Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Lower IL-34 Expression Is Associated with Non-Healing Diabetic Foot Ulcers

Author(s): Aitian Zheng, Yuanyuan Xu, Nimiao Cen and Biaoliang Wu*

Volume 27, Issue 10, 2024

Published on: 08 October, 2023

Page: [1533 - 1543] Pages: 11

DOI: 10.2174/0113862073273222231005065757

Price: $65

Abstract

Background: The non-healing of diabetic foot ulcers (DFU) is a major cause of high disability, morbidity, and mortality. Thus, new therapeutic targets and methods to help healing in patients with DFUs are major research hotspots.

Objective: This study examined the molecular differences between healing and non-healing DFUs to identify genes associated with DFU healing.

Methods: Differentially expressed genes (DEGs) were identified by bioinformatics. Samples were collected from patients with healing (n=10) and non-healing (n=10) DFUs from September 2021 to September 2022. Interleukin (IL)-34 expression was measured by ELISA and qRT-PCT. The fibroblasts from healing and non-healing DFU were divided according to their gene signatures and subdivided based on their gene expression profile differences.

Results: A comparison of fibroblast subpopulation characteristics revealed that the proportion of subpopulation 4 was significantly higher in non-healing DFUs than in healing DFUs. Subpopulation 4 had 254 upregulated genes and 2402 downregulated genes in the non-healing compared with the healing DFUs. The DEGs were involved in several biological functions, including cytokine activity, receptor-ligand activity, signaling receptor activator activity, and receptor regulator activity. IL-34 was downregulated in non-healing compared with healing DFUs, suggesting a possible role of IL-34 in DFU healing. In the clinical specimens, IL-34 was significantly downregulated in non-healing DFUs, consistent with the bioinformatics results.

Conclusion: IL-34 expression is downregulated in non-healing DFU. IL-34 appears to be involved in DFU healing, but the exact causal relationship remains to be explored.

Graphical Abstract

[1]
Zheng, A.; Xu, Y.; Wu, B. Functional analysis of IL-34 in diabetic ulcer healing: A bioinformatic study. Research Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-2390347/v1]
[2]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[3]
Everett, E.; Mathioudakis, N. Update on management of diabetic foot ulcers. Ann. N. Y. Acad. Sci., 2018, 1411(1), 153-165.
[http://dx.doi.org/10.1111/nyas.13569] [PMID: 29377202]
[4]
Canha, F.; Soares, R. The use of innovative targeted angiogenic therapies for ischemic diabetic foot ulcer repair: From nanomedicine and microRNAs toward hyperbaric oxygen therapy. Porto Biomed. J., 2023, 8(1), e187.
[http://dx.doi.org/10.1097/j.pbj.0000000000000187] [PMID: 37213252]
[5]
Reardon, R.; Simring, D.; Kim, B.; Mortensen, J.; Williams, D.; Leslie, A. The diabetic foot ulcer. Aust. J. Gen. Pract., 2020, 49(5), 250-255.
[http://dx.doi.org/10.31128/AJGP-11-19-5161] [PMID: 32416652]
[6]
Rubio, J.A.; Jiménez, S.; Lázaro-Martínez, J.L. Mortality in patients with diabetic foot ulcers: Causes, risk factors, and their association with evolution and severity of ulcer. J. Clin. Med., 2020, 9(9), 3009.
[http://dx.doi.org/10.3390/jcm9093009] [PMID: 32961974]
[7]
Armstrong, D.G.; Swerdlow, M.A.; Armstrong, A.A.; Conte, M.S.; Padula, W.V.; Bus, S.A. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res., 2020, 13(1), 16.
[http://dx.doi.org/10.1186/s13047-020-00383-2] [PMID: 32209136]
[8]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[9]
Besser, M.; Schaeler, L.; Plattfaut, I.; Brill, F.H.H.; Kampe, A.; Geffken, M.; Smeets, R.; Debus, E.S.; Stuermer, E.K. Pulsed low-intensity laser treatment stimulates wound healing without enhancing biofilm development in vitro. J. Photochem. Photobiol. B, 2022, 233, 112504.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112504] [PMID: 35777177]
[10]
Dong, J.Y.; Gong, J.H.; Ji, X.Y.; Tian, M.; Liu, Y.K.; Qing, C.; Lu, S.L.; Song, F. Preliminary evaluation and mechanism of adipose-derived stem cell transplantation from allogenic diabetic rats in the treatment of diabetic rat wounds Chin. J. Burns., 2019, 35(9), 645-654.
[11]
Eming, S.A.; Murray, P.J.; Pearce, E.J. Metabolic orchestration of the wound healing response. Cell Metab., 2021, 33(9), 1726-1743.
[http://dx.doi.org/10.1016/j.cmet.2021.07.017] [PMID: 34384520]
[12]
Grubbs, H.; Manna, B. Wound Physiology.In StatPearls; StatPearls Publishing, 2023.
[13]
Maddaluno, L.; Urwyler, C.; Werner, S. Fibroblast growth factors: Key players in regeneration and tissue repair. Development, 2017, 144(22), 4047-4060.
[http://dx.doi.org/10.1242/dev.152587] [PMID: 29138288]
[14]
Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care, 2016, 5(3), 119-136.
[http://dx.doi.org/10.1089/wound.2014.0561] [PMID: 26989578]
[15]
Wei, K.; Nguyen, H.N.; Brenner, M.B. Fibroblast pathology in inflammatory diseases. J. Clin. Invest., 2021, 131(20), e149538.
[http://dx.doi.org/10.1172/JCI149538] [PMID: 34651581]
[16]
Buechler, M.B.; Pradhan, R.N.; Krishnamurty, A.T.; Cox, C.; Calviello, A.K.; Wang, A.W.; Yang, Y.A.; Tam, L.; Caothien, R.; Roose-Girma, M.; Modrusan, Z.; Arron, J.R.; Bourgon, R.; Müller, S.; Turley, S.J. Cross-tissue organization of the fibroblast lineage. Nature, 2021, 593(7860), 575-579.
[http://dx.doi.org/10.1038/s41586-021-03549-5] [PMID: 33981032]
[17]
Koliaraki, V.; Prados, A.; Armaka, M.; Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol., 2020, 21(9), 974-982.
[http://dx.doi.org/10.1038/s41590-020-0741-2] [PMID: 32747813]
[18]
Mascharak, S.; desJardins-Park, H.E.; Longaker, M.T. Fibroblast heterogeneity in wound healing: Hurdles to clinical translation. Trends Mol. Med., 2020, 26(12), 1101-1106.
[http://dx.doi.org/10.1016/j.molmed.2020.07.008] [PMID: 32800679]
[19]
Lynch, M.D.; Watt, F.M. Fibroblast heterogeneity: Implications for human disease. J. Clin. Invest., 2018, 128(1), 26-35.
[http://dx.doi.org/10.1172/JCI93555] [PMID: 29293096]
[20]
Liu, Y.; Liu, Y.; Deng, J.; Li, W.; Nie, X. Fibroblast growth factor in diabetic foot ulcer: Progress and therapeutic prospects. Front. Endocrinol., 2021, 12, 744868.
[http://dx.doi.org/10.3389/fendo.2021.744868] [PMID: 34721299]
[21]
Maione, A.G.; Smith, A.; Kashpur, O.; Yanez, V.; Knight, E.; Mooney, D.J.; Veves, A.; Tomic-Canic, M.; Garlick, J.A. Altered ECM deposition by diabetic foot ulcer‐derived fibroblasts implicates fibronectin in chronic wound repair. Wound Repair Regen., 2016, 24(4), 630-643.
[http://dx.doi.org/10.1111/wrr.12437] [PMID: 27102877]
[22]
Theocharidis, G.; Thomas, B.E.; Sarkar, D.; Mumme, H.L.; Pilcher, W.J.R.; Dwivedi, B.; Sandoval-Schaefer, T.; Sîrbulescu, R.F.; Kafanas, A.; Mezghani, I.; Wang, P.; Lobao, A.; Vlachos, I.S.; Dash, B.; Hsia, H.C.; Horsley, V.; Bhasin, S.S.; Veves, A.; Bhasin, M. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun., 2022, 13(1), 181.
[http://dx.doi.org/10.1038/s41467-021-27801-8] [PMID: 35013299]
[23]
Littig, J.P.B.; Moellmer, R.; Estes, A.M.; Agrawal, D.K.; Rai, V. Increased population of CD40+ Fibroblasts is associated with impaired wound healing and chronic inflammation in diabetic foot ulcers. J. Clin. Med., 2022, 11(21), 6335.
[http://dx.doi.org/10.3390/jcm11216335] [PMID: 36362563]
[24]
Stubbington, M.J.T.; Rozenblatt-Rosen, O.; Regev, A.; Teichmann, S.A. Single-cell transcriptomics to explore the immune system in health and disease. Science, 2017, 358(6359), 58-63.
[http://dx.doi.org/10.1126/science.aan6828] [PMID: 28983043]
[25]
Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med., 2022, 12(3), e694.
[http://dx.doi.org/10.1002/ctm2.694] [PMID: 35352511]
[26]
Baghdadi, M.; Umeyama, Y.; Hama, N.; Kobayashi, T.; Han, N.; Wada, H.; Seino, K. Interleukin-34, a comprehensive review. J. Leukoc. Biol., 2018, 104(5), 931-951.
[http://dx.doi.org/10.1002/JLB.MR1117-457R] [PMID: 30066957]
[27]
Baghdadi, M.; Endo, H.; Tanaka, Y.; Wada, H.; Seino, K. Interleukin 34, from pathogenesis to clinical applications. Cytokine, 2017, 99, 139-147.
[http://dx.doi.org/10.1016/j.cyto.2017.08.020] [PMID: 28886491]
[28]
Franzè, E.; Stolfi, C.; Troncone, E.; Scarozza, P.; Monteleone, G. Role of interleukin-34 in cancer. Cancers, 2020, 12(1), 252.
[http://dx.doi.org/10.3390/cancers12010252] [PMID: 31968663]
[29]
Kajihara, N.; Seino, K.I. Interleukin-34: a key molecule in the tumor microenvironment Rinsho Ketsueki, 2021, 62(8), 1302-1307.
[PMID: 34497220]
[30]
Han, N.; Anwar, D.; Hama, N.; Kobayashi, T.; Suzuki, H.; Takahashi, H.; Wada, H.; Otsuka, R.; Baghdadi, M.; Seino, K. Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. Inflamm. Regen., 2020, 40(1), 25.
[http://dx.doi.org/10.1186/s41232-020-00129-4] [PMID: 33072227]
[31]
Endo, H.; Hama, N.; Baghdadi, M.; Ishikawa, K.; Otsuka, R.; Wada, H.; Asano, H.; Endo, D.; Konno, Y.; Kato, T.; Watari, H.; Tozawa, A.; Suzuki, N.; Yokose, T.; Takano, A.; Kato, H.; Miyagi, Y.; Daigo, Y.; Seino, K. Interleukin-34 expression in ovarian cancer: A possible correlation with disease progression. Int. Immunol., 2020, 32(3), 175-186.
[http://dx.doi.org/10.1093/intimm/dxz074] [PMID: 31868884]
[32]
Li, X.; Lei, Y.; Gao, Z.; Wu, G.; Gao, W.; Xia, L.; Lu, J.; Shen, H. IL-34 affects fibroblast-like synoviocyte proliferation, apoptosis and function by regulating IL-17. Sci. Rep., 2021, 11(1), 16378.
[http://dx.doi.org/10.1038/s41598-021-95839-1] [PMID: 34385542]
[33]
Hwang, S.J.; Choi, B.; Kang, S.S.; Chang, J.H.; Kim, Y.G.; Chung, Y.H.; Sohn, D.; So, M.; Lee, C.K.; Robinson, W.H.; Chang, E.J. Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res. Ther., 2012, 14(1), R14.
[http://dx.doi.org/10.1186/ar3693] [PMID: 22264405]
[34]
Zhou, J.; Sun, X.; Zhang, J.; Yang, Y.; Chen, D.; Cao, J. IL-34 regulates IL-6 and IL-8 production in human lung fibroblasts via MAPK, PI3K-Akt, JAK and NF-κB signaling pathways. Int. Immunopharmacol., 2018, 61, 119-125.
[http://dx.doi.org/10.1016/j.intimp.2018.05.023] [PMID: 29857241]
[35]
Lelios, I.; Cansever, D.; Utz, S.G.; Mildenberger, W.; Stifter, S.A.; Greter, M. Emerging roles of IL-34 in health and disease. J. Exp. Med., 2020, 217(3), e20190290.
[http://dx.doi.org/10.1084/jem.20190290] [PMID: 31940023]
[36]
Franzè, E.; Dinallo, V.; Laudisi, F.; Di Grazia, A.; Di Fusco, D.; Colantoni, A.; Ortenzi, A.; Giuffrida, P.; Di Carlo, S.; Sica, G.S.; Di Sabatino, A.; Monteleone, G. Interleukin-34 stimulates gut fibroblasts to produce collagen synthesis. J. Crohn’s Colitis, 2020, 14(10), 1436-1445.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa073] [PMID: 32271873]
[37]
Horiba, S.; Kami, R.; Tsutsui, T.; Hosoi, J. IL-34 downregulation-associated M1/M2 macrophage imbalance is related to inflammaging in sun-exposed human skin. JID Innovations, 2022, 2(3), 100112.
[http://dx.doi.org/10.1016/j.xjidi.2022.100112] [PMID: 35521044]
[38]
Boström, E.A.; Lundberg, P. The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS One, 2013, 8(12), e81665.
[http://dx.doi.org/10.1371/journal.pone.0081665] [PMID: 24339952]
[39]
Piao, C.; Wang, X.; Peng, S.; Guo, X.; Zhao, H.; He, L.; Zeng, Y.; Zhang, F.; Zhu, K.; Wang, Y. IL-34 causes inflammation and beta cell apoptosis and dysfunction in gestational diabetes mellitus. Endocr. Connect., 2019, 8(11), 1503-1512.
[http://dx.doi.org/10.1530/EC-19-0436] [PMID: 31648183]
[40]
Chang, E.J.; Lee, S.K.; Song, Y.S.; Jang, Y.J.; Park, H.S.; Hong, J.P.; Ko, A.R.; Kim, D.Y.; Kim, J.H.; Lee, Y.J.; Heo, Y.S. IL-34 is associated with obesity, chronic inflammation, and insulin resistance. J. Clin. Endocrinol. Metab., 2014, 99(7), E1263-E1271.
[http://dx.doi.org/10.1210/jc.2013-4409] [PMID: 24712570]
[41]
Liu, H.; Jin, F.; Li, Q.; Gao, Y.; Liu, X.; Hou, R. IL-34 and coronary heart disease complicated with-diabetes mellitus. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2021, 46(12), 1409-1414.
[42]
Rai, V.; Moellmer, R.; Agrawal, D.K. Role of fibroblast plasticity and heterogeneity in modulating angiogenesis and healing in the diabetic foot ulcer. Mol. Biol. Rep., 2023, 50(2), 1913-1929.
[http://dx.doi.org/10.1007/s11033-022-08107-4] [PMID: 36528662]
[43]
Zhou, Y.; Peng, H.; Sun, H.; Peng, X.; Tang, C.; Gan, Y.; Chen, X.; Mathur, A.; Hu, B.; Slade, M.D.; Montgomery, R.R.; Shaw, A.C.; Homer, R.J.; White, E.S.; Lee, C.M.; Moore, M.W.; Gulati, M.; Geun Lee, C.; Elias, J.A.; Herzog, E.L. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in Mammalian lung fibrosis. Sci. Transl. Med., 2014, 6(240), 240ra76.
[http://dx.doi.org/10.1126/scitranslmed.3007096] [PMID: 24920662]
[44]
Schultz, G.S.; Chin, G.A.; Moldawer, L.; Diegelmann, R.F. 23 - Principles of wound healing. In: Mechanisms of Vascular Disease; Cambridge University Press, 2011; pp. 423-450.
[http://dx.doi.org/10.1017/UPO9781922064004.024]
[45]
Krizanova, O.; Penesova, A.; Sokol, J.; Hokynkova, A.; Samadian, A.; Babula, P. Signaling pathways in cutaneous wound healing. Front. Physiol., 2022, 13, 1030851.
[http://dx.doi.org/10.3389/fphys.2022.1030851] [PMID: 36505088]
[46]
Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol., 2020, 10(9), 200223.
[http://dx.doi.org/10.1098/rsob.200223] [PMID: 32993416]
[47]
Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic wound-healing science. Medicina, 2021, 57(10), 1072.
[http://dx.doi.org/10.3390/medicina57101072] [PMID: 34684109]
[48]
Guo, S.; DiPietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[49]
Soliman, A.M.; Barreda, D.R. Acute inflammation in tissue healing. Int. J. Mol. Sci., 2022, 24(1), 641.
[http://dx.doi.org/10.3390/ijms24010641] [PMID: 36614083]
[50]
Wang, Y.; Chen, L.; Ren, D.Y.; Feng, Z.X.; Zhang, L.Y.; Zhong, Y.F.; Jin, M.Y.; Xu, F.W.; Feng, C.Y.; Du, Y.Z.; Tan, W.Q. Mussel-inspired collagen-hyaluronic acid composite scaffold with excellent antioxidant properties and sustained release of a growth factor for enhancing diabetic wound healing. Mater. Today Bio, 2022, 15, 100320.
[http://dx.doi.org/10.1016/j.mtbio.2022.100320] [PMID: 35757026]
[51]
Izadi, M.; Kheirjou, R.; Mohammadpour, R.; Aliyoldashi, M.H.; Moghadam, S.J.; Khorvash, F.; Jafari, N.J.; Shirvani, S. khalili, N. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing. Diabetes Metab. Syndr., 2019, 13(1), 822-825.
[http://dx.doi.org/10.1016/j.dsx.2018.11.060] [PMID: 30641815]
[52]
Zhao, Y.; Luo, L.; Huang, L.; Zhang, Y.; Tong, M.; Pan, H.; Shangguan, J.; Yao, Q.; Xu, S.; Xu, H. In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. J. Control. Release, 2022, 350, 93-106.
[53]
Yu, C.; Zhang, P.; Zhang, T.; Sun, L. IL-34 regulates the inflammatory response and anti-bacterial immune defense of Japanese flounder Paralichthys olivaceus. Fish Shellfish Immunol., 2020, 104, 228-236.
[http://dx.doi.org/10.1016/j.fsi.2020.05.073] [PMID: 32502613]
[54]
Shang, J.; Xu, Y.; Pu, S.; Sun, X.; Gao, X. Role of IL-34 and its receptors in inflammatory diseases. Cytokine, 2023, 171, 156348.
[http://dx.doi.org/10.1016/j.cyto.2023.156348] [PMID: 37683444]
[55]
Ge, Y.; Huang, M.; Zhu, X.; Yao, Y. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. Adv. Protein Chem. Struct. Biol., 2020, 119, 39-63.
[http://dx.doi.org/10.1016/bs.apcsb.2019.02.003] [PMID: 31997772]
[56]
Guillonneau, C.; Bézie, S.; Anegon, I. Immunoregulatory properties of the cytokine IL-34. Cell. Mol. Life Sci., 2017, 74(14), 2569-2586.
[http://dx.doi.org/10.1007/s00018-017-2482-4] [PMID: 28258292]
[57]
Yang, H.; Luo, Y.; Lai, X. Il-34 regulates MAPKs, PI3K/Akt, JAK and NF-κB pathways and induces the expression of inflammatory factors in RA-FLS. Clin. Exp. Rheumatol., 2022, 40(9), 1779-1788.
[PMID: 35200127]
[58]
Boulakirba, S.; Pfeifer, A.; Mhaidly, R.; Obba, S.; Goulard, M.; Schmitt, T.; Chaintreuil, P.; Calleja, A.; Furstoss, N.; Orange, F.; Lacas-Gervais, S.; Boyer, L.; Marchetti, S.; Verhoeyen, E.; Luciano, F.; Robert, G.; Auberger, P.; Jacquel, A. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci. Rep., 2018, 8(1), 256.
[http://dx.doi.org/10.1038/s41598-017-18433-4] [PMID: 29321503]
[59]
Lindau, R.; Mehta, R.B.; Lash, G.E.; Papapavlou, G.; Boij, R.; Berg, G.; Jenmalm, M.C.; Ernerudh, J.; Svensson-Arvelund, J. Interleukin-34 is present at the fetal–maternal interface and induces immunoregulatory macrophages of a decidual phenotype in vitro. Hum. Reprod., 2018, 33(4), 588-599.
[http://dx.doi.org/10.1093/humrep/dey037] [PMID: 29579271]
[60]
Ross, E.A.; Devitt, A.; Johnson, J.R. Macrophages: The good, the bad, and the gluttony. Front. Immunol., 2021, 12, 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[61]
Hassanshahi, A.; Moradzad, M.; Ghalamkari, S.; Fadaei, M.; Cowin, A.J.; Hassanshahi, M. Macrophage-mediated inflammation in skin wound healing. Cells, 2022, 11(19), 2953.
[http://dx.doi.org/10.3390/cells11192953] [PMID: 36230913]
[62]
Lin, W.; Xu, D.; Austin, C.D.; Caplazi, P.; Senger, K.; Sun, Y.; Jeet, S.; Young, J.; Delarosa, D.; Suto, E.; Huang, Z.; Zhang, J.; Yan, D.; Corzo, C.; Barck, K.; Rajan, S.; Looney, C.; Gandham, V.; Lesch, J.; Liang, W.C.; Mai, E.; Ngu, H.; Ratti, N.; Chen, Y.; Misner, D.; Lin, T.; Danilenko, D.; Katavolos, P.; Doudemont, E.; Uppal, H.; Eastham, J.; Mak, J.; de Almeida, P.E.; Bao, K.; Hadadianpour, A.; Keir, M.; Carano, R.A.D.; Diehl, L.; Xu, M.; Wu, Y.; Weimer, R.M.; DeVoss, J.; Lee, W.P.; Balazs, M.; Walsh, K.; Alatsis, K.R.; Martin, F.; Zarrin, A.A. Function of CSF1 and IL34 in macrophage homeostasis, inflammation, and cancer. Front. Immunol., 2019, 10, 2019.
[http://dx.doi.org/10.3389/fimmu.2019.02019] [PMID: 31552020]
[63]
Muñoz-Garcia, J.; Cochonneau, D.; Télétchéa, S.; Moranton, E.; Lanoe, D.; Brion, R.; Lézot, F.; Heymann, M.F.; Heymann, D. The twin cytokines interleukin-34 and CSF-1: Masterful conductors of macrophage homeostasis. Theranostics, 2021, 11(4), 1568-1593.
[http://dx.doi.org/10.7150/thno.50683] [PMID: 33408768]
[64]
Qiu, P.; Liu, Y.; Zhang, J. Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation, 2019, 42(1), 6-19.
[http://dx.doi.org/10.1007/s10753-018-0890-8] [PMID: 30194660]
[65]
Wu, M.Y.; Lu, J.H. Autophagy and macrophage functions: Inflammatory response and phagocytosis. Cells, 2019, 9(1), 70.
[http://dx.doi.org/10.3390/cells9010070] [PMID: 31892110]
[66]
Nehring, S.M.; Goyal, A.; Patel, B.C. Reactive Protein; In StatPearls: Treasure Island (FL), 2022.
[67]
Pay, J.B.; Shaw, A.M. Towards salivary C-reactive protein as a viable biomarker of systemic inflammation. Clin. Biochem., 2019, 68, 1-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.006] [PMID: 30995442]
[68]
Worsley, A.L.; Lui, D.H.; Ntow-Boahene, W.; Song, W.; Good, L.; Tsui, J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int. Wound J., 2023, 20(6), 2346-2359.
[PMID: 36564054]
[69]
Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res., 2017, 58(1-2), 81-94.
[http://dx.doi.org/10.1159/000454919] [PMID: 27974711]
[70]
Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev., 2019, 146, 97-125.
[http://dx.doi.org/10.1016/j.addr.2018.09.010] [PMID: 30267742]
[71]
Shao, Z.; Yin, T.; Jiang, J.; He, Y.; Xiang, T.; Zhou, S. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater., 2023, 20, 561-573.
[http://dx.doi.org/10.1016/j.bioactmat.2022.06.018] [PMID: 35846841]
[72]
Ségaliny, A.I.; Mohamadi, A.; Dizier, B.; Lokajczyk, A.; Brion, R.; Lanel, R.; Amiaud, J.; Charrier, C.; Boisson-Vidal, C.; Heymann, D. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int. J. Cancer, 2015, 137(1), 73-85.
[http://dx.doi.org/10.1002/ijc.29376] [PMID: 25471534]
[73]
Cui, G.; Liu, H.; Laugsand, J.B. Endothelial cells-directed angiogenesis in colorectal cancer: Interleukin as the mediator and pharmacological target. Int. Immunopharmacol., 2023, 114, 109525.
[http://dx.doi.org/10.1016/j.intimp.2022.109525] [PMID: 36508917]
[74]
Eda, H.; Zhang, J.; Keith, R.H.; Michener, M.; Beidler, D.R.; Monahan, J.B. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine, 2010, 52(3), 215-220.
[http://dx.doi.org/10.1016/j.cyto.2010.08.005] [PMID: 20829061]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy