Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Roles of lncRNA-MALAT1 in the Progression and Prognosis of Gliomas

Author(s): Yu-Long Ji, Kai Kang, Qiao-Li Lv* and Da-Peng Wang*

Volume 24, Issue 8, 2024

Published on: 06 October, 2023

Page: [786 - 792] Pages: 7

DOI: 10.2174/0113895575253875230922055711

Price: $65

Abstract

Long noncoding RNAs (lncRNAs) represent a large subgroup of RNA transcripts that lack the function of coding proteins and may be essential universal genes involved in carcinogenesis and metastasis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNAMALAT1) is overexpressed in various human tumors, including gliomas. However, the biological function and molecular mechanism of action of lncRNA-MALAT1 in gliomas have not yet been systematically elucidated. Accumulating evidence suggests that the abnormal expression of lncRNA-MALAT1 in gliomas is associated with various physical properties of the glioma, such as tumor growth, metastasis, apoptosis, drug resistance, and prognosis. Furthermore, lncRNAs, as tumor progression and prognostic markers in gliomas, may affect tumorigenesis, proliferation of glioma stem cells, and drug resistance. In this review, we summarize the knowledge on the biological functions and prognostic value of lncRNA-MALAT1 in gliomas. This mini-review aims to deepen the understanding of lncRNA-MALAT1 as a novel potential therapeutic target for the individualized precision treatment of gliomas.

Graphical Abstract

[1]
Waker, C.A.; Lober, R.M. Brain tumors of glial origin. Adv. Exp. Med. Biol., 2019, 1190, 281-297.
[http://dx.doi.org/10.1007/978-981-32-9636-7_18] [PMID: 31760651]
[2]
Wang, D.P.; Kang, K.; Lin, Q.; Hai, J. Prognostic significance of preoperative systemic cellular inflammatory markers in gliomas: a systematic review and meta‐analysis. Clin. Transl. Sci., 2020, 13(1), 179-188.
[http://dx.doi.org/10.1111/cts.12700] [PMID: 31550075]
[3]
Gritsch, S.; Batchelor, T.T.; Gonzalez Castro, L.N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer, 2022, 128(1), 47-58.
[http://dx.doi.org/10.1002/cncr.33918] [PMID: 34633681]
[4]
Lah, T.T.; Novak, M.; Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Semin. Cancer Biol., 2020, 60, 262-273.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.010] [PMID: 31654711]
[5]
Brandner, S. Jaunmuktane, Z. Neurological update: Gliomas and other primary brain tumours in adults. J. Neurol., 2018, 265(3), 717-727.
[http://dx.doi.org/10.1007/s00415-017-8652-3] [PMID: 29098416]
[6]
Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet, 2018, 392(10145), 432-446.
[http://dx.doi.org/10.1016/S0140-6736(18)30990-5] [PMID: 30060998]
[7]
Gatto, L.; Di Nunno, V.; Franceschi, E.; Tosoni, A.; Bartolini, S.; Brandes, A.A. Pharmacotherapeutic treatment of glioblastoma: where are we to date? Drugs, 2022, 82(5), 491-510.
[http://dx.doi.org/10.1007/s40265-022-01702-6] [PMID: 35397073]
[8]
Kirby, A.J.; Finnerty, G.T. New strategies for managing adult gliomas. J. Neurol., 2020.
[PMID: 32542524]
[9]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in Development and Disease: Background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[10]
Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. Adv. Exp. Med. Biol., 2016, 937, 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1] [PMID: 27573892]
[11]
Gil, N.; Ulitsky, I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet., 2020, 21(2), 102-117.
[http://dx.doi.org/10.1038/s41576-019-0184-5] [PMID: 31729473]
[12]
Zhang, X.; Hamblin, M.H.; Yin, K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[13]
Ghafouri-Fard, S.; Ashrafi Hafez, A.; Taheri, M. Metastasis Associated Lung Adenocarcinoma Transcript 1: An update on expression pattern and functions in carcinogenesis. Exp. Mol. Pathol., 2020, 112, 104330.
[http://dx.doi.org/10.1016/j.yexmp.2019.104330] [PMID: 31712117]
[14]
Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis., 2016, 7(3), e2123.
[http://dx.doi.org/10.1038/cddis.2015.407] [PMID: 26938295]
[15]
Liao, K.; Lin, Y.; Gao, W.; Xiao, Z.; Medina, R.; Dmitriev, P.; Cui, J.; Zhuang, Z.; Zhao, X.; Qiu, Y.; Zhang, X.; Ge, J.; Guo, L. Blocking lncRNA MALAT1/miR-199a/ZHX1 axis inhibits glioblastoma proliferation and progression. Mol. Ther. Nucleic Acids, 2019, 18, 388-399.
[http://dx.doi.org/10.1016/j.omtn.2019.09.005] [PMID: 31648104]
[16]
Baspinar, Y.; Elmaci, I.; Ozpinar, A.; Altinoz, M.A. Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles’ heal? Gene, 2020, 739, 144518.
[http://dx.doi.org/10.1016/j.gene.2020.144518] [PMID: 32119915]
[17]
Wang, L.; Li, S.; Stone, S.S.; Liu, N.; Gong, K.; Ren, C.; Sun, K.; Zhang, C.; Shao, G. The Role of the lncRNA MALAT1 in Neuroprotection against Hypoxic/Ischemic Injury. Biomolecules, 2022, 12(1), 146.
[http://dx.doi.org/10.3390/biom12010146] [PMID: 35053294]
[18]
Lei, L.; Chen, J.; Huang, J.; Lu, J.; Pei, S.; Ding, S.; Kang, L.; Xiao, R.; Zeng, Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J. Cell. Physiol., 2019, 234(1), 134-151.
[http://dx.doi.org/10.1002/jcp.26759] [PMID: 30132842]
[19]
Li, C.H.; Chen, Y. Targeting long non-coding RNAs in cancers: Progress and prospects. Int. J. Biochem. Cell Biol., 2013, 45(8), 1895-1910.
[http://dx.doi.org/10.1016/j.biocel.2013.05.030] [PMID: 23748105]
[20]
Sun, Y.; Ma, L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel), 2019, 11(2), 216.
[http://dx.doi.org/10.3390/cancers11020216] [PMID: 30781877]
[21]
Arun, G.; Aggarwal, D.; Spector, D.L. MALAT1 Long non-coding rna: functional implications. Noncoding RNA, 2020, 6(2), 22.
[http://dx.doi.org/10.3390/ncrna6020022] [PMID: 32503170]
[22]
Goyal, B.; Yadav, S.R.M.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188502.
[http://dx.doi.org/10.1016/j.bbcan.2021.188502] [PMID: 33428963]
[23]
Ma, R.; Zhang, B.W.; Zhang, Z.B.; Deng, Q.J. LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2601-2615.
[PMID: 32196610]
[24]
Li, Z.; Xu, C.; Ding, B.; Gao, M.; Wei, X.; Ji, N. Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101. J. Neurooncol., 2017, 134(1), 19-28.
[http://dx.doi.org/10.1007/s11060-017-2498-5] [PMID: 28551849]
[25]
Xiang, J.; Guo, S.; Jiang, S.; Xu, Y.; Li, J.; Li, L.; Xiang, J. Silencing of long non-coding RNA MALAT1 Promotes apoptosis of glioma cells. J. Korean Med. Sci., 2016, 31(5), 688-694.
[http://dx.doi.org/10.3346/jkms.2016.31.5.688] [PMID: 27134488]
[26]
Chang, Y.Z.; Chai, R.C.; Pang, B.; Chang, X.; An, S.Y.; Zhang, K.N.; Jiang, T.; Wang, Y.Z. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-κB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett., 2021, 511, 36-46.
[http://dx.doi.org/10.1016/j.canlet.2021.04.020] [PMID: 33933553]
[27]
Yang, F.; Yi, F.; Han, X.; Du, Q.; Liang, Z. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett., 2013, 587(19), 3175-3181.
[http://dx.doi.org/10.1016/j.febslet.2013.07.048] [PMID: 23973260]
[28]
Liang, Z.; Wang, Y.; Li, H.; Sun, Y.; Gong, Y. lncRNAs combine and crosstalk with NSPc1 in ATRA induced differentiation of U87 glioma cells. Oncol. Lett., 2019, 17(6), 5821-5829.
[http://dx.doi.org/10.3892/ol.2019.10254] [PMID: 31186810]
[29]
Li, J.; Cui, Z.; Li, H.; Lv, X.; Gao, M.; Yang, Z.; Bi, Y.; Zhang, Z.; Wang, S.; Zhou, B.; Yin, Z. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: A review and meta-analysis. Cancer Cell Int., 2018, 18(1), 109.
[http://dx.doi.org/10.1186/s12935-018-0606-z] [PMID: 30093838]
[30]
Shen, J.; Hodges, T.R.; Song, R.; Gong, Y.; Calin, G.A.; Heimberger, A.B.; Zhao, H. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog., 2018, 57(1), 137-141.
[http://dx.doi.org/10.1002/mc.22739] [PMID: 28926136]
[31]
Liu, C.A.; Chang, C.Y.; Hsueh, K.W.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J. Migration/Invasion of malignant gliomas and implications for therapeutic treatment. Int. J. Mol. Sci., 2018, 19(4), 1115.
[http://dx.doi.org/10.3390/ijms19041115] [PMID: 29642503]
[32]
Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci., 2020, 21(6), 1932.
[http://dx.doi.org/10.3390/ijms21061932] [PMID: 32178267]
[33]
Vassallo, I.; Zinn, P.; Lai, M.; Rajakannu, P.; Hamou, M-F.; Hegi, M.E. WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1. Oncogene, 2016, 35(1), 12-21.
[http://dx.doi.org/10.1038/onc.2015.61] [PMID: 25772239]
[34]
Cheng, C.; Xu, B.L.; Sheng, J.L.; He, F.; Yang, T.; Shen, S.C. LncRNA MALAT1 regulates proliferation and apoptosis of vascular smooth muscle cells by targeting miRNA-124-3p/PPARα axis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 9025-9032.
[PMID: 31696492]
[35]
Cheng, H.; Zhao, H.; Xiao, X.; Huang, Q.; Zeng, W.; Tian, B.; Ma, T.; Lu, D.; Jin, Y.; Li, Y. Long non-coding RNA MALAT1 upregulates ZEB2 expression to promote malignant progression of glioma by attenuating miR-124. Mol. Neurobiol., 2021, 58(3), 1006-1016.
[http://dx.doi.org/10.1007/s12035-020-02165-0] [PMID: 33078370]
[36]
Bhat, K.P.L.; Balasubramaniyan, V.; Vaillant, B.; Ezhilarasan, R.; Hummelink, K.; Hollingsworth, F.; Wani, K.; Heathcock, L.; James, J.D.; Goodman, L.D.; Conroy, S.; Long, L.; Lelic, N.; Wang, S.; Gumin, J.; Raj, D.; Kodama, Y.; Raghunathan, A.; Olar, A.; Joshi, K.; Pelloski, C.E.; Heimberger, A.; Kim, S.H.; Cahill, D.P.; Rao, G.; Den Dunnen, W.F.A.; Boddeke, H.W.G.M.; Phillips, H.S.; Nakano, I.; Lang, F.F.; Colman, H.; Sulman, E.P.; Aldape, K. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell, 2013, 24(3), 331-346.
[http://dx.doi.org/10.1016/j.ccr.2013.08.001] [PMID: 23993863]
[37]
Mao, P.; Joshi, K.; Li, J.; Kim, S.H.; Li, P.; Santana-Santos, L.; Luthra, S.; Chandran, U.R.; Benos, P.V.; Smith, L.; Wang, M.; Hu, B.; Cheng, S.Y.; Sobol, R.W.; Nakano, I. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8644-8649.
[http://dx.doi.org/10.1073/pnas.1221478110] [PMID: 23650391]
[38]
Bradshaw, A.; Wickremsekera, A.; Tan, S.T.; Peng, L.; Davis, P.F.; Itinteang, T. cancer stem cell hierarchy in glioblastoma multiforme. Front. Surg., 2016, 3, 21.
[http://dx.doi.org/10.3389/fsurg.2016.00021] [PMID: 27148537]
[39]
Zhang, X.Q.; Leung, G.K.K. Long non-coding RNAs in glioma: Functional roles and clinical perspectives. Neurochem. Int., 2014, 77, 78-85.
[http://dx.doi.org/10.1016/j.neuint.2014.05.008] [PMID: 24887176]
[40]
Wang, L.; He, Z. Functional Roles of long non-coding RNAs (LncRNAs) in glioma stem cells. Med. Sci. Monit., 2019, 25, 7567-7573.
[http://dx.doi.org/10.12659/MSM.916040] [PMID: 31593561]
[41]
Mazur, D.V.; Mishanova, A.V.; Kovalenko, T.F.; Shakhparonov, M.I.; Antipova, N.V. Influence of the cultivation conditions of the glioblastoma neurosphere on the expression of MALAT1 and LINCROR Long Non-coding RNA Genes. Dokl. Biochem. Biophys., 2023, 508(1), 21-24.
[http://dx.doi.org/10.1134/S1607672922700053] [PMID: 36653583]
[42]
Xiong, Z.; Wang, L.; Wang, Q.; Yuan, Y. Lnc RNA MALAT 1/miR‐129 axis promotes glioma tumorigenesis by targeting SOX 2. J. Cell. Mol. Med., 2018, 22(8), 3929-3940.
[http://dx.doi.org/10.1111/jcmm.13667] [PMID: 29808528]
[43]
Han, Y.; Zhou, L.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Zhou, Y.; Du, Z. Downregulation of lncRNA-MALAT1 Affects proliferation and the expression of stemness markers in glioma stem cell line SHG139S. Cell. Mol. Neurobiol., 2016, 36(7), 1097-1107.
[http://dx.doi.org/10.1007/s10571-015-0303-6] [PMID: 26649728]
[44]
He, B.; Peng, F.; Li, W.; Jiang, Y. Interaction of lncRNA‐MALAT1 and miR‐124 regulates HBx‐induced cancer stem cell properties in HepG2 through PI3K/Akt signaling. J. Cell. Biochem., 2019, 120(3), 2908-2918.
[http://dx.doi.org/10.1002/jcb.26823] [PMID: 30500989]
[45]
Xiao, Y.; Pan, J.; Geng, Q.; Wang, G. Lnc RNA MALAT 1 increases the stemness of gastric cancer cells via enhancing SOX 2 MRNA stability. FEBS Open Bio, 2019, 9(7), 1212-1222.
[http://dx.doi.org/10.1002/2211-5463.12649] [PMID: 31037832]
[46]
Yang, J.; Sun, G.; Hu, Y.; Yang, J.; Shi, Y.; Liu, H.; Li, C.; Wang, Y.; Lv, Z.; Niu, J.; Liu, H.; Shi, X.; Wang, H.; Li, P.; Jiao, B. Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating mir-129-5p/high mobility group box-1 protein Axis. Front. Immunol., 2020, 10, 3161.
[http://dx.doi.org/10.3389/fimmu.2019.03161] [PMID: 32117213]
[47]
Yang, J.; Liu, H.; Wang, Y.; Li, C.; Yang, J.; Yang, L.; Qi, X.; Zhao, Y.; Shi, X.; Li, J.; Sun, G.; Jiao, B. Exosomal miR-214-5p Released from glioblastoma cells modulates inflammatory response of microglia after lipopolysaccharide stimulation through targeting CXCR5. CNS Neurol. Disord. Drug Targets, 2019, 18(1), 78-87.
[http://dx.doi.org/10.2174/1871527317666181105112009] [PMID: 30394221]
[48]
Chang, K.F.; Huang, X.F.; Chang, J.T.; Huang, Y.C.; Weng, J.C.; Tsai, N.M. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. Cancer Lett., 2020, 495, 180-190.
[http://dx.doi.org/10.1016/j.canlet.2020.09.007] [PMID: 32987140]
[49]
Mei, C; Lei, L; Tan, LM; Xu, XJ; He, BM; Luo, C The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed. Pharmacother., 2020, 125, 109875.
[http://dx.doi.org/10.1016/j.biopha.2020.109875]
[50]
Carter, T.C.; Medina-Flores, R.; Lawler, B.E. Glioblastoma treatment with temozolomide and bevacizumab and overall survival in a rural tertiary healthcare practice. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6204676] [PMID: 30687753]
[51]
Wang, Y.; Chen, X.; Zhang, Z.; Li, S.; Chen, B.; Wu, C.; Wang, L.; Zhang, X.; Wang, J.; Chen, L.; Jiang, T. Comparison of the clinical efficacy of temozolomide (TMZ) versus nimustine (ACNU)-based chemotherapy in newly diagnosed glioblastoma. Neurosurg. Rev., 2014, 37(1), 73-78.
[http://dx.doi.org/10.1007/s10143-013-0490-x] [PMID: 23912878]
[52]
Chen, W.; Xu, X.K.; Li, J.L.; Kong, K.K.; Li, H.; Chen, C.; He, J.; Wang, F.; Li, P.; Ge, X.S.; Li, F.C. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget, 2017, 8(14), 22783-22799.
[http://dx.doi.org/10.18632/oncotarget.15199] [PMID: 28187000]
[53]
Roh, J.; Im, M.; Kang, J.; Youn, B.; Kim, W. Long non-coding RNA in glioma: Novel genetic players in temozolomide resistance. Anim. Cells Syst., 2023, 27(1), 19-28.
[http://dx.doi.org/10.1080/19768354.2023.2175497] [PMID: 36819921]
[54]
Cai, T.; Liu, Y.; Xiao, J. Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma. Cancer Med., 2018, 7(4), 1404-1415.
[http://dx.doi.org/10.1002/cam4.1384] [PMID: 29479863]
[55]
Li, H.; Yuan, X.; Yan, D.; Li, D.; Guan, F. Dong, Y Long Non-coding RNA MALAT1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide. Cell. Physiol. Biochem., 2017, 43(3), 1192-1201.
[http://dx.doi.org/10.1159/000478917]
[56]
Witusik-Perkowska, M.; Jaskólski, D.J.; Liberski, P.P.; Szemraj, J. If artificial in vitro microenvironment can influence tumor drug resistance network via modulation of lncrna expression?—comparative analysis of glioblastoma-derived cell culture models and initial tumors in vivo. Cell. Mol. Neurobiol., 2022, 42(4), 1005-1020.
[http://dx.doi.org/10.1007/s10571-020-00991-3] [PMID: 33245508]
[57]
Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer, 2020, 20(1), 26-41.
[http://dx.doi.org/10.1038/s41568-019-0205-x] [PMID: 31601988]
[58]
Ma, J.; Wang, P.; Yao, Y.; Liu, Y.; Li, Z.; Liu, X.; Li, Z.; Zhao, X.; Xi, Z.; Teng, H.; Liu, J.; Xue, Y. Knockdown of long non-coding RNA MALAT1 increases the blood–tumor barrier permeability by up-regulating miR-140. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(2), 324-338.
[http://dx.doi.org/10.1016/j.bbagrm.2015.11.008] [PMID: 26619802]
[59]
Voce, D.J.; Bernal, G.M.; Wu, L.; Crawley, C.D.; Zhang, W.; Mansour, N.M.; Cahill, K.E.; Szymura, S.J.; Uppal, A.; Raleigh, D.R.; Spretz, R.; Nunez, L.; Larsen, G.; Khodarev, N.N.; Weichselbaum, R.R.; Yamini, B. Temozolomide treatment induces lncRNA MALAT1 in an NF-κB and p53 codependent manner in glioblastoma. Cancer Res., 2019, 79(10), 2536-2548.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2170] [PMID: 30940658]
[60]
Castro-Oropeza, R.; Melendez-Zajgla, J.; Maldonado, V.; Vazquez-Santillan, K. The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol. (Dordr.), 2018, 41(6), 585-603.
[http://dx.doi.org/10.1007/s13402-018-0406-4] [PMID: 30218296]
[61]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[62]
Diskin, B.; Adam, S.; Cassini, M.F.; Sanchez, G.; Liria, M.; Aykut, B.; Buttar, C.; Li, E.; Sundberg, B.; Salas, R.D.; Chen, R.; Wang, J.; Kim, M.; Farooq, M.S.; Nguy, S.; Fedele, C.; Tang, K.H.; Chen, T.; Wang, W.; Hundeyin, M.; Rossi, J.A.K.; Kurz, E.; Haq, M.I.U.; Karlen, J.; Kruger, E.; Sekendiz, Z.; Wu, D.; Shadaloey, S.A.A.; Baptiste, G.; Werba, G.; Selvaraj, S.; Loomis, C.; Wong, K.K.; Leinwand, J.; Miller, G. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol., 2020, 21(4), 442-454.
[http://dx.doi.org/10.1038/s41590-020-0620-x] [PMID: 32152508]
[63]
Song, Z.; Wang, X.; Chen, F.; Chen, Q.; Liu, W.; Yang, X.; Zhu, X.; Liu, X.; Wang, P. LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front. Oncol., 2022, 12, 1004212.
[http://dx.doi.org/10.3389/fonc.2022.1004212] [PMID: 36212476]
[64]
Wang, Q.M.; Lian, G.Y.; Song, Y.; Huang, Y.F.; Gong, Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci., 2019, 231, 116335.
[http://dx.doi.org/10.1016/j.lfs.2019.03.040] [PMID: 30898647]
[65]
Zhang, Y.; Xiao, Y.; Li, G.C.; Gong, F.Y.; Zhang, X.N.; Hou, K. Long non-coding RNAs as epigenetic mediator and predictor of glioma progression, invasiveness, and prognosis. Semin. Cancer Biol., 2022, 83, 536-542.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.016] [PMID: 32920124]
[66]
Mutlu, M.; Tekin, C.; Ak Aksoy, S.; Taskapilioglu, M.O.; Kaya, S.; Balcin, R.N.; Ocak, P.E.; Kocaeli, H.; Bekar, A.; Tolunay, S.; Tunca, B. Long non-coding RNAs as a predictive markers of group 3 medulloblastomas. Neurol. Res., 2022, 44(3), 232-241.
[http://dx.doi.org/10.1080/01616412.2021.1975223] [PMID: 34533098]
[67]
Ak Aksoy, S.; Mutlu, M.; Tunca, B.; Kocaeli, H.; Taskapilioglu, M.O.; Bekar, A.; Tekin, C.; Argadal, O.G.; Civan, M.N.; Kaya, İ.S.; Ocak, P.E.; Tolunay, S. Coexistence of TERT C228T mutation and MALAT1 dysregulation in primary glioblastoma: New prognostic and therapeutic targets. Neurol. Res., 2021, 43(11), 916-925.
[http://dx.doi.org/10.1080/01616412.2021.1948738] [PMID: 34210246]
[68]
Cao, S.; Wang, Y.; Li, J.; Lv, M.; Niu, H.; Tian, Y. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am. J. Cancer Res., 2016, 6(11), 2561-2574.
[PMID: 27904771]
[69]
Ma, K.; Wang, H.; Li, X.; Li, T.; Su, G.; Yang, P.; Wu, J. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol., 2015, 36(5), 3355-3359.
[http://dx.doi.org/10.1007/s13277-014-2969-7] [PMID: 25613066]
[70]
Zhou, Q.; Liu, J.; Quan, J.; Liu, W.; Tan, H.; Li, W. lncRNAs as potential molecular biomarkers for the clinicopathology and prognosis of glioma: A systematic review and meta-analysis. Gene, 2018, 668, 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.05.054] [PMID: 29777909]
[71]
Argadal, O.G.; Mutlu, M.; Ak Aksoy, S.; Kocaeli, H.; Tunca, B.; Civan, M.N.; Egeli, U.; Cecener, G.; Bekar, A.; Taskapilioglu, M.O.; Tekin, C.; Tezcan, G.; Tolunay, S. Long noncoding RNA MALAT1 may be a prognostic biomarker in IDH1/2 wild-type primary glioblastomas. Bosn. J. Basic Med. Sci., 2020, 20(1), 63-69.
[PMID: 31479414]
[72]
Geng, F.; Liu, W.; Yu, L. Potential role of circulating long noncoding RNA MALAT1 in predicting disease risk, severity, and patients’ survival in sepsis. J. Clin. Lab. Anal., 2019, 33(8), e22968.
[http://dx.doi.org/10.1002/jcla.22968] [PMID: 31301104]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy