Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Clinical Research Progress of BTK Inhibitors in the Treatment of Autoimmune Diseases

Author(s): Pei Lin, Dandan Zhang and Jun Lin*

Volume 23, Issue 28, 2023

Published on: 06 October, 2023

Page: [2609 - 2620] Pages: 12

DOI: 10.2174/0115680266264515230921052521

Price: $65

Abstract

Bruton tyrosine kinase (BTK) is an important protein of the tyrosine kinase family and plays a key role in signal transduction, proliferation, migration, and survival in B lymphocytes. The inhibition of BTK is a promising therapy for various autoimmune diseases (AD) involving abnormal B cell function, such as rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE). This article briefly summarizes the role of BTK in the BCR signaling pathway, the development process of BTK inhibitors, and especially the latest progress of their clinical trials for the treatment of AD.

Next »
Graphical Abstract

[1]
Bergthaler, A.; Menche, J. The immune system as a social network. Nat. Immunol., 2017, 18(5), 481-482.
[http://dx.doi.org/10.1038/ni.3727] [PMID: 28418389]
[2]
Fugger, L.; Jensen, L.T.; Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell, 2020, 181(1), 63-80.
[http://dx.doi.org/10.1016/j.cell.2020.03.007] [PMID: 32243797]
[3]
Wang, F.; Tang, J.; Li, Z.; Qi, Y.; Li, G.; Wang, F. Oral methotrexate at doses 15–25 mg/week is non-inferior to parenteral regarding efficacy and safety in the treatment of rheumatoid arthritis: A systematic review and meta-analysis. Clin. Rheumatol., 2022, 41(9), 2701-2712.
[http://dx.doi.org/10.1007/s10067-022-06221-z] [PMID: 35672619]
[4]
Soelberg Sorensen, P. Safety concerns and risk management of multiple sclerosis therapies. Acta Neurol. Scand., 2017, 136(3), 168-186.
[http://dx.doi.org/10.1111/ane.12712] [PMID: 27891572]
[5]
Hofmann, K.; Clauder, A.K.; Manz, R.A. Targeting B cells and plasma cells in autoimmune diseases. Front. Immunol., 2018, 9, 835.
[http://dx.doi.org/10.3389/fimmu.2018.00835] [PMID: 29740441]
[6]
Corneth, O.B.J.; Klein Wolterink, R.G.J.; Hendriks, R.W. BTK signaling in B cell differentiation and autoimmunity. Curr. Top. Microbiol. Immunol., 2015, 393, 67-105.
[http://dx.doi.org/10.1007/82_2015_478] [PMID: 26341110]
[7]
Rozkiewicz, D.; Hermanowicz, J.M.; Kwiatkowska, I.; Krupa, A.; Pawlak, D. Bruton’s tyrosine kinase inhibitors (BTKIs): Review of preclinical studies and evaluation of clinical trials. Molecules, 2023, 28(5), 2400.
[http://dx.doi.org/10.3390/molecules28052400] [PMID: 36903645]
[8]
Allen, R.C.; Nachtman, R.G.; Rosenblatt, H.M.; Belmont, J.W. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia. Am. J. Hum. Genet., 1994, 54(1), 25-35.
[PMID: 7506482]
[9]
Rawlings, D.J.; Saffran, D.C.; Tsukada, S.; Largaespada, D.A.; Grimaldi, J.C.; Cohen, L.; Mohr, R.N.; Bazan, J.F.; Howard, M.; Copeland, N.G.; Jenkins, N.A.; Witte, O.N. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science, 1993, 261(5119), 358-361.
[http://dx.doi.org/10.1126/science.8332901] [PMID: 8332901]
[10]
Thomas, J.D.; Sideras, P.; Smith, C.I.E.; Vořechovský, I.; Chapman, V.; Paul, W.E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science, 1993, 261(5119), 355-358.
[http://dx.doi.org/10.1126/science.8332900] [PMID: 8332900]
[11]
Tsukada, S.; Saffran, D.C.; Rawlings, D.J.; Parolini, O.; Allen, R.C.; Klisak, I.; Sparkes, R.S.; Kubagawa, H.; Mohandas, T.; Quan, S.; Belmont, J.W.; Cooper, M.D.; Conley, M.E.; Witte, O.N. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell, 1993, 72(2), 279-290.
[http://dx.doi.org/10.1016/0092-8674(93)90667-F] [PMID: 8425221]
[12]
Ponader, S.; Burger, J.A. Bruton’s tyrosine kinase: From X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J. Clin. Oncol., 2014, 32(17), 1830-1839.
[http://dx.doi.org/10.1200/JCO.2013.53.1046] [PMID: 24778403]
[13]
Smith, C.I.E.; Islam, T.C.; Mattsson, P.T.; Mohamed, A.J.; Nore, B.F.; Vihinen, M. The Tec family of cytoplasmic tyrosine kinases: Mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. BioEssays, 2001, 23(5), 436-446.
[http://dx.doi.org/10.1002/bies.1062] [PMID: 11340625]
[14]
Wahl, M.I.; Fluckiger, A.C.; Kato, R.M.; Park, H.; Witte, O.N.; Rawlings, D.J. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc. Natl. Acad. Sci., 1997, 94(21), 11526-11533.
[http://dx.doi.org/10.1073/pnas.94.21.11526] [PMID: 9326643]
[15]
Wang, H.; Guo, H.; Yang, J.; Liu, Y.; Liu, X.; Zhang, Q.; Zhou, K. Bruton tyrosine kinase inhibitors in B-cell lymphoma: Beyond the antitumour effect. Exp. Hematol. Oncol., 2022, 11(1), 60.
[http://dx.doi.org/10.1186/s40164-022-00315-9] [PMID: 36138486]
[16]
Gozzetti, A.; Candi, V.; Brambilla, C.Z.; Papini, G.; Fabbri, A.; Bocchia, M. Bruton kinase inhibitors in chronic lymphocytic leukemia. Anticancer. Agents Med. Chem., 2017, 17(8), 1040-1045.
[PMID: 27697038]
[17]
Dong, Y.; Pi, X.; Bartels-Burgahn, F.; Saltukoglu, D.; Liang, Z.; Yang, J.; Alt, F.W.; Reth, M.; Wu, H. Structural principles of B cell antigen receptor assembly. Nature, 2022, 612(7938), 156-161.
[http://dx.doi.org/10.1038/s41586-022-05412-7] [PMID: 36228656]
[18]
Burger, J.A. Bruton tyrosine kinase inhibitors: Present and future. Cancer J., 2019, 25(6), 386-393.
[http://dx.doi.org/10.1097/PPO.0000000000000412] [PMID: 31764119]
[19]
Cameron, F.; Sanford, M. Ibrutinib: First global approval. Drugs, 2014, 74(2), 263-271.
[http://dx.doi.org/10.1007/s40265-014-0178-8] [PMID: 24464309]
[20]
Keam, S.J. Ibrutinib: Pediatric first approval. Paediatr. Drugs, 2023, 25(1), 127-133.
[http://dx.doi.org/10.1007/s40272-022-00543-w] [PMID: 36352302]
[21]
Karr, M.; Roeker, L. A history of targeted therapy development and progress in novel-novel combinations for chronic lymphocytic leukemia (CLL). Cancers, 2023, 15(4), 1018.
[http://dx.doi.org/10.3390/cancers15041018] [PMID: 36831364]
[22]
Szklener, K.; Michalski, A.; Żak, K.; Piwoński, M.; Mańdziuk, S. Ibrutinib in the treatment of solid tumors: Current state of knowledge and future directions. Cells, 2022, 11(8), 1338.
[http://dx.doi.org/10.3390/cells11081338] [PMID: 35456016]
[23]
Salem, J.E.; Manouchehri, A.; Bretagne, M.; Lebrun-Vignes, B.; Groarke, J.D.; Johnson, D.B.; Yang, T.; Reddy, N.M.; Funck-Brentano, C.; Brown, J.R.; Roden, D.M.; Moslehi, J.J. Cardiovascular toxicities associated with ibrutinib. J. Am. Coll. Cardiol., 2019, 74(13), 1667-1678.
[http://dx.doi.org/10.1016/j.jacc.2019.07.056] [PMID: 31558250]
[24]
Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; Pu, J.; Kiselev, P.; Goy, A.; Claxton, D.; Isaac, K.; Kennard, K.H.; Timlin, C.; Landsburg, D.; Winter, A.; Nasta, S.D.; Bachow, S.H.; Schuster, S.J.; Dorsey, C.; Svoboda, J.; Barr, P.; Ujjani, C.S. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis. Haematologica, 2018, 103(5), 874-879.
[http://dx.doi.org/10.3324/haematol.2017.182907] [PMID: 29419429]
[25]
Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, R.A.; Buggy, J.J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci., 2010, 107(29), 13075-13080.
[http://dx.doi.org/10.1073/pnas.1004594107] [PMID: 20615965]
[26]
Markham, A.; Dhillon, S. Acalabrutinib:First global approval. Drugs, 2018, 78(1), 139-145.
[http://dx.doi.org/10.1007/s40265-017-0852-8] [PMID: 29209955]
[27]
Awan, F.T.; Schuh, A.; Brown, J.R.; Furman, R.R.; Pagel, J.M.; Hillmen, P.; Stephens, D.M.; Woyach, J.; Bibikova, E.; Charuworn, P.; Frigault, M.M.; Hamdy, A.; Izumi, R.; Linghu, B.; Patel, P.; Wang, M.H.; Byrd, J.C. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv., 2019, 3(9), 1553-1562.
[http://dx.doi.org/10.1182/bloodadvances.2018030007] [PMID: 31088809]
[28]
Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; Garcia-Marco, J.A.; Mato, A.; Pinilla-Ibarz, J.; Seymour, J.F.; Lepretre, S.; Stilgenbauer, S.; Robak, T.; Rothbaum, W.; Izumi, R.; Hamdy, A.; Patel, P.; Higgins, K.; Sohoni, S.; Jurczak, W. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: Results of the first randomized phase III trial. J. Clin. Oncol., 2021, 39(31), 3441-3452.
[http://dx.doi.org/10.1200/JCO.21.01210] [PMID: 34310172]
[29]
Furman, R.R.; Byrd, J.C.; Owen, R.G.; O’Brien, S.M.; Brown, J.R.; Hillmen, P.; Stephens, D.M.; Chernyukhin, N.; Lezhava, T.; Hamdy, A.M.; Izumi, R.; Patel, P.; Baek, M.; Christian, B.; Dyer, M.J.S.; Streetly, M.J.; Sun, C.; Rule, S.; Wang, M.; Ghia, P.; Jurczak, W.; Pagel, J.M.; Sharman, J.P. Pooled analysis of safety data from clinical trials evaluating acalabrutinib monotherapy in mature B-cell malignancies. Leukemia, 2021, 35(11), 3201-3211.
[http://dx.doi.org/10.1038/s41375-021-01252-y] [PMID: 33907299]
[30]
Zhu, S.; Jung, J.; Victor, E.; Arceo, J.; Gokhale, S.; Xie, P. Clinical trials of the BTK inhibitors Ibrutinib and Acalabrutinib in human diseases beyond B cell malignancies. Front. Oncol., 2021, 11, 737943.
[http://dx.doi.org/10.3389/fonc.2021.737943] [PMID: 34778053]
[31]
Syed, Y.Y. Zanubrutinib: First approval. Drugs, 2020, 80(1), 91-97.
[http://dx.doi.org/10.1007/s40265-019-01252-4] [PMID: 31933167]
[32]
Tam, C.S.; Trotman, J.; Opat, S.; Burger, J.A.; Cull, G.; Gottlieb, D.; Harrup, R.; Johnston, P.B.; Marlton, P.; Munoz, J.; Seymour, J.F.; Simpson, D.; Tedeschi, A.; Elstrom, R.; Yu, Y.; Tang, Z.; Han, L.; Huang, J.; Novotny, W.; Wang, L.; Roberts, A.W. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood, 2019, 134(11), 851-859.
[http://dx.doi.org/10.1182/blood.2019001160] [PMID: 31340982]
[33]
Tam, C.S.; Dimopoulos, M.; Garcia-Sanz, R.; Trotman, J.; Opat, S.; Roberts, A.W.; Owen, R.; Song, Y.; Xu, W.; Zhu, J.; Li, J.; Qiu, L.; D’Sa, S.; Jurczak, W.; Cull, G.; Marlton, P.; Gottlieb, D.; Munoz, J.; Phillips, T.; Du, C.; Ji, M.; Zhou, L.; Guo, H.; Zhu, H.; Chan, W.Y.; Cohen, A.; Novotny, W.; Huang, J.; Tedeschi, A. Pooled safety analysis of zanubrutinib monotherapy in patients with B-cell malignancies. Blood Adv., 2022, 6(4), 1296-1308.
[http://dx.doi.org/10.1182/bloodadvances.2021005621] [PMID: 34724705]
[34]
Killock, D. Zanubrutinib succeeds in head-to-head with ibrutinib in R/R CLL. Nat. Rev. Clin. Oncol., 2023, 20(2), 64.
[http://dx.doi.org/10.1038/s41571-022-00724-z] [PMID: 36543933]
[35]
Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; Simkovic, M.; Mayer, J.; Gillespie-Twardy, A.; Ferrajoli, A.; Ganly, P.S.; Weinkove, R.; Grosicki, S.; Mital, A.; Robak, T.; Osterborg, A.; Yimer, H.A.; Salmi, T.; Wang, M.D.Y.; Fu, L.; Li, J.; Wu, K.; Cohen, A.; Shadman, M. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med., 2023, 388(4), 319-332.
[http://dx.doi.org/10.1056/NEJMoa2211582] [PMID: 36511784]
[36]
Dhillon, S. Orelabrutinib: First approval. Drugs, 2021, 81(4), 503-507.
[http://dx.doi.org/10.1007/s40265-021-01482-5] [PMID: 33704654]
[37]
Xu, W.; Zhou, K.; Wang, T.; Yang, S.; Liu, L.; Hu, Y.; Zhang, W.; Ding, K.; Zhou, J.; Gao, S.; Xu, B.; Zhu, Z.; Liu, T.; Zhang, H.; Hu, J.; Ji, C.; Wang, S.; Xia, Z.; Wang, X.; Li, Y.; Song, Y.; Ma, S.; Tang, X.; Zhang, B.; Li, J. Orelabrutinib in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma patients: Multi-center, single-arm, open-label, phase 2 study. Am. J. Hematol., 2023, 98(4), 571-579.
[http://dx.doi.org/10.1002/ajh.26826] [PMID: 36683422]
[38]
Gu, D.; Li, J.; Miao, Y. Evaluating orelabrutinib as a novel treatment option for relapsed/refractory chronic lymphocytic leukemia in China. Expert Opin. Pharmacother., 2022, 23(18), 1979-1986.
[http://dx.doi.org/10.1080/14656566.2022.2144218] [PMID: 36329558]
[39]
Dhillon, S. Tirabrutinib: First approval. Drugs, 2020, 80(8), 835-840.
[http://dx.doi.org/10.1007/s40265-020-01318-8] [PMID: 32382949]
[40]
Munakata, W.; Ando, K.; Yokoyama, M.; Fukuhara, N.; Yamamoto, K.; Fukuhara, S.; Ohmachi, K.; Mishima, Y.; Ichikawa, S.; Ogiya, D.; Aoi, A.; Hatsumichi, M.; Tobinai, K. Long-term safety profile of tirabrutinib: Final results of a Japanese Phase I study in patients with relapsed or refractory B-cell malignancies. Int. J. Hematol., 2023, 117(4), 553-562.
[http://dx.doi.org/10.1007/s12185-022-03514-6] [PMID: 36576659]
[41]
Sekiguchi, N.; Rai, S.; Munakata, W.; Suzuki, K.; Handa, H.; Shibayama, H.; Endo, T.; Terui, Y.; Iwaki, N.; Fukuhara, N.; Tatetsu, H.; Iida, S.; Ishikawa, T.; Iguchi, D.; Izutsu, K. Two-year outcomes of tirabrutinib monotherapy in Waldenström’s macroglobulinemia. Cancer Sci., 2022, 113(6), 2085-2096.
[http://dx.doi.org/10.1111/cas.15344] [PMID: 35332633]
[42]
Keam, S.J. Pirtobrutinib: First approval. Drugs, 2023, 83(6), 547-553.
[http://dx.doi.org/10.1007/s40265-023-01860-1] [PMID: 37004673]
[43]
Gomez, E.B.; Ebata, K.; Randeria, H.S.; Rosendahl, M.S.; Cedervall, E.P.; Morales, T.H.; Hanson, L.M.; Brown, N.E.; Gong, X.; Stephens, J.R.; Wu, W.; Lippincott, I.; Ku, K.S.; Walgren, R.A.; Abada, P.B.; Ballard, J.A.; Allerston, C.K.; Brandhuber, B.J. Pirtobrutinib preclinical characterization: A highly selective, non-covalent (reversible) BTK inhibitor. Blood, 2023, 142(1), 2022018674.
[http://dx.doi.org/10.1182/blood.2022018674] [PMID: 36796019]
[44]
Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; Alencar, A.; Lech-Maranda, E.; Wierda, W.G.; Coombs, C.C.; Gerson, J.N.; Ghia, P.; Le Gouill, S.; Lewis, D.J.; Sundaram, S.; Cohen, J.B.; Flinn, I.W.; Tam, C.S.; Barve, M.A.; Kuss, B.; Taylor, J.; Abdel-Wahab, O.; Schuster, S.J.; Palomba, M.L.; Lewis, K.L.; Roeker, L.E.; Davids, M.S.; Tan, X.N.; Fenske, T.S.; Wallin, J.; Tsai, D.E.; Ku, N.C.; Zhu, E.; Chen, J.; Yin, M.; Nair, B.; Ebata, K.; Marella, N.; Brown, J.R.; Wang, M. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet, 2021, 397(10277), 892-901.
[http://dx.doi.org/10.1016/S0140-6736(21)00224-5] [PMID: 33676628]
[45]
Wang, E.; Mi, X.; Thompson, M.C.; Montoya, S.; Notti, R.Q.; Afaghani, J.; Durham, B.H.; Penson, A.; Witkowski, M.T.; Lu, S.X.; Bourcier, J.; Hogg, S.J.; Erickson, C.; Cui, D.; Cho, H.; Singer, M.; Totiger, T.M.; Chaudhry, S.; Geyer, M.; Alencar, A.; Linley, A.J.; Palomba, M.L.; Coombs, C.C.; Park, J.H.; Zelenetz, A.; Roeker, L.; Rosendahl, M.; Tsai, D.E.; Ebata, K.; Brandhuber, B.; Hyman, D.M.; Aifantis, I.; Mato, A.; Taylor, J.; Abdel-Wahab, O. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N. Engl. J. Med., 2022, 386(8), 735-743.
[http://dx.doi.org/10.1056/NEJMoa2114110] [PMID: 35196427]
[46]
von Hundelshausen, P.; Siess, W. Bleeding by Bruton tyrosine kinase-inhibitors: Dependency on drug type and disease. Cancers, 2021, 13(5), 1103.
[http://dx.doi.org/10.3390/cancers13051103] [PMID: 33806595]
[47]
Dhami, K.; Chakraborty, A.; Gururaja, T.L.; Cheung, L.W.K.; Sun, C.; DeAnda, F.; Huang, X. Kinase-deficient BTK mutants confer ibrutinib resistance through activation of the kinase HCK. Sci. Signal., 2022, 15(736), eabg5216.
[http://dx.doi.org/10.1126/scisignal.abg5216] [PMID: 35639855]
[48]
Li, K.; Crews, C.M. PROTACs: Past, present and future. Chem. Soc. Rev., 2022, 51(12), 5214-5236.
[http://dx.doi.org/10.1039/D2CS00193D] [PMID: 35671157]
[49]
Robbins, D.W.; Kelly, A.; Tan, M.; McIntosh, J.; Wu, J.; Konst, Z.; Kato, D.; Peng, G.; Mihalic, J.; Weiss, D.; Perez, L.; Tung, J.; Kolobova, A.; Borodovsky, S.; Rountree, R.; Tenn-McClellan, A.; Noviski, M.; Ye, J.; Basham, S.; Ingallinera, T.; McKinnell, J.; Karr, D.E.; Powers, J.; Guiducci, C.; Sands, A. Nx-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies. Blood, 2020, 136(Suppl. 1), 34.
[http://dx.doi.org/10.1182/blood-2020-141461]
[50]
Scarfò, L. Novel therapies and combinations in CLL refractory to BTK inhibitors and venetoclax. Hematology (Am. Soc. Hematol. Educ. Program), 2022, 2022(1), 316-322.
[http://dx.doi.org/10.1182/hematology.2022000344] [PMID: 36485153]
[51]
Montoya, S.; Bourcier, J.; Thompson, M.C.; Noviski, M.; Tan, M.; Wang, E.; Mi, X.; Brathaban, N.; Barrientos Risso, C.; Tsai, D.; Ye, J.; Jahn, J.; Pardo, G.; Cabuhat, L.; Notti, R.; Pardo, A.; Affer, M.; Yung, S.; Luliano, J.; Powers, J.; Robbins, D.W.; Nawaratne, V.; Totiger, T.M.; Pena-Velasquez, C.; Rhodes, J.M.; Zelenetz, A.D.; Roeker, L.E.; Lu, H.; Linley, A.; Mato, A.R.; Abdel-Wahab, O.; Taylor, J. Kinase dead BTK mutations confer resistance to covalent and noncovalent BTK inhibitors but are susceptible to clinical stage BTK degraders. Blood, 2022, 140(Suppl. 1), 1811-1813.
[http://dx.doi.org/10.1182/blood-2022-163268]
[52]
McDonald, C.; Xanthopoulos, C.; Kostareli, E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology, 2021, 164(4), 722-736.
[http://dx.doi.org/10.1111/imm.13416] [PMID: 34534359]
[53]
Carnero Contentti, E.; Correale, J. Current perspectives: Evidence to date on BTK inhibitors in the management of multiple sclerosis. Drug Des. Devel. Ther., 2022, 16, 3473-3490.
[http://dx.doi.org/10.2147/DDDT.S348129] [PMID: 36238195]
[54]
Cheung, T.T.; McInnes, I.B. Future therapeutic targets in rheumatoid arthritis? Semin. Immunopathol., 2017, 39(4), 487-500.
[http://dx.doi.org/10.1007/s00281-017-0623-3] [PMID: 28451787]
[55]
Seyferth, A.V.; Cichocki, M.N.; Wang, C.W.; Huang, Y.J.; Huang, Y.W.; Chen, J.S.; Kuo, C.F.; Chung, K.C. Factors associated with quality care among adults with rheumatoid arthritis. JAMA Netw. Open, 2022, 5(12), e2246299.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.46299] [PMID: 36508216]
[56]
Goess, C.; Harris, C.M.; Murdock, S.; McCarthy, R.W.; Sampson, E.; Twomey, R.; Mathieu, S.; Mario, R.; Perham, M.; Goedken, E.R.; Long, A.J. ABBV-105, a selective and irreversible inhibitor of Bruton’s tyrosine kinase, is efficacious in multiple preclinical models of inflammation. Mod. Rheumatol., 2019, 29(3), 510-522.
[http://dx.doi.org/10.1080/14397595.2018.1484269] [PMID: 29862859]
[57]
Cohen, S.; Tuckwell, K.; Katsumoto, T.R.; Zhao, R.; Galanter, J.; Lee, C.; Rae, J.; Toth, B.; Ramamoorthi, N.; Hackney, J.A.; Berman, A.; Damjanov, N.; Fedkov, D.; Jeka, S.; Chinn, L.W.; Townsend, M.J.; Morimoto, A.M.; Genovese, M.C.; Berman, A.; Porto, A.; Granel, A.; Asnal, C.; Mysler, E.F.; Testa, G.A.; Zamora, J.L.V.; Moreno, J.L.C.; Gulin, J.P.; Hofman, J.; Ulla, M.R.; Sabelli, M.; Mannucci, P.A.; Maid, P.J.; Melazzi, A.C.C.; Scotton, A.S.; Ximenes, A.C.; Funes, E.; Gimenez, E.A.; Marcolino, F.M.D.A.; Neto, J.F.M.; Keiserman, M.W.; Radominski, S.C.; Lima, S.M.A.A.L.; Pavan, T.R.; Azevedo, V.F.; Koleva, A.; Toncheva, A.; Bichovska, D.; Ivanova, D.; Penev, D.; Dimitrov, E.; Mihaylova, M.; Kapandjieva, N.; Marinova, N.; Aleksieva, T.; Tsvetanova, T.; Petranova, T.; Popova, V.; Spasov, Y.; Toro, C.E.; Arteaga Unigarro, C.E.; Jauregui, E.; Hernandez, J.D.M.; Raad, J.J.J.; Sanchez, P.J.V.; Lee, C.K.; Suh, C-H.; Lee, E.Y.; Lee, S-H.; Kang, S.W.; Lee, S-S.; Lee, Y.J.; Montiel, B.E.Z.; Pinzon de la O, B.I.; Friedmann, D.X.; Lopez, F.R.; Torres, I.R.; Quezada, L.J.; Ceceña, M.M.; Hernandez, M.C.; Salinas, M.S.; Rapa, A.; Pawtel, A.; Zielinska, A.; Dudek, A.; Rychlewska-Hanczewska, A.; Strzelecka, A.; Racewicz, A.; Stasiuk, B.; Gruszecka, K.; Dworak, K.; Jeka, S.; Lowenhoff, T.; Maslyanskiy, A.; Rebrov, A.; Krechikova, D.; Zhugrova, E.; Shmidt, E.; Matsievskaya, G.; Vinogradova, I.; Ler, I.; Eliseeva, L.; Savina, L.; Stanislav, M.; Sandin, M.; Zyablova, N.; Korshunov, N.; Mosesova, N.; Polovnikova, O.; Nesmeyanova, O.; Samigullina, R.; Moiseev, S.; Noskov, S.; Raskina, T.; Popova, T.; Marchenko, V.; Jovanovski, A.; Stamenkovic, B.; Ristic, G.; Lazarevic, M.; Veselinovic, M.; Vujasinovic-Stupar, N.; Damjanov, N.; Ostojic, P.; Yagensky, A.; Gnylorybov, A.; Rekalov, D.; Reshotko, D.; Fedkov, D.; Dzyak, G.; Gasanov, I.; Khimion, L.; Stanislavchuk, M.; Prykhodko, N.; Nadashkevych, O.; Bortkevych, O.; Abrahamovych, O.; Yatsyshyn, R.; Turyanytsya, S.; Smiyan, S.; Vizir, V.; Kachur, V.; Tseluyko, V.; Povoroznyuk, V.; Koshlia, V.; Zhdan, V.; Lymar, Y.; Mostovoy, Y.; Hawkes, A.; Mabaquiao, A.; Chu, C-Q.; Scoville, C.; Wyatt, D.; Weinstein, D.; McIlwain, H.; Vo, J.; Poiley, J.; Forstot, J.; Dao, K.; Turner, M.; Genovese, M.; Borofsky, M.; Caldron, P.; Waller, P.; Levin, R.; Metyas, S.; Stein, S.; Shroff, S.; Pang, S.; Cohen, S.; Syed, T.; Chindalore, V. Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: A randomized, double-blind, phase II trial (ANDES study). Arthritis Rheumatol., 2020, 72(9), 1435-1446.
[http://dx.doi.org/10.1002/art.41275] [PMID: 32270926]
[58]
Crawford, J.J.; Johnson, A.R.; Misner, D.L.; Belmont, L.D.; Castanedo, G.; Choy, R.; Coraggio, M.; Dong, L.; Eigenbrot, C.; Erickson, R.; Ghilardi, N.; Hau, J.; Katewa, A.; Kohli, P.B.; Lee, W.; Lubach, J.W.; McKenzie, B.S.; Ortwine, D.F.; Schutt, L.; Tay, S.; Wei, B.; Reif, K.; Liu, L.; Wong, H.; Young, W.B. Discovery of GDC-0853: A potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem., 2018, 61(6), 2227-2245.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01712] [PMID: 29457982]
[59]
Reiff, S.D.; Muhowski, E.M.; Guinn, D.; Lehman, A.; Fabian, C.A.; Cheney, C.; Mantel, R.; Smith, L.; Johnson, A.J.; Young, W.B.; Johnson, A.R.; Liu, L.; Byrd, J.C.; Woyach, J.A. Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: A new treatment strategy for ibrutinib-resistant CLL. Blood, 2018, 132(10), 1039-1049.
[http://dx.doi.org/10.1182/blood-2017-10-809020] [PMID: 30018078]
[60]
Genovese, M.C.; Spindler, A.; Sagawa, A.; Park, W.; Dudek, A.; Kivitz, A.; Chao, J.; Chan, L.S.M.; Witcher, J.; Barchuk, W.; Nirula, A. Safety and efficacy of poseltinib, Bruton’s tyrosine kinase inhibitor, in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled, 2-part phase II study. J. Rheumatol., 2021, 48(7), 969-976.
[http://dx.doi.org/10.3899/jrheum.200893] [PMID: 33323529]
[61]
Langrish, C.L.; Bradshaw, J.M.; Francesco, M.R.; Owens, T.D.; Xing, Y.; Shu, J.; LaStant, J.; Bisconte, A.; Outerbridge, C.; White, S.D.; Hill, R.J.; Brameld, K.A.; Goldstein, D.M.; Nunn, P.A. Preclinical efficacy and anti-inflammatory mechanisms of action of the Bruton tyrosine kinase inhibitor rilzabrutinib for immune-mediated disease. J. Immunol., 2021, 206(7), 1454-1468.
[http://dx.doi.org/10.4049/jimmunol.2001130] [PMID: 33674445]
[62]
Murrell, D.F.; Patsatsi, A.; Stavropoulos, P.; Baum, S.; Zeeli, T.; Kern, J.S.; Roussaki-Schulze, A.V.; Sinclair, R.; Bassukas, I.D.; Thomas, D.; Neale, A.; Arora, P.; Caux, F.; Werth, V.P.; Gourlay, S.G.; Joly, P. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: The phase II BELIEVE study. Br. J. Dermatol., 2021, 185(4), 745-755.
[http://dx.doi.org/10.1111/bjd.20431] [PMID: 33942286]
[63]
Eda, H.; Santo, L.; Cirstea, D.D.; Yee, A.J.; Scullen, T.A.; Nemani, N.; Mishima, Y.; Waterman, P.R.; Arastu-Kapur, S.; Evans, E.; Singh, J.; Kirk, C.J.; Westlin, W.F.; Raje, N.S. A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity. Leukemia, 2014, 28(9), 1892-1901.
[http://dx.doi.org/10.1038/leu.2014.69] [PMID: 24518207]
[64]
Schafer, P.H.; Kivitz, A.J.; Ma, J.; Korish, S.; Sutherland, D.; Li, L.; Azaryan, A.; Kosek, J.; Adams, M.; Capone, L.; Hur, E.M.; Hough, D.R.; Ringheim, G.E. Spebrutinib (CC-292) affects markers of B cell activation, chemotaxis, and osteoclasts in patients with rheumatoid arthritis: Results from a mechanistic study. Rheumatol. Ther., 2020, 7(1), 101-119.
[http://dx.doi.org/10.1007/s40744-019-00182-7] [PMID: 31721017]
[65]
Meng, A.; Humeniuk, R.; Jürgensmeier, J.M.; Hsueh, C.H.; Matzkies, F.; Grant, E.; Truong, H.; Billin, A.N.; Yu, H.; Feng, J.; Kwan, E.; Tarnowski, T.; Nelson, C.H. Semi-mechanistic PK/PD modeling and simulation of irreversible BTK inhibition to support dose selection of tirabrutinib in subjects with RA. Clin. Pharmacol. Ther., 2022, 111(2), 416-424.
[http://dx.doi.org/10.1002/cpt.2439] [PMID: 34623640]
[66]
Makhani, N.; Tremlett, H. The multiple sclerosis prodrome. Nat. Rev. Neurol., 2021, 17(8), 515-521.
[http://dx.doi.org/10.1038/s41582-021-00519-3] [PMID: 34155379]
[67]
García-Merino, A. Bruton’s tyrosine kinase inhibitors: A new generation of promising agents for multiple sclerosis therapy. Cells, 2021, 10(10), 2560.
[http://dx.doi.org/10.3390/cells10102560] [PMID: 34685540]
[68]
Geladaris, A.; Torke, S.; Weber, M.S. Bruton’s tyrosine kinase inhibitors in multiple sclerosis: Pioneering the path towards treatment of progression? CNS Drugs, 2022, 36(10), 1019-1030.
[http://dx.doi.org/10.1007/s40263-022-00951-z] [PMID: 36178589]
[69]
Caldwell, R.D.; Qiu, H.; Askew, B.C.; Bender, A.T.; Brugger, N.; Camps, M.; Dhanabal, M.; Dutt, V.; Eichhorn, T.; Gardberg, A.S.; Goutopoulos, A.; Grenningloh, R.; Head, J.; Healey, B.; Hodous, B.L.; Huck, B.R.; Johnson, T.L.; Jones, C.; Jones, R.C.; Mochalkin, I.; Morandi, F.; Nguyen, N.; Meyring, M.; Potnick, J.R.; Santos, D.C.; Schmidt, R.; Sherer, B.; Shutes, A.; Urbahns, K.; Follis, A.V.; Wegener, A.A.; Zimmerli, S.C.; Liu-Bujalski, L. Discovery of evobrutinib: An oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem., 2019, 62(17), 7643-7655.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00794] [PMID: 31368705]
[70]
Montalban, X.; Wallace, D.; Genovese, M.C.; Tomic, D.; Parsons-Rich, D.; Le Bolay, C.; Kao, A.H.; Guehring, H. Characterisation of the safety profile of evobrutinib in over 1000 patients from phase II clinical trials in multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus: An integrated safety analysis. J. Neurol. Neurosurg. Psychiatry, 2023, 94(1), 1-9.
[http://dx.doi.org/10.1136/jnnp-2022-328799] [PMID: 36418156]
[71]
Isenberg, D.; Furie, R.; Jones, N.S.; Guibord, P.; Galanter, J.; Lee, C.; McGregor, A.; Toth, B.; Rae, J.; Hwang, O.; Desai, R.; Lokku, A.; Ramamoorthi, N.; Hackney, J.A.; Miranda, P.; de Souza, V.A.; Jaller-Raad, J.J.; Maura Fernandes, A.; Garcia Salinas, R.; Chinn, L.W.; Townsend, M.J.; Morimoto, A.M.; Tuckwell, K. Efficacy, safety, and pharmacodynamic effects of the Bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: Results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol., 2021, 73(10), 1835-1846.
[http://dx.doi.org/10.1002/art.41811] [PMID: 34042314]
[72]
Angst, D.; Gessier, F.; Janser, P.; Vulpetti, A.; Wälchli, R.; Beerli, C.; Littlewood-Evans, A.; Dawson, J.; Nuesslein-Hildesheim, B.; Wieczorek, G.; Gutmann, S.; Scheufler, C.; Hinniger, A.; Zimmerlin, A.; Funhoff, E.G.; Pulz, R.; Cenni, B. Discovery of LOU064 (Remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem., 2020, 63(10), 5102-5118.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01916] [PMID: 32083858]
[73]
Kaul, M.; End, P.; Cabanski, M.; Schuhler, C.; Jakab, A.; Kistowska, M.; Kinhikar, A.; Maiolica, A.; Sinn, A.; Fuhr, R.; Cenni, B. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin. Transl. Sci., 2021, 14(5), 1756-1768.
[http://dx.doi.org/10.1111/cts.13005] [PMID: 33834628]
[74]
Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; Khabirov, F.A.; Traboulsee, A.; Grand’Maison, F.; Jacques, F.; Traboulsee, A.; Tyblova, M.; Meluzinova, E.; Ampapa, R.; Valis, M.; Hradilke, P.; Mareš, M.; Stourac, P.; Gross-Paju, K.; Laplaud, D.; Mathey, G.; Uitdehaag, B.; Evdoshenkoo, E.; Popova, E.; Zakharova, M.; Totolyan, N.; Litvinenko, I.; Khabirov, F.; Sivertseva, S.; Hancinova, V.; Kantorova, E.; Gines, M.L.M.; Montalban, X.; Maduano, S.E.; Meca-Lallana, J.; Ramió-Torrentà, L.; Nehrych, T.; Pashkovskyy, V.; Moskovko, S.; Kalbus, O.; Khavunka, M.; Pryshchepa, V.; Goloborodko, A.; Wynn, D.; Honeycutt, W.; Wray, S.; Steingo, B.; LaGanke, C.; Huang, D.; Hemphill, J.M.; Goldstick, L.; Robertson, D. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(9), 729-738.
[http://dx.doi.org/10.1016/S1474-4422(21)00237-4] [PMID: 34418400]
[75]
Dörner, T.; Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet, 2019, 393(10188), 2344-2358.
[http://dx.doi.org/10.1016/S0140-6736(19)30546-X] [PMID: 31180031]
[76]
Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; Yang, Z.; Vickery, R.; Elzinga, P.A.; Discenza, L.; D’Arienzo, C.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; Zhang, Y.; Heimrich, E.; McIntyre, K.W.; Ruan, Q.; Westhouse, R.A.; Catlett, I.M.; Zheng, N.; Chaudhry, C.; Dai, J.; Galella, M.A.; Tebben, A.J.; Pokross, M.; Li, J.; Zhao, R.; Smith, D.; Rampulla, R.; Allentoff, A.; Wallace, M.A.; Mathur, A.; Salter-Cid, L.; Macor, J.E.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of branebrutinib (BMS-986195): A strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton’s tyrosine kinase (BTK). J. Med. Chem., 2019, 62(7), 3228-3250.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00167] [PMID: 30893553]
[77]
Catlett, I.M.; Nowak, M.; Kundu, S.; Zheng, N.; Liu, A.; He, B.; Girgis, I.G.; Grasela, D.M. Safety, pharmacokinetics and pharmacodynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton’s tyrosine kinase: Randomised phase I, placebo-controlled trial in healthy participants. Br. J. Clin. Pharmacol., 2020, 86(9), 1849-1859.
[http://dx.doi.org/10.1111/bcp.14290] [PMID: 32198939]
[78]
Haselmayer, P.; Camps, M.; Liu-Bujalski, L.; Nguyen, N.; Morandi, F.; Head, J.; O’Mahony, A.; Zimmerli, S.C.; Bruns, L.; Bender, A.T.; Schroeder, P.; Grenningloh, R. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J. Immunol., 2019, 202(10), 2888-2906.
[http://dx.doi.org/10.4049/jimmunol.1800583] [PMID: 30988116]
[79]
Ran, F.; Liu, Y.; Wang, C.; Xu, Z.; Zhang, Y.; Liu, Y.; Zhao, G.; Ling, Y. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur. J. Med. Chem., 2022, 229, 114009.
[http://dx.doi.org/10.1016/j.ejmech.2021.114009] [PMID: 34839996]
[80]
Wen, T.; Wang, J.; Shi, Y.; Qian, H.; Liu, P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances. Leukemia, 2021, 35(2), 312-332.
[http://dx.doi.org/10.1038/s41375-020-01072-6] [PMID: 33122850]
[81]
Adasme, M.F.; Parisi, D.; Van Belle, K.; Salentin, S.; Haupt, V.J.; Jennings, G.S.; Heinrich, J.C.; Herman, J.; Sprangers, B.; Louat, T.; Moreau, Y.; Schroeder, M. Structure-based drug repositioning explains ibrutinib as VEGFR2 inhibitor. PLoS One, 2020, 15(5), e0233089.
[http://dx.doi.org/10.1371/journal.pone.0233089] [PMID: 32459810]
[82]
Shen, P.; Wang, Y.; Jia, X.; Xu, P.; Qin, L.; Feng, X.; Li, Z.; Qiu, Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur. J. Med. Chem., 2022, 239, 114551.
[http://dx.doi.org/10.1016/j.ejmech.2022.114551] [PMID: 35749986]
[83]
Rotondo, J.C.; Bononi, I.; Puozzo, A.; Govoni, M.; Foschi, V.; Lanza, G.; Gafà, R.; Gaboriaud, P.; Touzé, F.A.; Selvatici, R.; Martini, F.; Tognon, M. Merkel cell carcinomas arising in autoimmune disease affected patients treated with biologic drugs, Including anti-TNF. Clin. Cancer Res., 2017, 23(14), 3929-3934.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2899] [PMID: 28174236]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy