calvo, F.; Camacho, N.; Campbell, P.J.; Campo, E.; Cantù, C.; Cao, S.; Carey, T.E.; Carlevaro-Fita, J.; Carlsen, R.; Cataldo, I.; Cazzola, M.; Cebon, J.; Cerfolio, R.; Chadwick, D.E.; Chakravarty, D.; Chalmers, D.; Chan, C.W.Y.; Chan, K.; Chan-Seng-Yue, M.; Chandan, V.S.; Chang, D.K.; Chanock, S.J.; Chantrill, L.A.; Chateigner, A.; Chatterjee, N.; Chayama, K.; Chen, H-W.; Chen, J.; Chen, K.; Chen, Y.; Chen, Z.; Cherniack, A.D.; Chien, J.; Chiew, Y-E.; Chin, S-F.; Cho, J.; Cho, S.; Choi, J.K.; Choi, W.; Chomienne, C.; Chong, Z.; Choo, S.P.; Chou, A.; Christ, A.N.; Christie, E.L.; Chuah, E.; Cibulskis, C.; Cibulskis, K.; Cingarlini, S.; Clapham, P.; Claviez, A.; Cleary, S.; Cloonan, N.; Cmero, M.; Collins, C.C.; Connor, A.A.; Cooke, S.L.; Cooper, C.S.; Cope, L.; Corbo, V.; Cordes, M.G.; Cordner, S.M.; Cortés-Ciriano, I.; Covington, K.; Cowin, P.A.; Craft, B.; Craft, D.; Creighton, C.J.; Cun, Y.; Curley, E.; Cutcutache, I.; Czajka, K.; Czerniak, B.; Dagg, R.A.; Danilova, L.; Davi, M.V.; Davidson, N.R.; Davies, H.; Davis, I.J.; Davis-Dusenbery, B.N.; Dawson, K.J.; De La Vega, F.M.; De Paoli-Iseppi, R.; Defreitas, T.; Tos, A.P.D.; Delaneau, O.; Demchok, J.A.; Demeulemeester, J.; Demidov, G.M.; Demircioğlu, D.; Dennis, N.M.; Denroche, R.E.; Dentro, S.C.; Desai, N.; Deshpande, V.; Deshwar, A.G.; Desmedt, C.; Deu-Pons, J.; Dhalla, N.; Dhani, N.C.; Dhingra, P.; Dhir, R.; DiBiase, A.; Diamanti, K.; Ding, L.; Ding, S.; Dinh, H.Q.; Dirix, L.; Doddapaneni, H.V.; Donmez, N.; Dow, M.T.; Drapkin, R.; Drechsel, O.; Drews, R.M.; Serge, S.; Dudderidge, T.; Dueso-Barroso, A.; Dunford, A.J.; Dunn, M.; Dursi, L.J.; Duthie, F.R.; Dutton-Regester, K.; Eagles, J.; Easton, D.F.; Edmonds, S.; Edwards, P.A.; Edwards, S.E.; Eeles, R.A.; Ehinger, A.; Eils, J.; Eils, R.; El-Naggar, A.; Eldridge, M.; Ellrott, K.; Erkek, S.; Escaramis, G.; Espiritu, S.M.G.; Estivill, X.; Etemadmoghadam, D.; Eyfjord, J.E.; Faltas, B.M.; Fan, D.; Fan, Y.; Faquin, W.C.; Farcas, C.; Fassan, M.; Fatima, A.; Favero, F.; Fayzullaev, N.; Felau, I.; Fereday, S.; Ferguson, M.L.; Ferretti, V.; Feuerbach, L.; Field, M.A.; Fink, J.L.; Finocchiaro, G.; Fisher, C.; Fittall, M.W.; Fitzgerald, A.; Fitzgerald, R.C.; Flanagan, A.M.; Fleshner, N.E.; Flicek, P.; Foekens, J.A.; Fong, K.M.; Fonseca, N.A.; Foster, C.S.; Fox, N.S.; Fraser, M.; Frazer, S.; Frenkel-Morgenstern, M.; Friedman, W.; Frigola, J.; Fronick, C.C.; Fujimoto, A.; Fujita, M.; Fukayama, M.; Fulton, L.A.; Fulton, R.S.; Furuta, M.; Futreal, P.A.; Füllgrabe, A.; Gabriel, S.B.; Gallinger, S.; Gambacorti-Passerini, C.; Gao, J.; Gao, S.; Garraway, L.; Garred, Ø.; Garrison, E.; Garsed, D.W.; Gehlenborg, N.; Gelpi, J.L.L.; George, J.; Gerhard, D.S.; Gerhauser, C.; Gershenwald, J.E.; Gerstein, M.; Gerstung, M.; Getz, G.; Ghori, M.; Ghossein, R.; Giama, N.H.; Gibbs, R.A.; Gibson, B.; Gill, A.J.; Gill, P.; Giri, D.D.; Glodzik, D.; Gnanapragasam, V.J.; Goebler, M.E.; Goldman, M.J.; Gomez, C.; Gonzalez, S.; Gonzalez-Perez, A.; Gordenin, D.A.; Gossage, J.; Gotoh, K.; Govindan, R.; Grabau, D.; Graham, J.S.; Grant, R.C.; Green, A.R.; Green, E.; Greger, L.; Grehan, N.; Grimaldi, S.; Grimmond, S.M.; Grossman, R.L.; Grundhoff, A.; Gundem, G.; Guo, Q.; Gupta, M.; Gupta, S.; Gut, I.G.; Gut, M.; Göke, J.; Ha, G.; Haake, A.; Haan, D.; Haas, S.; Haase, K.; Haber, J.E.; Habermann, N.; Hach, F.; Haider, S.; Hama, N.; Hamdy, F.C.; Hamilton, A.; Hamilton, M.P.; Han, L.; Hanna, G.B.; Hansmann, M.; Haradhvala, N.J.; Harismendy, O.; Harliwong, I.; Harmanci, A.O.; Harrington, E.; Hasegawa, T.; Haussler, D.; Hawkins, S.; Hayami, S.; Hayashi, S.; Hayes, D.N.; Hayes, S.J.; Hayward, N.K.; Hazell, S.; He, Y.; Heath, A.P.; Heath, S.C.; Hedley, D.; Hegde, A.M.; Heiman, D.I.; Heinold, M.C.; Heins, Z.; Heisler, L.E.; Hellstrom-Lindberg, E.; Helmy, M.; Heo, S.G.; Hepperla, A.J.; Heredia-Genestar, J.M.; Herrmann, C.; Hersey, P.; Hess, J.M.; Hilmarsdottir, H.; Hinton, J.; Hirano, S.; Hiraoka, N.; Hoadley, K.A.; Hobolth, A.; Hodzic, E.; Hoell, J.I.; Hoffmann, S.; Hofmann, O.; Holbrook, A.; Holik, A.Z.; Hollingsworth, M.A.; Holmes, O.; Holt, R.A.; Hong, C.; Hong, E.P.; Hong, J.H.; Hooijer, G.K.; Hornshøj, H.; Hosoda, F.; Hou, Y.; Hovestadt, V.; Howat, W.; Hoyle, A.P.; Hruban, R.H.; Hu, J.; Hu, T.; Hua, X.; Huang, K.; Huang, M.; Huang, M.N.; Huang, V.; Huang, Y.; Huber, W.; Hudson, T.J.; Hummel, M.; Hung, J.A.; Huntsman, D.; Hupp, T.R.; Huse, J.; Huska, M.R.; Hutter, B.; Hutter, C.M.; Hübschmann, D.; Iacobuzio-Donahue, C.A.; Imbusch, C.D.; Imielinski, M.; Imoto, S.; Isaacs, W.B.; Isaev, K.; Ishikawa, S.; Iskar, M.; Islam, S.M.A.; Ittmann, M.; Ivkovic, S.; Izarzugaza, J.M.G.; Jacquemier, J.; Jakrot, V.; Jamieson, N.B.; Jang, G.H.; Jang, S.J.; Jayaseelan, J.C.; Jayasinghe, R.; Jefferys, S.R.; Jegalian, K.; Jennings, J.L.; Jeon, S-H.; Jerman, L.; Ji, Y.; Jiao, W.; Johansson, P.A.; Johns, A.L.; Johns, J.; Johnson, R.; Johnson, T.A.; Jolly, C.; Joly, Y.; Jonasson, J.G.; Jones, C.D.; Jones, D.R.; Jones, D.T.W.; Jones, N.; Jones, S.J.M.; Jonkers, J.; Ju, Y.S.; Juhl, H.; Jung, J.; Juul, M.; Juul, R.I.; Juul, S.; Jäger, N.; Kabbe, R.; Kahles, A.; Kahraman, A.; Kaiser, V.B.; Kakavand, H.; Kalimuthu, S.; von Kalle, C.; Kang, K.J.; Karaszi, K.; Karlan, B.; Karlić, R.; Karsch, D.; Kasaian, K.; Kassahn, K.S.; Katai, H.; Kato, M.; Katoh, H.; Kawakami, Y.; Kay, J.D.; Kazakoff, S.H.; Kazanov, M.D.; Keays, M.; Kebebew, E.; Kefford, R.F.; Kellis, M.; Kench, J.G.; Kennedy, C.J.; Kerssemakers, J.N.A.; Khoo, D.; Khoo, V.; Khuntikeo, N.; Khurana, E.; Kilpinen, H.; Kim, H.K.; Kim, H-L.; Kim, H-Y.; Kim, H.; Kim, J.; Kim, J.; Kim, J.K.; Kim, Y.; King, T.A.; Klapper, W.; Kleinheinz, K.; Klimczak, L.J.; Knappskog, S.; Kneba, M.; Knoppers, B.M.; Koh, Y.; Komorowski, J.; Komura, D.; Komura, M.; Kong, G.; Kool, M.; Korbel, J.O.; Korchina, V.; Korshunov, A.; Koscher, M.; Koster, R.; Kote-Jarai, Z.; Koures, A.; Kovacevic, M.; Kremeyer, B.; Kretzmer, H.; Kreuz, M.; Krishnamurthy, S.; Kube, D.; Kumar, K.; Kumar, P.; Kumar, S.; Kumar, Y.; Kundra, R.; Kübler, K.; Küppers, R.; Lagergren, J.; Lai, P.H.; Laird, P.W.; Lakhani, S.R.; Lalansingh, C.M.; Lalonde, E.; Lamaze, F.C.; Lambert, A.; Lander, E.; Landgraf, P.; Landoni, L.; Langerød, A.; Lanzós, A.; Larsimont, D.; Larsson, E.; Lathrop, M.; Lau, L.M.S.; Lawerenz, C.; Lawlor, R.T.; Lawrence, M.S.; Lazar, A.J.; Lazic, A.M.; Le, X.; Lee, D.; Lee, D.; Lee, E.A.; Lee, H.J.; Lee, J.J-K.; Lee, J-Y.; Lee, J.; Lee, M.T.M.; Lee-Six, H.; Lehmann, K-V.; Lehrach, H.; Lenze, D.; Leonard, C.R.; Leongamornlert, D.A.; Leshchiner, I.; Letourneau, L.; Letunic, I.; Levine, D.A.; Lewis, L.; Ley, T.; Li, C.; Li, C.H.; Li, H.I.; Li, J.; Li, L.; Li, S.; Li, S.; Li, X.; Li, X.; Li, X.; Li, Y.; Liang, H.; Liang, S-B.; Lichter, P.; Lin, P.; Lin, Z.; Linehan, W.M.; Lingjærde, O.C.; Liu, D.; Liu, E.M.; Liu, F-F.F.; Liu, F.; Liu, J.; Liu, X.; Livingstone, J.; Livitz, D.; Livni, N.; Lochovsky, L.; Loeffler, M.; Long, G.V.; Lopez-Guillermo, A.; Lou, S.; Louis, D.N.; Lovat, L.B.; Lu, Y.; Lu, Y-J.; Lu, Y.; Luchini, C.; Lungu, I.; Luo, X.; Luxton, H.J.; Lynch, A.G.; Lype, L.; López, C.; López-Otín, C.; Ma, E.Z.; Ma, Y.; MacGrogan, G.; MacRae, S.; Macintyre, G.; Madsen, T.; Maejima, K.; Mafficini, A.; Maglinte, D.T.; Maitra, A.; Majumder, P.P.; Malcovati, L.; Malikic, S.; Malleo, G.; Mann, G.J.; Mantovani-Löffler, L.; Marchal, K.; Marchegiani, G.; Mardis, E.R.; Margolin, A.A.; Marin, M.G.; Markowetz, F.; Markowski, J.; Marks, J.; Marques-Bonet, T.; Marra, M.A.; Marsden, L.; Martens, J.W.M.; Martin, S.; Martin-Subero, J.I.; Martincorena, I.; Martinez- Fundichely, A.; Maruvka, Y.E.; Mashl, R.J.; Massie, C.E.; Matthew, T.J.; Matthews, L.; Mayer, E.; Mayes, S.; Mayo, M.; Mbabaali, F.; McCune, K.; McDermott, U.; McGillivray, P.D.; McLellan, M.D.; McPherson, J.D.; McPherson, J.R.; McPherson, T.A.; Meier, S.R.; Meng, A.; Meng, S.; Menzies, A.; Merrett, N.D.; Merson, S.; Meyerson, M.; Meyerson, W.; Mieczkowski, P.A.; Mihaiescu, G.L.; Mijalkovic, S.; Mikkelsen, T.; Milella, M.; Mileshkin, L.; Miller, C.A.; Miller, D.K.; Miller, J.K.; Mills, G.B.; Milovanovic, A.; Minner, S.; Miotto, M.; Arnau, G.M.; Mirabello, L.; Mitchell, C.; Mitchell, T.J.; Miyano, S.; Miyoshi, N.; Mizuno, S.; Molnár-Gábor, F.; Moore, M.J.; Moore, R.A.; Morganella, S.; Morris, Q.D.; Morrison, C.; Mose, L.E.; Moser, C.D.; Muiños, F.; Mularoni, L.; Mungall, A.J.; Mungall, K.; Musgrove, E.A.; Mustonen, V.; Mutch, D.; Muyas, F.; Muzny, D.M.; Muñoz, A.; Myers, J.; Myklebost, O.; Möller, P.; Nagae, G.; Nagrial, A.M.; Nahal- Bose, H.K.; Nakagama, H.; Nakagawa, H.; Nakamura, H.; Nakamura, T.; Nakano, K.; Nandi, T.; Nangalia, J.; Nastic, M.; Navarro, A.; Navarro, F.C.P.; Neal, D.E.; Nettekoven, G.; Newell, F.; Newhouse, S.J.; Newton, Y.; Ng, A.W.T.; Ng, A.; Nicholson, J.; Nicol, D.; Nie, Y.; Nielsen, G.P.; Nielsen, M.M.; Nik-Zainal, S.; Noble, M.S.; Nones, K.; Northcott, P.A.; Notta, F.; O’Connor, B.D.; O’Donnell, P.; O’Donovan, M.; O’Meara, S.; O’Neill, B.P.; O’Neill, J.R.; Ocana, D.; Ochoa, A.; Oesper, L.; Ogden, C.; Ohdan, H.; Ohi, K.; Ohno-Machado, L.; Oien, K.A.; Ojesina, A.I.; Ojima, H.; Okusaka, T.; Omberg, L.; Ong, C.K.; Ossowski, S.; Ott, G.; Ouellette, B.F.F.; P’ng, C.; Paczkowska, M.; Paiella, S.; Pairojkul, C.; Pajic, M.; Pan-Hammarström, Q.; Papaemmanuil, E.; Papatheodorou, I.; Paramasivam, N.; Park, J.W.; Park, J-W.; Park, K.; Park, K.; Park, P.J.; Parker, J.S.; Parsons, S.L.; Pass, H.; Pasternack, D.; Pastore, A.; Patch, A-M.; Pauporté, I.; Pea, A.; Pearson, J.V.; Pedamallu, C.S.; Pedersen, J.S.; Pederzoli, P.; Peifer, M.; Pennell, N.A.; Perou, C.M.; Perry, M.D.; Petersen, G.M.; Peto, M.; Petrelli, N.; Petryszak, R.; Pfister, S.M.; Phillips, M.; Pich, O.; Pickett, H.A.; Pihl, T.D.; Pillay, N.; Pinder, S.; Pinese, M.; Pinho, A.V.; Pitkänen, E.; Pivot, X.; Piñeiro-Yáñez, E.; Planko, L.; Plass, C.; Polak, P.; Pons, T.; Popescu, I.; Potapova, O.; Prasad, A.; Preston, S.R.; Prinz, M.; Pritchard, A.L.; Prokopec, S.D.; Provenzano, E.; Puente, X.S.; Puig, S.; Puiggròs, M.; Pulido-Tamayo, S.; Pupo, G.M.; Purdie, C.A.; Quinn, M.C.; Rabionet, R.; Rader, J.S.; Radlwimmer, B.; Radovic, P.; Raeder, B.; Raine, K.M.; Ramakrishna, M.; Ramakrishnan, K.; Ramalingam, S.; Raphael, B.J.; Rathmell, W.K.; Rausch, T.; Reifenberger, G.; Reimand, J.; Reis-Filho, J.; Reuter, V.; Reyes-Salazar, I.; Reyna, M.A.; Reynolds, S.M.; Rheinbay, E.; Riazalhosseini, Y.; Richardson, A.L.; Richter, J.; Ringel, M.; Ringnér, M.; Rino, Y.; Rippe, K.; Roach, J.; Roberts, L.R.; Roberts, N.D.; Roberts, S.A.; Robertson, A.G.; Robertson, A.J.; Rodriguez, J.B.; Rodriguez-Martin, B.; Rodríguez-González, F.G.; Roehrl, M.H.A.; Rohde, M.; Rokutan, H.; Romieu, G.; Rooman, I.; Roques, T.; Rosebrock, D.; Rosenberg, M.; Rosenstiel, P.C.; Rosenwald, A.; Rowe, E.W.; Royo, R.; Rozen, S.G.; Rubanova, Y.; Rubin, M.A.; Rubio-Perez, C.; Rudneva, V.A.; Rusev, B.C.; Ruzzenente, A.; Rätsch, G.; Sabarinathan, R.; Sabelnykova, V.Y.; Sadeghi, S.; Sahinalp, S.C.; Saini, N.; Saito-Adachi, M.; Saksena, G.; Salcedo, A.; Salgado, R.; Salichos, L.; Sallari, R.; Saller, C.; Salvia, R.; Sam, M.; Samra, J.S.; Sanchez-Vega, F.; Sander, C.; Sanders, G.; Sarin, R.; Sarrafi, I.; Sasaki-Oku, A.; Sauer, T.; Sauter, G.; Saw, R.P.M.; Scardoni, M.; Scarlett, C.J.; Scarpa, A.; Scelo, G.; Schadendorf, D.; Schein, J.E.; Schilhabel, M.B.; Schlesner, M.; Schlomm, T.; Schmidt, H.K.; Schramm, S-J.; Schreiber, S.; Schultz, N.; Schumacher, S.E.; Schwarz, R.F.; Scolyer, R.A.; Scott, D.; Scully, R.; Seethala, R.; Segre, A.V.; Selander, I.; Semple, C.A.; Senbabaoglu, Y.; Sengupta, S.; Sereni, E.; Serra, S.; Sgroi, D.C.; Shackleton, M.; Shah, N.C.; Shahabi, S.; Shang, C.A.; Shang, P.; Shapira, O.; Shelton, T.; Shen, C.; Shen, H.; Shepherd, R.; Shi, R.; Shi, Y.; Shiah, Y-J.; Shibata, T.; Shih, J.; Shimizu, E.; Shimizu, K.; Shin, S.J.; Shiraishi, Y.; Shmaya, T.; Shmulevich, I.; Shorser, S.I.; Short, C.; Shrestha, R.; Shringarpure, S.S.; Shriver, C.; Shuai, S.; Sidiropoulos, N.; Siebert, R.; Sieuwerts, A.M.; Sieverling, L.; Signoretti, S.; Sikora, K.O.; Simbolo, M.; Simon, R.; Simons, J.V.; Simpson, J.T.; Simpson, P.T.; Singer, S.; Sinnott-Armstrong, N.; Sipahimalani, P.; Skelly, T.J.; Smid, M.; Smith, J.; Smith-McCune, K.; Socci, N.D.; Sofia, H.J.; Soloway, M.G.; Song, L.; Sood, A.K.; Sothi, S.; Sotiriou, C.; Soulette, C.M.; Span, P.N.; Spellman, P.T.; Sperandio, N.; Spillane, A.J.; Spiro, O.; Spring, J.; Staaf, J.; Stadler, P.F.; Staib, P.; Stark, S.G.; Stebbings, L.; Stefánsson, Ó.A.; Stegle, O.; Stein, L.D.; Stenhouse, A.; Stewart, C.; Stilgenbauer, S.; Stobbe, M.D.; Stratton, M.R.; Stretch, J.R.; Struck, A.J.; Stuart, J.M.; Stunnenberg, H.G.; Su, H.; Su, X.; Sun, R.X.; Sungalee, S.; Susak, H.; Suzuki, A.; Sweep, F.; Szczepanowski, M.; Sültmann, H.; Yugawa, T.; Tam, A.; Tamborero, D.; Tan, B.K.T.; Tan, D.; Tan, P.; Tanaka, H.; Taniguchi, H.; Tanskanen, T.J.; Tarabichi, M.; Tarnuzzer, R.; Tarpey, P.; Taschuk, M.L.; Tatsuno, K.; Tavaré, S.; Taylor, D.F.; Taylor-Weiner, A.; Teague, J.W.; Teh, B.T.; Tembe, V.; Temes, J.; Thai, K.; Thayer, S.P.; Thiessen, N.; Thomas, G.; Thomas, S.; Thompson, A.; Thompson, A.M.; Thompson, J.F.F.; Thompson, R.H.; Thorne, H.; Thorne, L.B.; Thorogood, A.; Tiao, G.; Tijanic, N.; Timms, L.E.; Tirabosco, R.; Tojo, M.; Tommasi, S.; Toon, C.W.; Toprak, U.H.; Torrents, D.; Tortora, G.; Tost, J.; Totoki, Y.; Townend, D.; Traficante, N.; Treilleux, I.; Trotta, J-R.; Trümper, L.H.P.; Tsao, M.; Tsunoda, T.; Tubio, J.M.C.; Tucker, O.; Turkington, R.; Turner, D.J.; Tutt, A.; Ueno, M.; Ueno, N.T.; Umbricht, C.; Umer, H.M.; Underwood, T.J.; Urban, L.; Urushidate, T.; Ushiku, T.; Uusküla-Reimand, L.; Valencia, A.; Van Den Berg, D.J.; Van Laere, S.; Van Loo, P.; Van Meir, E.G.; Van den Eynden, G.G.; Van der Kwast, T.; Vasudev, N.; Vazquez, M.; Vedururu, R.; Veluvolu, U.; Vembu, S.; Verbeke, L.P.C.; Vermeulen, P.; Verrill, C.; Viari, A.; Vicente, D.; Vicentini, C.; VijayRaghavan, K.; Viksna, J.; Vilain, R.E.; Villasante, I.; Vincent-Salomon, A.; Visakorpi, T.; Voet, D.; Vyas, P.; Vázquez-García, I.; Waddell, N.M.; Waddell, N.; Wadelius, C.; Wadi, L.; Wagener, R.; Wala, J.A.; Wang, J.; Wang, J.; Wang, L.; Wang, Q.; Wang, W.; Wang, Y.; Wang, Z.; Waring, P.M.; Warnatz, H-J.; Warrell, J.; Warren, A.Y.; Waszak, S.M.; Wedge, D.C.; Weichenhan, D.; Weinberger, P.; Weinstein, J.N.; Weischenfeldt, J.; Weisenberger, D.J.; Welch, I.; Wendl, M.C.; Werner, J.; Whalley, J.P.; Wheeler, D.A.; Whitaker, H.C.; Wigle, D.; Wilkerson, M.D.; Williams, A.; Wilmott, J.S.; Wilson, G.W.; Wilson, J.M.; Wilson, R.K.; Winterhoff, B.; Wintersinger, J.A.; Wiznerowicz, M.; Wolf, S.; Wong, B.H.; Wong, T.; Wong, W.; Woo, Y.; Wood, S.; Wouters, B.G.; Wright, A.J.; Wright, D.W.; Wright, M.H.; Wu, C-L.; Wu, D-Y.; Wu, G.; Wu, J.; Wu, K.; Wu, Y.; Wu, Z.; Xi, L.; Xia, T.; Xiang, Q.; Xiao, X.; Xing, R.; Xiong, H.; Xu, Q.; Xu, Y.; Xue, H.; Yachida, S.; Yakneen, S.; Yamaguchi, R.; Yamaguchi, T.N.; Yamamoto, M.; Yamamoto, S.; Yamaue, H.; Yang, F.; Yang, H.; Yang, J.Y.; Yang, L.; Yang, L.; Yang, S.; Yang, T-P.; Yang, Y.; Yao, X.; Yaspo, M-L.; Yates, L.; Yau, C.; Ye, C.; Ye, K.; Yellapantula, V.D.; Yoon, C.J.; Yoon, S-S.; Yousif, F.; Yu, J.; Yu, K.; Yu, W.; Yu, Y.; Yuan, K.; Yuan, Y.; Yuen, D.; Yung, C.K.; Zaikova, O.; Zamora, J.; Zapatka, M.; Zenklusen, J.C.; Zenz, T.; Zeps, N.; Zhang, C-Z.; Zhang, F.; Zhang, H.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, Z.; Zheng, L.; Zheng, X.; Zhou, W.; Zhou, Y.; Zhu, B.; Zhu, H.; Zhu, J.; Zhu, S.; Zou, L.; Zou, X.; deFazio, A.; van As, N.; van Deurzen, C.H.M.; van de Vijver, M.J.; van’t Veer, L.; von Mering, C. The evolutionary history of 2,658 cancers. Nature, 2020, 578(7793), 122-128.
[http://dx.doi.org/10.1038/s41586-019-1907-7] [PMID: 32025013]
[44]
Boutin, A.T.; Liao, W.T.; Wang, M.; Hwang, S.S.; Karpinets, T.V.; Cheung, H.; Chu, G.C.; Jiang, S.; Hu, J.; Chang, K.; Vilar, E.; Song, X.; Zhang, J.; Kopetz, S.; Futreal, A.; Wang, Y.A.; Kwong, L.N.; DePinho, R.A. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev., 2017, 31(4), 370-382.
[http://dx.doi.org/10.1101/gad.293449.116] [PMID: 28289141]
[45]
Quirke, P.; Risio, M.; Lambert, R.; von Karsa, L.; Vieth, M. Quality assurance in pathology in colorectal cancer screening and diagnosis—European recommendations. Virchows Arch., 2011, 458(1), 1-19.
[http://dx.doi.org/10.1007/s00428-010-0977-6] [PMID: 21061133]
[46]
Snover, D.C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol., 2011, 42(1), 1-10.
[http://dx.doi.org/10.1016/j.humpath.2010.06.002] [PMID: 20869746]
[47]
Takai, D.; Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci., 2002, 99(6), 3740-3745.
[http://dx.doi.org/10.1073/pnas.052410099] [PMID: 11891299]
[48]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci., 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[49]
Noffsinger, A.E. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu. Rev. Pathol., 2009, 4(1), 343-364.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092317] [PMID: 19400693]
[50]
East, J.E.; Saunders, B.P.; Jass, J.R. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol. Clin. North Am., 2008, 37(1), 25-46, v.
[http://dx.doi.org/10.1016/j.gtc.2007.12.014] [PMID: 18313538]
[51]
Snover, D.C. Serrated polyps of the large intestine. Semin. Diagn. Pathol., 2005, 22(4), 301-308.
[http://dx.doi.org/10.1053/j.semdp.2006.04.003] [PMID: 16939058]
[52]
Snover, D.C.; Jass, J.R.; Fenoglio-Preiser, C.; Batts, K.P. Serrated polyps of the large intestine: A morphologic and molecular review of an evolving concept. Am. J. Clin. Pathol., 2005, 124(3), 380-391.
[http://dx.doi.org/10.1309/V2EPTPLJRB3FGHJL] [PMID: 16191506]
[53]
Jeong, M.; Goodell, M.A. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp. Hematol., 2014, 42(8), 609-617.
[http://dx.doi.org/10.1016/j.exphem.2014.04.008] [PMID: 24993071]
[54]
Kaur, H.; Bhalla, S.; Raghava, G.P.S. Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One, 2019, 14(9), e0221476.
[http://dx.doi.org/10.1371/journal.pone.0221476] [PMID: 31490960]
[55]
Hu, J.; Zhao, F.; Huang, B.; Ran, J.; Chen, M.; Liu, H.; Deng, Y.; Zhao, X.; Han, X. An eight-CpG-based methylation classifier for preoperative discriminating early and advanced-late stage of colorectal cancer. Front. Genet., 2021, 11, 614160.
[http://dx.doi.org/10.3389/fgene.2020.614160] [PMID: 33519917]
[56]
Nazemalhosseini Mojarad, E.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench, 2013, 6(3), 120-128.
[PMID: 24834258]
[57]
Jass, J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology, 2007, 50(1), 113-130.
[http://dx.doi.org/10.1111/j.1365-2559.2006.02549.x] [PMID: 17204026]
[58]
De Rosa, M.; Rega, D.; Costabile, V.; Duraturo, F.; Niglio, A.; Izzo, P.; Pace, U.; Delrio, P. The biological complexity of colorectal cancer: insights into biomarkers for early detection and personalized care. Therap. Adv. Gastroenterol., 2016, 9(6), 861-886.
[http://dx.doi.org/10.1177/1756283X16659790] [PMID: 27803741]
[59]
Barault, L.; Charon-Barra, C.; Jooste, V.; de la Vega, M.F.; Martin, L.; Roignot, P.; Rat, P.; Bouvier, A.M.; Laurent-Puig, P.; Faivre, J.; Chapusot, C.; Piard, F. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res., 2008, 68(20), 8541-8546.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1171] [PMID: 18922929]
[60]
Yagi, K.; Akagi, K.; Hayashi, H.; Nagae, G.; Tsuji, S.; Isagawa, T. Three epigenotypes of DNA methylation in human colorectal cancer. Clin. Cancer Res., 2010, 16, 21-33.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2006] [PMID: 20028768]
[61]
Shen, L.; Catalano, P.J.; Benson, A.B., III; O’Dwyer, P.; Hamilton, S.R.; Issa, J.P.J. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res., 2007, 13(20), 6093-6098.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1011] [PMID: 17947473]
[62]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa E Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[63]
Rebersek, M. Consensus molecular subtypes (CMS) in metastatic colorectal cancer - personalized medicine decision. Radiol. Oncol., 2020, 54(3), 272-277.
[http://dx.doi.org/10.2478/raon-2020-0031] [PMID: 32463385]
[64]
Park, S.C.; Sohn, D.K.; Kim, M.J.; Chang, H.J.; Han, K.S.; Hyun, J.H.; Joo, J.; Oh, J.H. Phase II clinical trial to evaluate the efficacy of transanal endoscopic total mesorectal excision for rectal cancer. Dis. Colon Rectum, 2018, 61(5), 554-560.
[http://dx.doi.org/10.1097/DCR.0000000000001058] [PMID: 29624549]
[65]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[66]
Ogura, A.; Konishi, T.; Cunningham, C.; Garcia-Aguilar, J.; Iversen, H.; Toda, S.; Lee, I.K.; Lee, H.X.; Uehara, K.; Lee, P.; Putter, H.; van de Velde, C.J.H.; Beets, G.L.; Rutten, H.J.T.; Kusters, M. Neoadjuvant (Chemo)radiotherapy with total mesorectal excision only is not sufficient to prevent lateral local recurrence in enlarged nodes: Results of the multicenter lateral node study of patients with low cT3/4 rectal cancer. J. Clin. Oncol., 2019, 37(1), 33-43.
[http://dx.doi.org/10.1200/JCO.18.00032] [PMID: 30403572]
[67]
Johdi, N.A.; Sukor, N.F. Colorectal cancer immunotherapy: Options and strategies. Front. Immunol., 2020, 11, 1624.
[http://dx.doi.org/10.3389/fimmu.2020.01624] [PMID: 33042104]
[68]
Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Lorenzo Bermejo, J. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol., 2011, 72(1), 162-163.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03892.x] [PMID: 21204909]
[69]
Calvo, E.; Cortés, J.; Rodríguez, J.; Fernández-Hidalgo, Ó.; Rebollo, J.; Martín-Algarra, S.; García-Foncillas, J.; Martínez-Monge, R.; de Irala, J.; Brugarolas, A. Irinotecan, oxaliplatin, and 5-fluorouracil/leucovorin combination chemotherapy in advanced colorectal carcinoma: A phase II study. Clin. Colorectal Cancer, 2002, 2(2), 104-110.
[http://dx.doi.org/10.3816/CCC.2002.n.016] [PMID: 12453325]
[70]
Yuan, Y.; Xiao, W.W.; Xie, W.H.; Cai, P.Q.; Wang, Q.X.; Chang, H.; Chen, B.Q.; Zhou, W.H.; Zeng, Z.F.; Wu, X.J.; Liu, Q.; Li, L.R.; Zhang, R.; Gao, Y.H. Neoadjuvant chemoradiotherapy for patients with unresectable radically locally advanced colon cancer: A potential improvement to overall survival and decrease to multivisceral resection. BMC Cancer, 2021, 21(1), 179.
[http://dx.doi.org/10.1186/s12885-021-07894-6] [PMID: 33607964]
[71]
Zheng, S.; Tao, W. Identification of novel transcriptome signature as a potential prognostic biomarker for anti-angiogenic therapy in glioblastoma multiforme. Cancers, 2020, 12
[http://dx.doi.org/10.3390/cancers12092368] [PMID: 33804433]
[72]
Hao, Z.; Parasramka, S.; Chen, Q.; Jacob, A.; Huang, B.; Mullett, T.; Benson, A.B. Neoadjuvant versus adjuvant chemotherapy for resectable metastatic colon cancer in non-academic and academic programs. Oncologist, 2022, 28(1), 48-58.
[http://dx.doi.org/10.1093/oncolo/oyac209] [PMID: 36200844]
[73]
Normanno, N.; Tejpar, S.; Morgillo, F.; De Luca, A.; Van Cutsem, E.; Ciardiello, F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat. Rev. Clin. Oncol., 2009, 6(9), 519-527.
[http://dx.doi.org/10.1038/nrclinonc.2009.111] [PMID: 19636327]
[74]
Shen, W.D.; Chen, H.L.; Liu, P.F. EGFR gene copy number as a predictive biomarker for resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer treatment: A meta-analysis. Chin. J. Cancer Res., 2014, 26(1), 59-71.
[http://dx.doi.org/10.3978/j.issn.1000-9604.2014.01.10] [PMID: 24653627]
[75]
Cohen, M.H.; Gootenberg, J.; Keegan, P.; Pazdur, R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist, 2007, 12(3), 356-361.
[http://dx.doi.org/10.1634/theoncologist.12-3-356] [PMID: 17405901]
[76]
Tang, P.A.; Cohen, S.J.; Kollmannsberger, C.; Bjarnason, G.; Virik, K.; MacKenzie, M.J.; Lourenco, L.; Wang, L.; Chen, A.; Moore, M.J. Phase II clinical and pharmacokinetic study of aflibercept in patients with previously treated metastatic colorectal cancer. Clin. Cancer Res., 2012, 18(21), 6023-6031.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3252] [PMID: 22977191]
[77]
Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 2019, 125(23), 4139-4147.
[http://dx.doi.org/10.1002/cncr.32163] [PMID: 31433498]
[78]
Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.; Tucker, S.C.; Honn, K.V. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev., 2021, 40(3), 949-982.
[http://dx.doi.org/10.1007/s10555-021-09976-0] [PMID: 34236546]
[79]
Patsoukis, N.; Brown, J.; Petkova, V.; Liu, F.; Li, L.; Boussiotis, V.A. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal., 2012, 5(230), ra46.
[http://dx.doi.org/10.1126/scisignal.2002796] [PMID: 22740686]
[80]
García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers, 2019, 11(12), 1822.
[http://dx.doi.org/10.3390/cancers11121822] [PMID: 31756919]
[82]
Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res., 2019, 25(13), 3753-3758.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4070] [PMID: 30787022]
[84]
André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; de la Fouchardiere, C.; Rivera, F.; Elez, E.; Bendell, J.; Le, D.T.; Yoshino, T.; Van Cutsem, E.; Yang, P.; Farooqui, M.Z.H.; Marinello, P.; Diaz, L.A., Jr Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med., 2020, 383(23), 2207-2218.
[http://dx.doi.org/10.1056/NEJMoa2017699] [PMID: 33264544]
[85]
FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication
[86]
FDA approves pembrolizumab for first-line treatment of MSI-H/dMMR colorectal cancer. 2020. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-first-line-treatment-msi-hdmmr-colorectal-cancer
[87]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[88]
de Wied, D. Peptide hormones and neuropeptides: birds of a feather. Trends Neurosci., 2000, 23(3), 113.
[http://dx.doi.org/10.1016/S0166-2236(99)01511-8] [PMID: 10675911]
[89]
Burbach, J.P. Neuropeptides from concept to online database. J. Pharmacol, 2010, 626, 27-48.
[90]
Hökfelt, T.; Bartfai, T.; Bloom, F. Neuropeptides: opportunities for drug discovery. Lancet Neurol., 2003, 2(8), 463-472.
[http://dx.doi.org/10.1016/S1474-4422(03)00482-4] [PMID: 12878434]
[91]
Romanova, E.V.; Sweedler, J.V. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol. Sci., 2015, 36(9), 579-586.
[http://dx.doi.org/10.1016/j.tips.2015.05.009] [PMID: 26143240]
[92]
Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev., 2014, 94(1), 265-301.
[http://dx.doi.org/10.1152/physrev.00031.2013] [PMID: 24382888]
[93]
Martínez, A.N.; Philipp, M.T. Substance P and neuoquinin-1 receptor antagonists in neuroinflammation associated with infectious and neurodegenerative diseases of the central nervous system. J. Neurol. Neuromedicine, 2016, 1, 29-36.
[http://dx.doi.org/10.29245/2572.942X/2016/2.1020] [PMID: 27430034]
[94]
Werge, T. The tachykinin tale: Molecular recognition in a historical perspective. J. Mol. Recognit., 2007, 20(3), 145-153.
[http://dx.doi.org/10.1002/jmr.822] [PMID: 17444559]
[95]
Bremer, A.A.; Leeman, S.E.; Boyd, N.D. The common C-terminal sequences of substance P and neurokinin A contact the same region of the NK-1 receptor. FEBS Lett., 2000, 486(1), 43-48.
[http://dx.doi.org/10.1016/S0014-5793(00)02228-6] [PMID: 11108840]
[96]
Goldsmith, L.E.; Kwatra, M.M. Tachykinin/substance P/neurokinin-1 receptors.Encyclopedia of Biological Chemistry; Academic Press: Waltham, MA, 2013, pp. 360-365.
[97]
Lorestani, S.; Ghahremanloo, A.; Jangjoo, A.; Abedi, M.; Hashemy, S.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in colorectal cancer. Mol. Biol. Rep., 2020, 47(5), 3469-3474.
[http://dx.doi.org/10.1007/s11033-020-05432-4] [PMID: 32277443]
[98]
García-Aranda, M.; Téllez, T.; McKenna, L.; Redondo, M. Neurokinin-1 receptor-1 (NK-1R) antagonists as a new strategy to overcome cancer resistance. Cancers, 2022, 14(9), 2255.
[http://dx.doi.org/10.3390/cancers14092255] [PMID: 35565383]
[99]
Patacchini, R.; Maggi, C.A. Peripheral tachykinin receptors as targets for new drugs. Eur. J. Pharmacol., 2001, 429(1-3), 13-21.
[http://dx.doi.org/10.1016/S0014-2999(01)01301-2] [PMID: 11698023]
[100]
NCBI TAC1 Precursor de taquiquinina 1 [Homo Sapiens (humano)]. Available from: https://www.ncbi.nlm.nih.gov/gene/6863 (Accessed August 16, 2022).
[101]
Page, N.M. New challenges in the study of the mammalian tachykinins. Peptides, 2005, 26(8), 1356-1368.
[http://dx.doi.org/10.1016/j.peptides.2005.03.030] [PMID: 16042976]
[102]
El gen TAC3 de la base de datos de genes humanos. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=TAC3 (Accessed August 16, 2022).
[103]
NCBI TAC3 Precursor de taquiquinina 3 [Homo Sapiens (humano)]. Available from: https://www.ncbi.nlm.nih.gov/gene/6866 (Accessed August 16, 2022).
[104]
UNIProt UniProtKB–Q86UU9 (TKN4_HUMAN). Available from: https://www.uniprot.org/uniprot/Q86UU9 (Accessed August 16, 2022).
[105]
NCBI TAC4 Precursor de taquiquinina 4 [Homo Sapiens (humano)]. Available from: https://www.ncbi.nlm.nih.gov/gene/255061 (Accessed August 16, 2022).
[106]
Ho, W.Z.; Lai, J.P.; Zhu, X.H.; Uvaydova, M.; Douglas, S.D. Human monocytes and macrophages express substance P and neurokinin-1 receptor. J. Immunol., 1997, 159(11), 5654-5660.
[http://dx.doi.org/10.4049/jimmunol.159.11.5654] [PMID: 9548509]
[107]
McGillis, J.P.; Mitsuhashi, M.; Payan, D.G. Immunological properties of substance P. In: Psychoneuroimmunology; Ader, R., Ed.; Academic Press, 1991; pp. 209-223.
[http://dx.doi.org/10.1016/B978-0-12-043780-1.50011-7]
[108]
Moore, T.C.; Lami, J.L.; Spruck, C.H. Substance P increases lymphocyte traffic and lymph flow through peripheral lymph nodes of sheep. Immunology, 1989, 67(1), 109-114.
[PMID: 2472354]
[109]
Stanisz, A.M.; Befus, D.; Bienenstock, J. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer’s patches, mesenteric lymph nodes, and spleen. J. Immunol., 1986, 136(1), 152-156.
[http://dx.doi.org/10.4049/jimmunol.136.1.152] [PMID: 2415614]
[110]
Lotz, M.; Vaughan, J.H.; Carson, D.A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science, 1988, 241(4870), 1218-1221.
[http://dx.doi.org/10.1126/science.2457950] [PMID: 2457950]
[111]
Hartung, H.P.; Toyka, K.V. Activation of macrophages by substance P: Induction of oxidative burst and thromboxane release. Eur. J. Pharmacol., 1983, 89(3-4), 301-305.
[http://dx.doi.org/10.1016/0014-2999(83)90511-3] [PMID: 6191998]
[112]
Muñoz, M.; Coveñas, R. Neurokinin receptor antagonism: A patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(7), 527-539.
[http://dx.doi.org/10.1080/13543776.2020.1769599] [PMID: 32401556]
[113]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[114]
Rosso, M.; Muñoz, M.; Berger, M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. ScientificWorldJournal, 2012, 2012, 1-21.
[http://dx.doi.org/10.1100/2012/381434] [PMID: 22545017]
[115]
Feng, F.; Yang, J.; Tong, L.; Yuan, S.; Tian, Y.; Hong, L.; Wang, W.; Zhang, H. Substance P immunoreactive nerve fibres are related to gastric cancer differentiation status and could promote proliferation and migration of gastric cancer cells. Cell Biol. Int., 2011, 35(6), 623-629.
[http://dx.doi.org/10.1042/CBI20100229] [PMID: 21091434]
[116]
Bar-Shavit, Z.; Goldman, R.; Stabinsky, Y.; Gottlieb, P.; Fridkin, M.; Teichberg, V.I.; Blumberg, S. Enhancement of phagocytosis - A newly found activity of Substance P residing in its N-terminal tetrapeptide sequence. Biochem. Biophys. Res. Commun., 1980, 94(4), 1445-1451.
[http://dx.doi.org/10.1016/0006-291X(80)90581-1] [PMID: 6156684]
[117]
Kage, R.; Leeman, S.E.; Boyd, N.D. Biochemical characterization of two different forms of the substance P receptor in rat submaxillary gland. J. Neurochem., 1993, 60(1), 347-351.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb05857.x] [PMID: 8380195]
[118]
UniProt UniProtKB-P25103. Available from: https://www.uniprot.org/uniprot/P25103 (Accessed Jul 5, 2023)
[119]
Gerard, N.P.; Garraway, L.A.; Eddy, R.L. Human substance P receptor (NK-1): Gene organization, chromosomal localization, and functional expression of cDNA clones. Biochemistry, 1991, 30, 10640-10646.
[http://dx.doi.org/10.1021/bi00108a006] [PMID: 1657150]
[120]
O’Connor, T.M.; O’Connell, J.; O’Brien, D.I.; Goode, T.; Bredin, C.P.; Shanahan, F. The role of substance P in inflammatory disease. J. Cell. Physiol., 2004, 201(2), 167-180.
[http://dx.doi.org/10.1002/jcp.20061] [PMID: 15334652]
[121]
Lai, J.P.; Lai, S.; Tuluc, F.; Tansky, M.F.; Kilpatrick, L.E.; Leeman, S.E.; Douglas, S.D. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc. Natl. Acad. Sci., 2008, 105(34), 12605-12610.
[http://dx.doi.org/10.1073/pnas.0806632105] [PMID: 18713853]
[122]
Ghahremanloo, A.; Javid, H.; Afshari, A.R.; Hashemy, S.I. Investigation of the role of neurokinin-1 receptor inhibition with aprepitant in apoptotic cell death via PI3K/Akt/NF- κ B signal transduction pathways in colon cancer cells. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/1383878] [PMID: 34395609]
[123]
Spitsin, S.; Pappa, V.; Douglas, S.D. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J. Leukoc. Biol., 2018, 103(6), 1043-1051.
[http://dx.doi.org/10.1002/JLB.3MIR0817-348R] [PMID: 29345372]
[124]
Ramkissoon, S.H.; Patel, P.S.; Taborga, M.; Rameshwar, P. Nuclear factor kappaB is critical for truncated neurokinin-1 receptor expression in breast cancer: Implication for quiescence of breast cancer cells within the bone marrow stroma. Cancer Res., 2007, 67, 1653-1659.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3813] [PMID: 17308106]
[125]
Patel, H.J.; Ramkissoon, S.H.; Patel, P.S.; Rameshwar, P. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proc. Natl. Acad. Sci., 2005, 102(48), 17436-17441.
[http://dx.doi.org/10.1073/pnas.0506351102] [PMID: 16291810]
[126]
Bigioni, M.; Benzo, A.; Irrissuto, C.; Maggi, C.A.; Goso, C. Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anticancer Drugs, 2005, 16(10), 1083-1089.
[http://dx.doi.org/10.1097/00001813-200511000-00007] [PMID: 16222150]
[127]
Gao, X.; Wang, Z. Difference in expression of two neurokinin-1 receptors in adenoma and carcinoma from patients that underwent radical surgery for colorectal carcinoma. Oncol. Lett., 2017, 14(3), 3729-3733.
[http://dx.doi.org/10.3892/ol.2017.6588] [PMID: 28927139]
[128]
Isorna, I.; Esteban, F.; Solanellas, J.; Coveñas, R.; Muñoz, M. The substance P and neurokinin-1 receptor system in human thyroid cancer: An immunohistochemical study. Eur. J. Histochem., 2020, 64(2), 3117.
[http://dx.doi.org/10.4081/ejh.2020.3117] [PMID: 32363847]
[129]
Hennig, I.M.; Laissue, J.A.; Horisberger, U.; Reubi, J.C. Substance-P receptors in human primary neoplasms: Tumoral and vascular localization. Int. J. Cancer, 1995, 61(6), 786-792.
[http://dx.doi.org/10.1002/ijc.2910610608] [PMID: 7790112]
[130]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J. Gastroenterol., 2014, 20(9), 2321-2334.
[http://dx.doi.org/10.3748/wjg.v20.i9.2321] [PMID: 24605029]
[131]
Javid, H.; Asadi, J.; Zahedi Avval, F.; Afshari, A.R.; Hashemy, S.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol. Biol. Rep., 2020, 47(3), 2253-2263.
[http://dx.doi.org/10.1007/s11033-020-05330-9] [PMID: 32072401]
[132]
Douglas, S.D.; Leeman, S.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci., 2011, 1217(1), 83-95.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05826.x] [PMID: 21091716]
[133]
Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020, 11(9), 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[134]
Salaroglio, I.C.; Mungo, E.; Gazzano, E.; Kopecka, J.; Riganti, C. ERK is a pivotal player of chemo-immune-resistance in cancer. Int. J. Mol. Sci., 2019, 20(10), 2505.
[http://dx.doi.org/10.3390/ijms20102505] [PMID: 31117237]
[135]
DeFea, K.A.; Vaughn, Z.D.; O’Bryan, E.M.; Nishijima, D.; Déry, O.; Bunnett, N.W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci., 2000, 97(20), 11086-11091.
[http://dx.doi.org/10.1073/pnas.190276697] [PMID: 10995467]
[136]
Deng, X.T.; Tang, S.M.; Wu, P.Y.; Li, Q.P.; Ge, X.X.; Xu, B.M.; Wang, H.S.; Miao, L. SP/NK-1R promotes gallbladder cancer cell proliferation and migration. J. Cell. Mol. Med., 2019, 23(12), 7961-7973.
[http://dx.doi.org/10.1111/jcmm.14230] [PMID: 30903649]
[137]
Bentires-Alj, M.; Barbu, V.; Fillet, M.; Chariot, A.; Relic, B.; Jacobs, N.; Gielen, J.; Merville, M.P.; Bours, V. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene, 2003, 22(1), 90-97.
[http://dx.doi.org/10.1038/sj.onc.1206056] [PMID: 12527911]
[138]
Di Maio, M.; Bria, E.; Banna, G.L.; Puglisi, F.; Garassino, M.C.; Lorusso, D.; Perrone, F. Prevention of chemotherapy-induced nausea and vomiting and the role of neurokinin 1 inhibitors. Anticancer Drugs, 2013, 24(2), 99-111.
[http://dx.doi.org/10.1097/CAD.0b013e328359d7ba] [PMID: 23165435]
[139]
Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Saltz, L. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(12), 2006-2012.
[http://dx.doi.org/10.1200/JCO.2007.14.9898] [PMID: 18421053]
[140]
Shimokawa, M.; Hayashi, T.; Nishimura, J.; Satoh, T.; Fukunaga, M.; Matsui, R.; Tsuji, Y.; Mizuki, F.; Kogawa, T. Pooled analysis of combination antiemetic therapy for chemotherapy-induced nausea and vomiting in patients with colorectal cancer treated with oxaliplatin-based chemotherapy of moderate emetic risk. BMC Cancer, 2021, 21(1), 1111.
[http://dx.doi.org/10.1186/s12885-021-08860-y] [PMID: 34656107]
[141]
Vidall, C.; Fernández-Ortega, P.; Cortinovis, D.; Jahn, P.; Amlani, B.; Scotté, F. Impact and management of chemotherapy/radiotherapy-induced nausea and vomiting and the perceptual gap between oncologists/oncology nurses and patients: A cross-sectional multinational survey. Support. Care Cancer, 2015, 23(11), 3297-3305.
[http://dx.doi.org/10.1007/s00520-015-2750-5] [PMID: 25953380]
[142]
Hesketh, P.J. Chemotherapy-induced nausea and vomiting. N. Engl. J. Med., 2008, 358(23), 2482-2494.
[http://dx.doi.org/10.1056/NEJMra0706547] [PMID: 18525044]
[143]
Navari, R.M. The safety of antiemetic medications for the prevention of chemotherapy-induced nausea and vomiting. Expert Opin. Drug Saf., 2016, 15(3), 343-356.
[http://dx.doi.org/10.1517/14740338.2016.1135899] [PMID: 26699406]
[144]
Hesketh, P.J.; Kris, M.G.; Basch, E.; Bohlke, K.; Barbour, S.Y.; Clark-Snow, R.A.; Danso, M.A.; Dennis, K.; Dupuis, L.L.; Dusetzina, S.B.; Eng, C.; Feyer, P.C.; Jordan, K.; Noonan, K.; Sparacio, D.; Somerfield, M.R.; Lyman, G.H. Antiemetics: Update to the american society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2017, 35(28), 3240-3261.
[http://dx.doi.org/10.1200/JCO.2017.74.4789] [PMID: 28759346]
[145]
Navari, R.M.; Aapro, M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N. Engl. J. Med., 2016, 374(14), 1356-1367.
[http://dx.doi.org/10.1056/NEJMra1515442] [PMID: 27050207]
[146]
Schwartzberg, L.S.; Modiano, M.R.; Rapoport, B.L.; Chasen, M.R.; Gridelli, C.; Urban, L.; Poma, A.; Arora, S.; Navari, R.M.; Schnadig, I.D. Safety and efficacy of rolapitant for prevention of chemotherapy-induced nausea and vomiting after administration of moderately emetogenic chemotherapy or anthracycline and cyclophosphamide regimens in patients with cancer: A randomised, active-controlled, double-blind, phase 3 trial. Lancet Oncol., 2015, 16(9), 1071-1078.
[http://dx.doi.org/10.1016/S1470-2045(15)00034-0] [PMID: 26272768]
[147]
Aapro, M. CINV: Patients still worrying after all these years. Cancer Support Care, 2018, 26, 5-9.
[http://dx.doi.org/10.1007/s00520-018-4131-3] [PMID: 29556808]
[148]
European Medicines Agency EMEND. INN-Aprepitant: Scientific Discussion. 2004. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/emend-epar-scientific-discussion_en.pdf (Accessed August 17, 2022)
[149]
Muñoz, M.; Coveñas, R. The neurokinin-1 receptor antagonist aprepitant: A smart bullet against cancer? Cancers, 2020, 12(9), 2682.
[http://dx.doi.org/10.3390/cancers12092682] [PMID: 32962202]
[150]
Robinson, P.; Kasembeli, M.; Bharadwaj, U.; Engineer, N.; Eckols, K.T.; Tweardy, D.J.; Substance, P. Substance P receptor signaling mediates doxorubicin-induced cardiomyocyte apoptosis and triple-negative breast cancer chemoresistance. BioMed Res. Int., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1959270] [PMID: 26981525]
[151]
Muñoz, M.; González-Ortega, A.; Salinas-Martín, M.V.; Carranza, A.; Garcia-Recio, S.; Almendro, V.; Coveñas, R. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int. J. Oncol., 2014, 45(4), 1658-1672.
[http://dx.doi.org/10.3892/ijo.2014.2565] [PMID: 25175857]
[152]
Nizam, E.; Erin, N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; Effects independent of Substance P. Biomed. Pharmacother., 2018, 108, 263-270.
[http://dx.doi.org/10.1016/j.biopha.2018.09.013] [PMID: 30223097]
[153]
Zhang, X.W.; Li, L.; Hu, W.Q.; Hu, M.N.; Tao, Y.; Hu, H.; Miao, X.K.; Yang, W.L.; Zhu, Q.; Mou, L.Y. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR. Cell Death Dis., 2022, 13(1), 41.
[http://dx.doi.org/10.1038/s41419-021-04485-y] [PMID: 35013118]
[154]
Matalińska, J.; Świć, A.; Lipiński, P.; Misicka, A. Antiproliferative effects of [D-Pro2, D-Trp7,9]-Substance P and aprepitant on several cancer cell lines and their selectivity in comparison to normal cells. Folia Neuropathol., 2020, 58(3), 237-244.
[http://dx.doi.org/10.5114/fn.2020.100066] [PMID: 33099293]
[155]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides, 2013, 48, 1-9.
[http://dx.doi.org/10.1016/j.peptides.2013.07.024] [PMID: 23933301]
[156]
Beirith, I.; Renz, B.W.; Mudusetti, S.; Ring, N.S.; Kolorz, J.; Koch, D.; Bazhin, A.V.; Berger, M.; Wang, J.; Angele, M.K.; D’Haese, J.G.; Guba, M.O.; Niess, H.; Andrassy, J.; Werner, J.; Ilmer, M. Identification of the neurokinin-1 receptor as targetable stratification factor for drug repurposing in pancreatic cancer. Cancers, 2021, 13(11), 2703.
[http://dx.doi.org/10.3390/cancers13112703] [PMID: 34070805]
[157]
Ebrahimi, S.; Mirzavi, F.; Aghaee-Bakhtiari, S.H.; Hashemy, S.I. SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(5), 119221.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119221] [PMID: 35134443]
[158]
Takei, S.; Ishibe, A.; Watanabe, J.; Watanabe, K.; Suwa, Y.; Suzuki, S.; Nakagawa, K.; Suwa, H.; Ota, M.; Ichikawa, Y.; Kunisaki, C.; Yamanaka, T.; Endo, I. Risk factors of chemotherapy-induced nausea and vomiting in patients with metastatic colorectal cancer: A prospective cohort study (YCOG1301). Int. J. Colorectal Dis., 2020, 35(12), 2323-2329.
[http://dx.doi.org/10.1007/s00384-020-03731-7] [PMID: 32860080]
[159]
Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; Von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol., 2015, 47(1), 151-160.
[http://dx.doi.org/10.3892/ijo.2015.3016] [PMID: 25998227]
[160]
Ghahremanloo, A.; Javid, H.; Afshari, A.R.; Hashemy, S.I. Investigation of the role of neurokinin-1 receptor inhibition using aprepitant in the apoptotic cell death through PI3K/Akt/NF-κB signal transduction pathways in colon cancer cells. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/1383878] [PMID: 34395609]
[161]
Koon, H.W.; Zhao, D.; Na, X.; Moyer, M.P.; Pothoulakis, C. Metalloproteinases and transforming growth factor-α mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes. J. Biol. Chem., 2004, 279(44), 45519-45527.
[http://dx.doi.org/10.1074/jbc.M408523200] [PMID: 15319441]
[162]
Stucchi, A.F.; Shofer, S.; Leeman, S.; Materne, O.; Beer, E.; McClung, J.; Shebani, K.; Moore, F.; O’Brien, M.; Becker, J.M. NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulfate-induced colitis in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1298-G1306.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1298] [PMID: 11093954]
[163]
Castagliuolo, I.; Morteau, O.; Keates, A.C.; Valenick, L.; Wang, C.C.; Zacks, J.; Lu, B.; Gerard, N.P.; Pothoulakis, C. Protective effects of neurokinin-1 receptor during colitis in mice: Role of the epidermal growth factor receptor. Br. J. Pharmacol., 2002, 136(2), 271-279.
[http://dx.doi.org/10.1038/sj.bjp.0704697] [PMID: 12010776]
[164]
Rosso, M.; Robles-Frías, M.J.; Coveñas, R.; Salinas-Martín, M.V.; Muñoz, M. The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines. Tumour Biol., 2008, 29(4), 245-254.
[http://dx.doi.org/10.1159/000152942] [PMID: 18781096]
[165]
Pagán, B.; Isidro, A.A.; Coppola, D.; Chen, Z.; Ren, Y.; Wu, J.; Appleyard, C.B. Effect of a neurokinin-1 receptor antagonist in a rat model of colitis-associated colon cancer. Anticancer Res., 2010, 30(9), 3345-3353.
[PMID: 20944107]
[166]
Legi, A.; Rodriguez, E.; Eckols, T.K.; Mistry, C.; Robinson, P.; Substance, P. Substance P antagonism prevents chemotherapy-induced cardiotoxicity. Cancers, 2021, 13(7), 1732.
[http://dx.doi.org/10.3390/cancers13071732] [PMID: 33917491]
[167]
Rapoport, B.; Aapro, M.; Chasen, M.; Jordan, K.; Navari, R.; Schnadig, I.; Schwartzberg, L. Recent developments in the clinical pharmacology of rolapitant: Subanalyses in specific populations. Drug Des. Devel. Ther., 2017, 11, 2621-2629.
[http://dx.doi.org/10.2147/DDDT.S133943] [PMID: 28919712]
[168]
Lee, M.; McCloskey, M.; Staples, S. Prolonged use of aprepitant in metastatic breast cancer and a reduction in CA153 tumour marker levels. Int. J. Cancer Clin. Res., 2016, 3, 071.
[http://dx.doi.org/10.23937/2378-3419/3/6/1071]
[169]
Muñoz, M.; Crespo, J.C.; Crespo, J.P.; Coveñas, R. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: A case report. Mol. Clin. Oncol., 2019, 11(1), 50-54.
[http://dx.doi.org/10.3892/mco.2019.1857] [PMID: 31289677]
[170]
FDA. Approves first cancer treatment for any solid tumor with a specific genetic feature. 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature (Accessed on: February 5, 2023)
[171]
Zhao, L.; Lee, V.H.F.; Ng, M.K.; Yan, H.; Bijlsma, M.F. Molecular subtyping of cancer: Current status and moving toward clinical applications. Brief. Bioinform., 2019, 20(2), 572-584.
[http://dx.doi.org/10.1093/bib/bby026] [PMID: 29659698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy