Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Advancements in Biotechnology and Stem Cell Therapies for Breast Cancer Patients

Author(s): Shivang Dhoundiyal and Md Aftab Alam*

Volume 19, Issue 8, 2024

Published on: 05 October, 2023

Page: [1072 - 1083] Pages: 12

DOI: 10.2174/011574888X268109230924233850

Price: $65

Abstract

This comprehensive review article examines the integration of biotechnology and stem cell therapy in breast cancer diagnosis and treatment. It discusses the use of biotechnological tools such as liquid biopsies, genomic profiling, and imaging technologies for accurate diagnosis and monitoring of treatment response. Stem cell-based approaches, their role in modeling breast cancer progression, and their potential for breast reconstruction post-mastectomy are explored. The review highlights the importance of personalized treatment strategies that combine biotechnological tools and stem cell therapies. Ethical considerations, challenges in clinical translation, and regulatory frameworks are also addressed. The article concludes by emphasizing the potential of integrating biotechnology and stem cell therapy to improve breast cancer outcomes, highlighting the need for continued research and collaboration in this field.

Graphical Abstract

[1]
Bencina G, Chami N, Hughes R, et al. Breast cancer-related mortality in Central and Eastern Europe: years of life lost and productivity costs. J Med Econ 2023; 26(1): 254-61.
[http://dx.doi.org/10.1080/13696998.2023.2169497] [PMID: 36756852]
[2]
Jha RK, Jha PK, Chaudhury K, Rana SVS, Guha SK. An emerging interface between life science and nanotechnology: Present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Rev 2014; 5(1): 22762.
[http://dx.doi.org/10.3402/nano.v5.22762] [PMID: 24600516]
[3]
Liao C, Xiao S, Wang X. Translational development landscape of biotechnology in healthcare. Health Sciences Review 2023; 16: 100097.
[4]
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256: 118002.
[http://dx.doi.org/10.1016/j.lfs.2020.118002] [PMID: 32585248]
[5]
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14: 136-53.
[http://dx.doi.org/10.1016/j.reth.2020.01.004] [PMID: 32110683]
[6]
Podo F, Buydens LM, Degani H, et al. Triple-negative breast cancer: Present challenges and new perspectives. Mol Oncol 2010; 4(3): 209-29.
[http://dx.doi.org/10.1016/j.molonc.2010.04.006] [PMID: 20537966]
[7]
Lowenthal J, Sugarman J. Ethics and policy issues for stem cell research and pulmonary medicine. Chest 2015; 147(3): 824-34.
[http://dx.doi.org/10.1378/chest.14-1696] [PMID: 25732448]
[8]
Junqueira-Neto S, Batista IA, Costa JL, Melo SA. Liquid biopsy beyond circulating tumor cells and cell-free DNA. Acta Cytol 2019; 63(6): 479-88.
[http://dx.doi.org/10.1159/000493969] [PMID: 30783027]
[9]
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12(1): 8.
[http://dx.doi.org/10.1186/s13073-019-0703-1] [PMID: 31937368]
[10]
Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 2017; 10(4): 359-71.
[http://dx.doi.org/10.1242/dmm.028274] [PMID: 28381598]
[11]
Piatkowski AA, Wederfoort JLM, Hommes JE, et al. Effect of Total Breast Reconstruction With Autologous Fat Transfer Using an Expansion Device vs Implants on Quality of Life Among Patients With Breast Cancer. JAMA Surg 2023; 158(5): 456-64.
[http://dx.doi.org/10.1001/jamasurg.2022.7625] [PMID: 36857058]
[12]
Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM, Bokara KK. Gene delivery approaches for mesenchymal stem cell therapy: Strategies to increase efficiency and specificity. Stem Cell Rev 2017; 13(6): 725-40.
[http://dx.doi.org/10.1007/s12015-017-9760-2] [PMID: 28815481]
[13]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[14]
Yip CH, Buccimazza I, Hartman M, Deo SVS, Cheung PSY. Improving outcomes in breast cancer for low and middle income countries. World J Surg 2015; 39(3): 686-92.
[http://dx.doi.org/10.1007/s00268-014-2859-6] [PMID: 25398564]
[15]
Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res 2020; 10(5): 1568-91.
[16]
Brach C, Fraserirector I. Can cultural competency reduce racial and ethnic health disparities? A review and conceptual model. Med Care Res Rev 2000; 57(1_suppl) (Suppl. 1): 181-217.
[http://dx.doi.org/10.1177/1077558700057001S09] [PMID: 11092163]
[17]
Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022; 66: 15-23.
[http://dx.doi.org/10.1016/j.breast.2022.08.010] [PMID: 36084384]
[18]
Tsujiura M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Otsuji E. Liquid biopsy of gastric cancer patients: Circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2014; 20(12): 3265-86.
[http://dx.doi.org/10.3748/wjg.v20.i12.3265] [PMID: 24696609]
[19]
Kosvyra A, Maramis C, Chouvarda I. Developing an integrated genomic profile for cancer patients with the use of NGS data. Emerging Science Journal 2019; 3(3): 157-67.
[http://dx.doi.org/10.28991/esj-2019-01178]
[20]
Phan JH, Moffitt RA, Stokes TH, et al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol 2009; 27(6): 350-8.
[http://dx.doi.org/10.1016/j.tibtech.2009.02.010] [PMID: 19409634]
[21]
De Mattos-Arruda L, Caldas C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol 2016; 10(3): 464-74.
[http://dx.doi.org/10.1016/j.molonc.2015.12.001] [PMID: 26776681]
[22]
Kim JY, Lee E, Park K, et al. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes. Oncotarget 2017; 8(17): 27997-8007.
[http://dx.doi.org/10.18632/oncotarget.15881] [PMID: 28427202]
[23]
Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. InSeminars in cancer biology 2022; 84: 310-28.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.005]
[24]
Gerber DE. Targeted therapies: A new generation of cancer treatments. Am Fam Physician 2008; 77(3): 311-9.
[PMID: 18297955]
[25]
Kamel HFM, Al-Amodi HSAB. Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine. Genomics Proteomics Bioinformatics 2017; 15(4): 220-35.
[http://dx.doi.org/10.1016/j.gpb.2016.11.005] [PMID: 28813639]
[26]
Ming Y, Wu N, Qian T, et al. Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front Oncol 2020; 10: 1301.
[http://dx.doi.org/10.3389/fonc.2020.01301] [PMID: 32903496]
[27]
De Mattos-Arruda L, Cortes J, Santarpia L, et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol 2013; 10(7): 377-89.
[http://dx.doi.org/10.1038/nrclinonc.2013.80] [PMID: 23712187]
[28]
Michela B. Liquid biopsy: A family of possible diagnostic tools. Diagnostics 2021; 11(8): 1391.
[http://dx.doi.org/10.3390/diagnostics11081391] [PMID: 34441325]
[29]
Bratulic S, Gatto F, Nielsen J. The translational status of cancer liquid biopsies. Regen Eng Transl Med 2021; 7(3): 312-52.
[http://dx.doi.org/10.1007/s40883-019-00141-2]
[30]
Diaz LA Jr, Bardelli A. Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol 2014; 32(6): 579-86.
[http://dx.doi.org/10.1200/JCO.2012.45.2011] [PMID: 24449238]
[31]
Zhang H, Liu R, Yan C, et al. Advantage of next-generation sequencing in dynamic monitoring of circulating tumor DNA over droplet digital PCR in cetuximab treated colorectal cancer patients. Transl Oncol 2019; 12(3): 426-31.
[http://dx.doi.org/10.1016/j.tranon.2018.11.015] [PMID: 30562681]
[32]
Peng Y, Mei W, Ma K, Zeng C. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: current horizons and future perspectives. Front Oncol 2021; 11: 763790.
[http://dx.doi.org/10.3389/fonc.2021.763790] [PMID: 34868984]
[33]
Ascierto PA, Bifulco C, Palmieri G, Peters S, Sidiropoulos N. Preanalytic variables and tissue stewardship for reliable next-generation sequencing (NGS) clinical analysis. J Mol Diagn 2019; 21(5): 756-67.
[http://dx.doi.org/10.1016/j.jmoldx.2019.05.004] [PMID: 31251989]
[34]
Judkins T, Leclair B, Bowles K, et al. Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk. BMC Cancer 2015; 15(1): 215.
[http://dx.doi.org/10.1186/s12885-015-1224-y] [PMID: 25886519]
[35]
Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med 2014; 20(12): 1479-84.
[http://dx.doi.org/10.1038/nm.3729] [PMID: 25384085]
[36]
Rahman KMW, Li Y, Wang Z, Sarkar SH, Sarkar FH. Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res 2006; 66(9): 4952-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3918] [PMID: 16651453]
[37]
Vincent KM, Findlay SD, Postovit LM. Assessing breast cancer cell lines as tumour models by comparison of mRNA expression profiles. Breast Cancer Res 2015; 17(1): 114.
[http://dx.doi.org/10.1186/s13058-015-0613-0] [PMID: 26289960]
[38]
Li A, Keck JM, Parmar S, et al. Characterizing advanced breast cancer heterogeneity and treatment resistance through serial biopsies and comprehensive analytics. npj Precision Oncology 2021; 5(1): 28.
[39]
Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 2019; 9(2): 176-98.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[40]
Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman WB. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Lab Med 2010; 41(6): 364-72.
[http://dx.doi.org/10.1309/LMLIK0VIE3CJK0WD]
[41]
Tilli TM. Precision medicine: Technological impact into breast cancer diagnosis, treatment and decision making. J Pers Med 2021; 11(12): 1348.
[http://dx.doi.org/10.3390/jpm11121348] [PMID: 34945820]
[42]
Thorp-Greenwood FL, Coogan MP. Multimodal radio- (PET/SPECT) and fluorescence imaging agents based on metallo-radioisotopes: current applications and prospects for development of new agents. Dalton Trans 2011; 40(23): 6129-43.
[http://dx.doi.org/10.1039/c0dt01398f] [PMID: 21225080]
[43]
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8(1): 89.
[http://dx.doi.org/10.1038/s41392-023-01366-y] [PMID: 36849435]
[44]
Chitalia RD, Rowland J, McDonald ES, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (dce-mri) scans predict 10-year recurrence. Clin Cancer Res 2020; 26(4): 862-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4067] [PMID: 31732521]
[45]
Greenwalt I, Zaza N, Das S, Li BD. Precision medicine and targeted therapies in breast cancer. Surg Oncol Clin N Am 2020; 29(1): 51-62.
[http://dx.doi.org/10.1016/j.soc.2019.08.004] [PMID: 31757313]
[46]
Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther 2010; 10(10): 955-60.
[http://dx.doi.org/10.4161/cbt.10.10.13879] [PMID: 21057215]
[47]
Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell‐derived exosomes. Cancer Sci 2020; 111(9): 3100-10.
[http://dx.doi.org/10.1111/cas.14563] [PMID: 32639675]
[48]
Luo M, Clouthier SG, Deol Y, et al. Breast cancer stem cells: Current advances and clinical implications. Mammary Stem Cells: Methods and Protocols 2015; 1-49.
[http://dx.doi.org/10.1007/978-1-4939-2519-3_1]
[49]
Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5(2): 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[50]
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances 2020; 10(32): 19089-105.
[http://dx.doi.org/10.1039/D0RA02801K] [PMID: 35518295]
[51]
Paholak HJ, Stevers NO, Chen H, et al. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials 2016; 104: 145-57.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.045] [PMID: 27450902]
[52]
Özkan H, Öztürk DG, Korkmaz G. Transcriptional factor repertoire of breast cancer in 3D cell culture models. Cancers (Basel) 2022; 14(4): 1023.
[http://dx.doi.org/10.3390/cancers14041023] [PMID: 35205770]
[53]
Cromwell EF, Sirenko O, Nikolov E, et al. Multifunctional profiling of triple-negative breast cancer patient-derived tumoroids for disease modeling. SLAS Discov 2022; 27(3): 191-200.
[http://dx.doi.org/10.1016/j.slasd.2022.01.006] [PMID: 35124274]
[54]
Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 2015; 17(1): 17.
[http://dx.doi.org/10.1186/s13058-015-0523-1] [PMID: 25849559]
[55]
Fong ELS, Toh TB, Yu H, Chow EKH. 3D culture as a clinically relevant model for personalized medicine. SLAS Technol 2017; 22(3): 245-53.
[http://dx.doi.org/10.1177/2472630317697251] [PMID: 28277923]
[56]
Pang L. Toxicity testing in the era of induced pluripotent stem cells: A perspective regarding the use of patient-specific induced pluripotent stem cell–derived cardiomyocytes for cardiac safety evaluation. Curr Opin Toxicol 2020; 23-24: 50-5.
[http://dx.doi.org/10.1016/j.cotox.2020.04.001]
[57]
Ren L, Li J, Wang C, et al. Single cell RNA sequencing for breast cancer: Present and future. Cell Death Discov 2021; 7(1): 104.
[http://dx.doi.org/10.1038/s41420-021-00485-1] [PMID: 33990550]
[58]
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 2020; 27(5): 705-31.
[http://dx.doi.org/10.1016/j.stem.2020.10.014] [PMID: 33157047]
[59]
Ro J, Kim J, Cho YK. Recent advances in spheroid-based microfluidic models to mimic the tumour microenvironment. Analyst 2022; 147(10): 2023-34.
[http://dx.doi.org/10.1039/D2AN00172A] [PMID: 35485712]
[60]
Baskar G, Palaniyandi T, Viswanathan S, Rajendran BK, Ravi M, Sivaji A. Development of patient derived organoids for cancer drug screening applications. Acta Histochem 2022; 124(4): 151895.
[http://dx.doi.org/10.1016/j.acthis.2022.151895] [PMID: 35486967]
[61]
Prasad K, Zhou R, Zhou R, Schuessler D, Ostrikov KK, Bazaka K. Cosmetic reconstruction in breast cancer patients: Opportunities for nanocomposite materials. Acta Biomater 2019; 86: 41-65.
[http://dx.doi.org/10.1016/j.actbio.2018.12.024] [PMID: 30576863]
[62]
Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 2017; 11(4): 942-65.
[http://dx.doi.org/10.1002/term.2061] [PMID: 26119160]
[63]
Feisst V, Meidinger S, Locke MB. From bench to bedside: Use of human adipose-derived stem cells. Stem Cells Cloning 2015; 8: 149-62.
[PMID: 26586955]
[64]
Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Autologous fat transplantation for breast reconstruction: A literature review. Ann Med Surg (Lond) 2016; 12: 94-100.
[http://dx.doi.org/10.1016/j.amsu.2016.11.012] [PMID: 27942383]
[65]
Xiong M, Zhang Q, Hu W, et al. Exosomes from adipose-derived stem cells: The emerging roles and applications in tissue regeneration of plastic and cosmetic surgery. Front Cell Dev Biol 2020; 8: 574223.
[http://dx.doi.org/10.3389/fcell.2020.574223] [PMID: 33015067]
[66]
Bertozzi N, Pesce M, Santi P, Raposio E. Tissue expansion for breast reconstruction: Methods and techniques. Ann Med Surg 2017; 21: 34-44.
[http://dx.doi.org/10.1016/j.amsu.2017.07.048] [PMID: 28765784]
[67]
Hu MS, Maan ZN, Wu JC, et al. Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 2014; 42(7): 1494-507.
[http://dx.doi.org/10.1007/s10439-014-1010-z] [PMID: 24788648]
[68]
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6(12): 4830-55.
[http://dx.doi.org/10.1016/j.bioactmat.2021.05.011] [PMID: 34136726]
[69]
Conci C, Bennati L, Bregoli C, et al. Tissue engineering and regenerative medicine strategies for the female breast. J Tissue Eng Regen Med 2020; 14(2): 369-87.
[http://dx.doi.org/10.1002/term.2999] [PMID: 31825164]
[70]
Ginsburg G, McCarthy JJ. Personalized medicine: Revolutionizing drug discovery and patient care. Trends Biotechnol 2001; 19(12): 491-6.
[http://dx.doi.org/10.1016/S0167-7799(01)01814-5] [PMID: 11711191]
[71]
Bay JL, Perry JK, Lobie PE. Breast cancer and biotechnology. InLENScience Senior Biology Seminar Series Liggins Education Network for Science. Auckland 2008; pp. 1-12.
[72]
Cai X, Janku F, Zhan Q, Fan JB. Accessing genetic information with liquid biopsies. Trends Genet 2015; 31(10): 564-75.
[http://dx.doi.org/10.1016/j.tig.2015.06.001] [PMID: 26450339]
[73]
Charafe-Jauffret E, Ginestier C, Birnbaum D. Breast cancer stem cells: Tools and models to rely on. BMC Cancer 2009; 9(1): 202.
[http://dx.doi.org/10.1186/1471-2407-9-202] [PMID: 19555472]
[74]
Bonomi R, Betal D, Rapisarda IF, Kalra L, Sajid MS, Johri A. Role of lipomodelling in improving aesthetic outcomes in patients undergoing immediate and delayed reconstructive breast surgery. Eur J Surg Oncol 2013; 39(10): 1039-45.
[http://dx.doi.org/10.1016/j.ejso.2013.07.001] [PMID: 23890717]
[75]
Amare PS. Genetic markers and evolution of targeted therapy in cancer. Biomed Res J 2015; 179.
[76]
Foekens J, Wang Y, Martens J, Berns E, Klijn J. The use of genomic tools for the molecular understanding of breast cancer and to guide personalized medicine. Drug Discov Today 2008; 13(11-12): 481-7.
[http://dx.doi.org/10.1016/j.drudis.2008.03.003] [PMID: 18549973]
[77]
Zhang L, Yao HJ, Yu Y, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 2012; 33(2): 565-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.055] [PMID: 21983136]
[78]
Arnedos M, Vicier C, Loi S, et al. Precision medicine for metastatic breast cancer—limitations and solutions. Nat Rev Clin Oncol 2015; 12(12): 693-704.
[http://dx.doi.org/10.1038/nrclinonc.2015.123] [PMID: 26196250]
[79]
Schweiger MR, Kerick M, Timmermann B, Isau M. The power of NGS technologies to delineate the genome organization in cancer: From mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 2011; 30(2): 199-210.
[http://dx.doi.org/10.1007/s10555-011-9278-z] [PMID: 21267768]
[80]
Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M. Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells 2014; 7(2): 135-42.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.135] [PMID: 25473451]
[81]
Liras A. Future research and therapeutic applications of human stem cells: General, regulatory, and bioethical aspects. J Transl Med 2010; 8(1): 131.
[http://dx.doi.org/10.1186/1479-5876-8-131] [PMID: 21143967]
[82]
Kimbrel EA, Lanza R. Next-generation stem cells — ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19(7): 463-79.
[http://dx.doi.org/10.1038/s41573-020-0064-x] [PMID: 32612263]
[83]
Baudino T. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[84]
Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 2019; 7(6): e00535.
[http://dx.doi.org/10.1002/prp2.535] [PMID: 31859459]
[85]
Schutgens F, Clevers H. Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol 2020; 15(1): 211-34.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032611] [PMID: 31550983]
[86]
Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells 2015; 7(9): 1185-201.
[http://dx.doi.org/10.4252/wjsc.v7.i9.1185] [PMID: 26516409]
[87]
Gomes ME, Rodrigues MT, Domingues RMA, Reis RL. Tissue engineering and regenerative medicine: New trends and directions—a year in review. Tissue Eng Part B Rev 2017; 23(3): 211-24.
[http://dx.doi.org/10.1089/ten.teb.2017.0081] [PMID: 28457175]
[88]
Cordeiro JV. Ethical and legal challenges of personalized medicine: Paradigmatic examples of research, prevention, diagnosis and treatment. Rev Port Saude Publica 2014; 32(2): 164-80.
[http://dx.doi.org/10.1016/j.rpsp.2014.10.002]
[89]
Droste S, Herrmann-Frank A, Scheibler F, Krones T. Ethical issues in autologous stem cell transplantation (ASCT) in advanced breast cancer: A systematic literature review. BMC Med Ethics 2011; 12(1): 6.
[http://dx.doi.org/10.1186/1472-6939-12-6] [PMID: 21496244]
[90]
Godfrey K, Agatha T, Nankumbi J. Breast cancer knowledge and breast self-examination practices among female university students in Kampala, Uganda: a descriptive study. Oman Med J 2016; 31(2): 129-34.
[http://dx.doi.org/10.5001/omj.2016.25] [PMID: 27168924]
[91]
Weir RF, Olick RS, Murray JC. The stored tissue issue: Biomedical research, ethics, and law in the era of genomic medicine. Oxford University Press 2004.
[92]
Stone MA, Redsell SA, Ling JT, Hay AD. Sharing patient data: Competing demands of privacy, trust and research in primary care. Br J Gen Pract 2005; 55(519): 783-9.
[PMID: 16212854]
[93]
Harris J, Burley J. The use of human embryonic stem cells in research and therapy InA companion to Gentics: Philosophy and the Genetic Revolution. Basil Blackwell Ltd. 2002.
[94]
King NMP, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther 2014; 5(4): 85.
[http://dx.doi.org/10.1186/scrt474] [PMID: 25157428]
[95]
Aboody K, Capela A, Niazi N, Stern JH, Temple S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 2011; 70(4): 597-613.
[http://dx.doi.org/10.1016/j.neuron.2011.05.007] [PMID: 21609819]
[96]
Eccles SA, Aboagye EO, Ali S, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res 2013; 15(5): R92.
[http://dx.doi.org/10.1186/bcr3493] [PMID: 24286369]
[97]
Pagani O, Senkus E, Wood W, et al. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst 2010; 102(7): 456-63.
[http://dx.doi.org/10.1093/jnci/djq029] [PMID: 20220104]
[98]
McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol Oncol 2010; 4(5): 404-19.
[http://dx.doi.org/10.1016/j.molonc.2010.06.005] [PMID: 20599450]
[99]
Sharma S, Raju R, Sui S, Hu WS. Stem cell culture engineering: Process scale up and beyond. Biotechnol J 2011; 6(11): 1317-29.
[http://dx.doi.org/10.1002/biot.201000435] [PMID: 21721127]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy