Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Marine Actinobacterial Streptomyces Sp., Mediated Synthesis of Silver Nanoparticles: Characterization and Different Biological Properties Under In-vitro Condition

Author(s): Kannan Kamala, G.J. Jeevan Kumar, Dhanraj Ganapathy, Ashok K. Sundramoorthy* and Pitchiah Sivaperumal*

Volume 19, Issue 7, 2023

Published on: 05 October, 2023

Page: [550 - 560] Pages: 11

DOI: 10.2174/0115734110262574230927045451

Price: $65

Abstract

Background: Green synthesis of nanomaterials is promising as a biological source for treating different diseases without side effects.

Methods: In the present study, marine Streptomyces sp. was used to biosynthesize silver nanoparticles, which were then characterized and evaluated for various therapeutic activities and A 549 breast cancer cell line for cytotoxic evaluation.

Results: The Surface Plasmon Resonance exhibited a peak at 434 nm, and the FT-IR spectrum of St- AgNPs revealed the presence of secondary metabolites, which were used for stabilization and capping processes. The St-AgNPs showed an agglomerated spherical shape with a diameter of 10–35 nm. The elemental composition was silver (60.0%), oxygen (14.9%), sodium (14.9%), and carbon (15.0%). The St-AgNPs exhibited significant antioxidant activity in terms of DPPH 62.2 ± 2.1, H2O2 57.76 ± 2.4%, TAA 64.3±2.7, and NO 64.3 ± 2.7 at 100 μg/mL. The cytotoxic activity using A 549 Breast cancer cell line was found to be only 20 % of viable cells at 100 μg concentration. St-AgNPs revealed good antibacterial efficacy against Streptococcus mutants, Klebsiella Sp. and Staphylococcus aureus (MRSA).

Conclusion: The St-AgNPs may be a good choice for antibacterial, antioxidant and cytotoxic agents in the future with further relevant study and may be used in the field of nano biomedicine.

Graphical Abstract

[1]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[2]
Chung, I.M.; Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar, G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res. Lett., 2016, 11(1), 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[3]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[4]
Daisy, P.; Saipriya, K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int. J. Nanomed., 2012, 7, 1189-1202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[5]
Vankar, P.S.; Bajpai, D. Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian J. Biochem. Biophys., 2010, 47(3), 157-160.
[PMID: 20653286]
[6]
Ghosh, S.; Patil, S.; Ahire, M. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed., 2012, 7, 483-496.
[http://dx.doi.org/10.2147/IJN.S24793] [PMID: 22334779]
[7]
Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 2019, 9(50), 29293-29299.
[http://dx.doi.org/10.1039/C9RA04246F] [PMID: 35528426]
[8]
Saifuddin, N.; Wong, C.W.; Yasumira, A.A.N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem., 2009, 6(1), 61-70.
[http://dx.doi.org/10.1155/2009/734264]
[9]
Wei, X.; Luo, M.; Li, W.; Yang, L.; Liang, X.; Xu, L.; Kong, P.; Liu, H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol., 2012, 103(1), 273-278.
[http://dx.doi.org/10.1016/j.biortech.2011.09.118] [PMID: 22019398]
[10]
Jabbar, R.; Hussein, N. Evaluation the antibacterial activity of biosynthesis silver nanoparticles by lactobacillus gasseri bacteria. J. Appl. Sci. Nanotechnol., 2021, 1(3), 86-95.
[http://dx.doi.org/10.53293/jasn.2021.3898.1057]
[11]
Fang, X.; Wang, Y.; Wang, Z.; Jiang, Z.; Dong, M. Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 2019, 12(1), 190.
[http://dx.doi.org/10.3390/en12010190]
[12]
Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol., 2015, 99(11), 4579-4593.
[http://dx.doi.org/10.1007/s00253-015-6622-1] [PMID: 25952110]
[13]
Garole, D.J.; Choudhary, B.C.; Paul, D.; Borse, A.U. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10911-10925.
[http://dx.doi.org/10.1007/s11356-018-1351-5] [PMID: 29397510]
[14]
Rautela, A.; Rani, J.; Das, M.D. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10(1), 1-10.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[15]
Tsekhmistrenko, S.I.; Bityutskyy, V.S.; Tsekhmistrenko, O.S.; Horalskyi, L.P.; Tymoshok, N.O.; Spivak, M.Y. Bacterial synthesis of nanoparticles: A green approach. Biosyst. Divers., 2020, 28(1), 9-17.
[http://dx.doi.org/10.15421/012002]
[16]
Praveen Kumar, S.; Rajeshkumar, S.; Sivasamy, V. Review on gold nanoparticle used in dentistry. Int. J. Pharm. Res., 2020, 12, 2201-2205.
[http://dx.doi.org/10.31838/ijpr/2020.12.03.298]
[17]
Bhagat, M.; Anand, R.; Sharma, P.; Rajput, P.; Sharma, N.; Singh, K. Review—Multifunctional copper nanoparticles: Synthesis and applications. ECS J. Solid State Sci. Technol., 2021, 10(6), 063011.
[http://dx.doi.org/10.1149/2162-8777/ac07f8]
[18]
Javaid, A.; Oloketuyi, S.F.; Khan, M.M.; Khan, F. Diversity of bacterial synthesis of silver nanoparticles. Bionanoscience, 2018, 8(1), 43-59.
[http://dx.doi.org/10.1007/s12668-017-0496-x]
[19]
Saravanan, C.; Rajesh, R.; Kaviarasan, T.; Muthukumar, K.; Kavitake, D.; Shetty, P.H. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol. Rep. (Amst.), 2017, 15, 33-40.
[http://dx.doi.org/10.1016/j.btre.2017.02.006] [PMID: 28664148]
[20]
Yang, G.; Xie, J.; Deng, Y.; Bian, Y.; Hong, F. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: A “green” route for antibacterial application. Carbohydr. Polym., 2012, 87(4), 2482-2487.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.017]
[21]
Huq, M.A.; Akter, S. Bacterial mediated rapid and facile synthesis of silver nanoparticles and their antimicrobial efficacy against pathogenic microorganisms. Materials (Basel), 2021, 14(10), 2615.
[http://dx.doi.org/10.3390/ma14102615] [PMID: 34069757]
[22]
Saeed, S.; Iqbal, A.; Ashraf, M.A. Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ. Sci. Poll. Res., 2020, 27, 37347-56.
[http://dx.doi.org/10.1007/s11356-020-07610-0]
[23]
Asghar, M.A.; Asghar, M.A. Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. Int. J. Biol. Macromol., 2020, 160, 1168-1176.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.198] [PMID: 32464203]
[24]
Bharathi, D.; Bhuvaneshwari, V. Evaluation of the cytotoxic and antioxidant activity of phyto-synthesized silver nanoparticles using Cassia angustifolia flowers. Bionanoscience, 2019, 9(1), 155-163.
[http://dx.doi.org/10.1007/s12668-018-0577-5]
[25]
Dhanavanth, R.S.; Uma Maheshwari, M. Anti-inflammatory effect of herbal formulation of tulasi, aloe vera and turmeric aqueous extract. Int. J. Pharm. Res, 2020, 15, SP1-440.
[http://dx.doi.org/10.31838/ijpr/2020.SP1.440]
[26]
Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Intracellular And extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Int. J., 2013, 3, 21-25. Available fromwww.urpjournals.com
[27]
Rajeshkumar, S.; Malarkodi, C. Optimization of Serratia nematodiphila using Response surface methodology to silver nanoparticles synthesis for aquatic pathogen control IOP Conf. Ser. Mater. Sci. Eng., 2017, 263(2), 022041.
[http://dx.doi.org/10.1088/1757-899X/263/2/022041]
[28]
Rajeshkumar, S.; Malarkodi, C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/581890] [PMID: 25313307]
[29]
Shunmugam, R.; Renukadevi Balusamy, S.; Kumar, V.; Menon, S.; Lakshmi, T.; Perumalsamy, H. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J. King Saud Univ. Sci., 2021, 33(1), 101260.
[http://dx.doi.org/10.1016/j.jksus.2020.101260]
[30]
Tamboli, D.P.; Lee, D.S. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J. Hazard. Mater., 2013, 260, 878-884.
[http://dx.doi.org/10.1016/j.jhazmat.2013.06.003] [PMID: 23867968]
[31]
Ameen, F.; AlYahya, S.; Govarthanan, M. ALjahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W.A.; Alwakeel, S.S.; Alharbi, S.A. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct., 2020, 1202, 127233.
[http://dx.doi.org/10.1016/j.molstruc.2019.127233]
[32]
Riaz Rajoka, M.S.; Mehwish, H.M.; Zhang, H.; Ashraf, M.; Fang, H.; Zeng, X.; Wu, Y.; Khurshid, M.; Zhao, L.; He, Z. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf. B Biointerfaces, 2020, 186, 110734.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110734] [PMID: 31865119]
[33]
Prema, P.; Subha Ranjani, S.; Ramesh Kumar, K.; Veeramanikandan, V.; Mathiyazhagan, N.; Nguyen, V.H.; Balaji, P. Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorg. Chem. Commun., 2022, 136, 109139.
[http://dx.doi.org/10.1016/j.inoche.2021.109139]
[34]
Fouda, A.; Hassan, S.E.D.; Abdo, A.M.; El-Gamal, M.S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic streptomyces spp. Biol. Trace Elem. Res., 2020, 195(2), 707-724.
[http://dx.doi.org/10.1007/s12011-019-01883-4] [PMID: 31486967]
[35]
Niveda, R.; Jaiganesh, R.; Rajeshkumar, S. Evaluation of antioxidant and anti inflammatory activity of grape seed oil infused with silver nano-particles an in vitro study. Int. J. Dent. Oral Sci., 2021, 8, 3318-3322. Available fromhttps://scidoc.org/IJDOS.php
[36]
Anwar, S.; Almatroodi, S.A.; Almatroudi, A.; Allemailem, K.S.; Joseph, R.J.; Khan, A.A.; Alrumaihi, F.; Alsahli, M.A.; Husain Rahmani, A. Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: an effective approach for attenuation of oxidative stress mediated diseases. Int. J. Food Prop., 2021, 24, 677-701.
[http://dx.doi.org/10.1080/10942912.2021.1914083]
[37]
Bhanumathi, R.; Manivannan, M.; Thangaraj, R.; Kannan, S. Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega, 2018, 3(7), 8317-8328.
[http://dx.doi.org/10.1021/acsomega.7b01347] [PMID: 30087941]
[38]
S S, P.; Rudayni, H.A.; Bepari, A.; Niazi, S.K.; Nayaka, S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J. Biol. Sci., 2022, 29(1), 228-238.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.084] [PMID: 35002413]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy