Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

FDA-approved CAR T-cell Therapy: A Decade of Progress and Challenges

Author(s): Melissa Z. Ong, Sharon A. Kimberly, Wen-Hwei Lee, Marcus Ling, Michael Lee, Ke-Wei Tan, Jhi-Biau Foo, Hui-Yin Yow, Renukha Sellappans and Sharina Hamzah*

Volume 25, Issue 11, 2024

Published on: 04 October, 2023

Page: [1377 - 1393] Pages: 17

DOI: 10.2174/0113892010257212231001082741

Price: $65

Abstract

CAR T-cell therapy is a promising approach for cancer treatment, utilizing a patient's own T-cells (autologous cell) or T-cells from a healthy donor (allogeneic cell) to target and destroy cancer cells. Over the last decade, significant advancements have been made in this field, including the development of novel CAR constructs, improved understanding of biology and mechanisms of action, and expanded clinical applications for treating a wider range of cancers. In this review, we provide an overview of the steps involved in the production of CAR T-cells and their mechanism of action. We also introduce different CAR T-cell therapies available, including their implementation, dosage, administration, treatment cost, efficacy, and resistance. Common side effects of CAR T-cell therapy are also discussed. The CAR T-cell products highlighted in this review are FDA-approved products, which include Kymriah® (tisagenlecleucel), Tecartus® (brexucabtagene autoleucel), Abecma® (Idecabtagene vicleucel), Breyanzi® (lisocabtagene maraleucel), and Yescarta® (axicabtagene ciloleucel). In conclusion, CAR T-cell therapy has made tremendous progress over the past decade and has the potential to revolutionize cancer treatment. This review paper provides insights into the progress, challenges, and future directions of CAR T-cell therapy, offering valuable information for researchers, clinicians, and patients.

Graphical Abstract

[1]
Almåsbak, H.; Aarvak, T.; Vemuri, M.C. CAR T cell therapy: A game changer in cancer treatment. J. Immunol. Res., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/5474602] [PMID: 27298832]
[2]
Huang, R.; Li, X.; He, Y.; Zhu, W.; Gao, L.; Liu, Y.; Gao, L.; Wen, Q.; Zhong, J.F.; Zhang, C.; Zhang, X. Recent advances in CAR-T cell engineering. J. Hematol. Oncol., 2020, 13(1), 86.
[http://dx.doi.org/10.1186/s13045-020-00910-5] [PMID: 32616000]
[3]
Liu, J.; Zhou, G.; Zhang, L.; Zhao, Q. Building potent chimeric antigen receptor T cells with CRISPR genome editing. Front. Immunol., 2019, 10, 456.
[http://dx.doi.org/10.3389/fimmu.2019.00456] [PMID: 30941126]
[4]
Cappell, K.M.; Sherry, R.M.; Yang, J.C.; Goff, S.L.; Vanasse, D.A.; McIntyre, L.; Rosenberg, S.A.; Kochenderfer, J.N. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J. Clin. Oncol., 2020, 38(32), 3805-3815.
[http://dx.doi.org/10.1200/JCO.20.01467] [PMID: 33021872]
[5]
Abbasi, M.H.; Riaz, A.; Khawar, M.B.; Farooq, A.; Majid, A.; Sheikh, N. CAR-T-cell therapy: Present progress and future strategies. Biomed. Res. Ther., 2022, 9(2), 4920-4929.
[http://dx.doi.org/10.15419/bmrat.v9i2.726]
[6]
Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 545(7655), 423-431.
[http://dx.doi.org/10.1038/nature22395] [PMID: 28541315]
[7]
Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; Htut, M.; Karski, E.E.; Lovelace, W.; Dillon, M.; Butz, E.; Ying, W.; Balakumaran, A.; Kumar, S.K. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med., 2023, 29(2), 422-429.
[http://dx.doi.org/10.1038/s41591-022-02182-7] [PMID: 36690811]
[8]
Benjamin, R.; Graham, C.; Yallop, D.; Jozwik, A.; Mirci-Danicar, O.C.; Lucchini, G.; Pinner, D.; Jain, N.; Kantarjian, H.; Boissel, N.; Maus, M.V.; Frigault, M.J.; Baruchel, A.; Mohty, M.; Gianella-Borradori, A.; Binlich, F.; Balandraud, S.; Vitry, F.; Thomas, E.; Philippe, A.; Fouliard, S.; Dupouy, S.; Marchiq, I.; Almena-Carrasco, M.; Ferry, N.; Arnould, S.; Konto, C.; Veys, P.; Qasim, W.; Benjamin, R.; Graham, C.; Yallop, D.; Jozwik, A.; Pagliuca, A.; Mufti, G.; Patten, P.; Kassam, S.; Devereux, S.; Kazmi, M.; Cuthill, K.; Potter, V.; Kuhnl, A.; Metaxa, V.; Bonganay, L.; Stewart, O.; Ellard, R.; Catt, L.; Lewis, J.; Farzaneh, F.; Chappell, J.; Mason, A.; Chu, V.; Dunlop, A.; Saleem, A.; Cheung, G.; Munro, H.; Giemza, E.; Qasim, W.; Veys, P.; Ciocarlie, O.; Lucchini, G.; Pinner, D.; Chu, J.; Amrolia, P.; Rao, K.; Chiesa, R.; Silva, J.; Hill, A.; Finch, M.; Young, L.; Hara, H.; Samarasinghe, S.; Rao, A.; Vora, A.; Gilmour, K.; Rivat, C.; Murphy, C.; Ahsan, G.; Said Shamsah, R.; James, J.; Inglott, S.; Wright, G.; Adams, S.; Izotova, N.; Jain, N.; Konopleva, M.; Wierda, W.; Jabbour, E.; Kantarjian, H.; Kebrieai, P.; Jones, E.; McGee, K.; Maus, M.; Frigault, M.; Brown, J.; Toncheva, V.; Casey, K.; Hock, H.; McKeown, M.A.; Mathews, R.; Spitzer, T.; Boissel, N.; Raffoux, E.; Lengliné, E.; Itzykson, R.; Rabian, F.; Larghero, J.; Madelaine, I.; Azoulay, E.; Clappier, E.; Caillat-Zucman, S.; Meunier, M.; Celli-Lebras, K.; Tremorin, M-T.; Baruchel, A.; Yakouben, K.; Mechinaud-Heloury, F.; Grain, A.; Alimi, A.; Roupret, J.; Chaillou, D.; Larghero, J.; Madelaine, I.; Cavé, H.; Caye-Eude, A.; Fenneteau, O.; Lainey, E.; Naudin, J.; Mohty, M.; Brissot, E.; Dulery, R.; Malard, F.; Mediavilla, C.; Bonnin, A.; Vekhoff, A.; Ledraa, T.; Larghero, J.; Daguenel-Nguyen, A. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet, 2020, 396(10266), 1885-1894.
[http://dx.doi.org/10.1016/S0140-6736(20)32334-5] [PMID: 33308471]
[9]
Ahmad, A.; Uddin, S.; Steinhoff, M. CAR-T cell therapies: An overview of clinical studies supporting their approved use against acute lymphoblastic leukemia and large b-cell lymphomas. Int. J. Mol. Sci., 2020, 21(11), 3906.
[http://dx.doi.org/10.3390/ijms21113906] [PMID: 32486160]
[10]
Cohen, A.D.; Mateos, M.V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.; Suvannasankha, A.; De Braganca, K.C.; Corsale, C.; Schecter, J.M.; Varsos, H.; Deraedt, W.; Wang, L.; Vogel, M.; Roccia, T.; Xu, X.; Mistry, P.; Zudaire, E.; Akram, M.; Nesheiwat, T.; Pacaud, L.; Avivi, I.; San-Miguel, J. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood, 2023, 141(3), 219-230.
[http://dx.doi.org/10.1182/blood.2022015526] [PMID: 36095849]
[11]
CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers; National Cancer Institute, 2022.
[12]
Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Methods Clin. Dev., 2017, 4, 92-101.
[http://dx.doi.org/10.1016/j.omtm.2016.12.006] [PMID: 28344995]
[13]
Wang, X.; Rivière, I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol. Ther. Oncolytics, 2016, 3, 16015.
[http://dx.doi.org/10.1038/mto.2016.15] [PMID: 27347557]
[14]
Shi, H.; Sun, M.; Liu, L.; Wang, Z. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Mol. Cancer, 2014, 13(1), 219.
[http://dx.doi.org/10.1186/1476-4598-13-219] [PMID: 25241075]
[15]
Blache, U.; Popp, G.; Dünkel, A.; Koehl, U.; Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun., 2022, 13(1), 5225.
[http://dx.doi.org/10.1038/s41467-022-32866-0] [PMID: 36064867]
[16]
Benmebarek, M.R.; Karches, C.; Cadilha, B.; Lesch, S.; Endres, S.; Kobold, S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci., 2019, 20(6), 1283.
[http://dx.doi.org/10.3390/ijms20061283] [PMID: 30875739]
[17]
U.S. Food and Drug Administration. Prescribing Information of Kymriah® (tisagenlecleucel)., 2022. Available from: www.fda.gov/medwatch (Accessed on: February 21, 2023).
[18]
Tisagenlecleucel, 2022. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/tisagenlecleucel (Accessed on: March 17, 2022).
[19]
Ali, S.; Kjeken, R.; Niederlaender, C.; Markey, G.; Saunders, T.S.; Opsata, M.; Moltu, K.; Bremnes, B.; Grønevik, E.; Muusse, M.; Håkonsen, G.D.; Skibeli, V.; Kalland, M.E.; Wang, I.; Buajordet, I.; Urbaniak, A.; Johnston, J.; Rantell, K.; Kerwash, E.; Schuessler-Lenz, M.; Salmonson, T.; Bergh, J.; Gisselbrecht, C.; Tzogani, K.; Papadouli, I.; Pignatti, F. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large b-cell lymphoma. Oncologist, 2020, 25(2), e321-e327.
[http://dx.doi.org/10.1634/theoncologist.2019-0233] [PMID: 32043764]
[20]
Labbé, R.P.; Vessillier, S. Rafiq, QA Lentiviral vectors for T cell engineering: Clinical applications, bioprocessing and future perspectives. Viruses, 2021, 13, 1528.
[http://dx.doi.org/10.3390/v13081528]
[21]
KYMRIAH® (tisagenlecleucel) Treatment Center Locator Novartis., 2022. Available from: https://www.us.kymriah.com/treatment-center-locator/
[22]
Kymriah; European Medicines Agency, 2022.
[23]
Novartis expands Kymriah® manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia | Novartis 2021; Novartis, 2021.
[24]
Novartis. Novartis receives approval for Kymriah® (tisagenlecleucel) by Health Sciences Authority as Singapore’s first commercially approved CAR-T therapy | Novartis Singapore. 2021. Available from: https://www.novartis.com/sg-en/news/media-releases/novartis-receives-approval-kymriah-tisagenlecleucel-health-sciences-authority-singapores-first-commercially-approved-car-t-therapy (Accessed on: March 21, 2021).
[25]
FDA approval brings first gene therapy to the United States | FDA, 2017. Available from: https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-gene-therapy-united-states (Accessed on: March 21, 2021).
[26]
Hernandez, I.; Prasad, V.; Gellad, W.F. Total costs of chimeric antigen receptor T - cell immunotherapy. JAMA Oncol., 2018, 4(7), 994-996.
[http://dx.doi.org/10.1001/jamaoncol.2018.0977] [PMID: 29710129]
[27]
Lyman, G.H.; Nguyen, A.; Snyder, S.; Gitlin, M.; Chung, K.C. Economic evaluation of chimeric antigen receptor t-cell therapy by site of care among patients with relapsed or refractory large b-cell lymphoma. JAMA Netw. Open, 2020, 3(4), e202072.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.2072] [PMID: 32250433]
[28]
Harkins, R.A.; Patel, S.P.; Flowers, C.R. Cost burden of diffuse large B-cell lymphoma. Expert Rev. Pharmacoecon. Outcomes Res., 2019, 19(6), 645-661.
[29]
Wakase, S.; Teshima, T.; Zhang, J.; Ma, Q.; Fujita, T.; Yang, H.; Chai, X.; Qi, C.Z.; Liu, Q.; Wu, E.Q.; Igarashi, A. Cost effectiveness analysis of tisagenlecleucel for the treatment of adult patients with relapsed or refractory diffuse large B cell lymphoma in Japan. Transplant. Cell. Ther., 2021, 27(6), 506.e1-506.e10.
[http://dx.doi.org/10.1016/j.jtct.2021.03.005] [PMID: 33823168]
[30]
Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; Buechner, J.; Pulsipher, M.A.; Myers, G.D.; Stefanski, H.E.; Martin, P.L.; Nemecek, E.; Peters, C.; Yanik, G.; Khaw, S.L.; Davis, K.L.; Krueger, J.; Balduzzi, A.; Boissel, N.; Tiwari, R.; O’Donovan, D.; Grupp, S.A. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol., 2023, 41(9), 1664-1669.
[http://dx.doi.org/10.1200/JCO.22.00642] [PMID: 36399695]
[31]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[32]
O’Leary, M.C.; Lu, X.; Huang, Y.; Lin, X.; Mahmood, I.; Przepiorka, D.; Gavin, D.; Lee, S.; Liu, K.; George, B.; Bryan, W.; Theoret, M.R.; Pazdur, R. FDA approval summary: Tisagenlecleucel for treatment of patients with relapsed or refractory b-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res., 2019, 25(4), 1142-1146.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2035] [PMID: 30309857]
[33]
Cartron, G.; Fox, C.P.; Liu, F.F.; Kostic, A.; Hasskarl, J.; Li, D.; Bonner, A.; Zhang, Y.; Maloney, D.G.; Kuruvilla, J. Matching-adjusted indirect treatment comparison of chimeric antigen receptor T-cell therapies for third-line or later treatment of relapsed or refractory large B-cell lymphoma: lisocabtagene maraleucel versus tisagenlecleucel. Exp. Hematol. Oncol., 2022, 11(1), 17.
[http://dx.doi.org/10.1186/s40164-022-00268-z] [PMID: 35337365]
[34]
Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; Fleury, I.; Bachanova, V.; Foley, S.R.; Ho, P.J.; Mielke, S.; Magenau, J.M.; Holte, H.; Pantano, S.; Pacaud, L.B.; Awasthi, R.; Chu, J.; Anak, Ö.; Salles, G.; Maziarz, R.T. Tisagenlecleucel in adult relapsed or refractory diffuse large b-cell lymphoma. N. Engl. J. Med., 2019, 380(1), 45-56.
[http://dx.doi.org/10.1056/NEJMoa1804980] [PMID: 30501490]
[35]
KYMRIAH-tisagenlecleucel injection, suspension. 2022. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=aad3ba54-dfd3-4cb3-9e2b-c5ef89559189&audience=consumer (Accessed on: March 18, 2023).
[36]
Jaeger, U.; Worel, N.; McGuirk, J.P.; Riedell, P.A.; Fleury, I.; Borchmann, P.; Chu, J.; Abdelhady, A.M.; Forcina, A.; Bubuteishvili, P.L.; Waller, E.K. Portia: A phase 1b study evaluating safety and efficacy of tisagenlecleucel and pembrolizumab in patients with relapsed/refractory diffuse large b-cell lymphoma. Blood, 2019, 134(S1), 5325-5325.
[http://dx.doi.org/10.1182/blood-2019-129120]
[37]
Schuster, S.J.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; Kato, K.; Harigae, H.; Kersten, M.J.; Andreadis, C.; Riedell, P.A.; Abdelhady, A.; Zia, A.; Morisse, M.C.; Fowler, N.H.; Thieblemont, C. Efficacy and safety of tisagenlecleucel (Tisa-Cel) In Adult Patients (Pts) with relapsed/refractory follicular lymphoma (R/R Fl): Primary analysis of the phase 2 elara trial. Hematol. Oncol., 2021, 39(S2), hon.85_2879.
[http://dx.doi.org/10.1002/hon.85_2879]
[38]
Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; Morschhauser, F.; Janz, M.; Flinn, I.; Rabitsch, W.; Kwong, Y.L.; Kersten, M.J.; Minnema, M.C.; Holte, H.; Chan, E.H.L.; Martinez-Lopez, J.; Müller, A.M.S.; Maziarz, R.T.; McGuirk, J.P.; Bachy, E.; Le Gouill, S.; Dreyling, M.; Harigae, H.; Bond, D.; Andreadis, C.; McSweeney, P.; Kharfan-Dabaja, M.; Newsome, S.; Degtyarev, E.; Awasthi, R.; del Corral, C.; Andreola, G.; Masood, A.; Schuster, S.J.; Jäger, U.; Borchmann, P.; Westin, J.R. Second-line tisagenlecleucel or standard care in aggressive b-cell lymphoma. N. Engl. J. Med., 2022, 386(7), 629-639.
[http://dx.doi.org/10.1056/NEJMoa2116596] [PMID: 34904798]
[39]
Singh, N.; Lee, Y.G.; Shestova, O.; Ravikumar, P.; Hayer, K.E.; Hong, S.J.; Lu, X.M.; Pajarillo, R.; Agarwal, S.; Kuramitsu, S.; Orlando, E.J.; Mueller, K.T.; Good, C.R.; Berger, S.L.; Shalem, O.; Weitzman, M.D.; Frey, N.V.; Maude, S.L.; Grupp, S.A.; June, C.H.; Gill, S.; Ruella, M. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing car t-cell dysfunction. Cancer Discov., 2020, 10(4), 552-567.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0813] [PMID: 32001516]
[40]
Tecartus | European Medicines Agency, 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/tecartus (Accessed on: August 21, 2023).
[41]
Lovell, A. Brexucabtagene autoleucel (Tecartus™). Oncology Times, 2022, 44(16), 10-10.
[http://dx.doi.org/10.1097/01.COT.0000872268.55217.67]
[42]
TECARTUSTM CAR T-cell therapy for mantle cell lymphoma patients. 2021. Available from: https://www.tecartus.com/ (Accessed on: February 21, 2022).
[43]
KiteKonnect. Yescarta® (axicabtagene ciloleucel), 2021. Available from: https://www.yescarta.com/ (Accessed on: March 21, 2022).
[44]
Brexucabtagene Autoleucel (Tecartus). 2022. Available from: https://canjhealthtechnol.ca/index.php/cjht/article/view/PG0304r/1420 (Accessed on: February 21, 2022).
[45]
U.S. Food and Drug Administration. Package Insert - TECARTUS 2021. 2021. Available from: www.fda.gov/medwatch (Accessed on: February 21, 2023).
[46]
Voelker, R. CAR-T therapy is approved for mantle cell lymphoma. JAMA, 2020, 324(9), 832-832.
[http://dx.doi.org/10.1001/jama.2020.15456] [PMID: 32870282]
[47]
Simons, C.L.; Malone, D.; Wang, M.; Maglinte, G.A.; Inocencio, T.; Wade, S.W.; Bennison, C.; Shah, B. Cost-effectiveness for KTE-X19 CAR T therapy for adult patients with relapsed/refractory mantle cell lymphoma in the United States. J. Med. Econ., 2021, 24(1), 421-431.
[http://dx.doi.org/10.1080/13696998.2021.1894158] [PMID: 33634729]
[48]
Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; McSweeney, P.A.; Miklos, D.B.; Pagel, J.M.; Kersten, M.J.; Milpied, N.; Fung, H.; Topp, M.S.; Houot, R.; Beitinjaneh, A.; Peng, W.; Zheng, L.; Rossi, J.M.; Jain, R.K.; Rao, A.V.; Reagan, P.M. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med., 2020, 382(14), 1331-1342.
[http://dx.doi.org/10.1056/NEJMoa1914347] [PMID: 32242358]
[49]
Girard, J.; Reneau, J.; Devata, S.; Wilcox, R.A.; Kaminski, M.S.; Mercer, J.; Carty, S.; Phillips, T.J. Evaluating acalabrutinib in the treatment of mantle cell lymphoma: Design, development, and place in therapy. OncoTargets Ther., 2019, 12, 8003-8014.
[http://dx.doi.org/10.2147/OTT.S155778] [PMID: 31686856]
[50]
Kapoor, P.; Vallumsetla, N.; Paludo, J. Bortezomib in mantle cell lymphoma: Comparative therapeutic outcomes. Ther. Clin. Risk Manag., 2015, 11, 1663-1674.
[http://dx.doi.org/10.2147/TCRM.S72943] [PMID: 26609233]
[51]
Yang, H.; Xiang, B.; Song, Y.; Zhang, H.; Zhao, W.; Zou, D.; Lv, F.; Guo, W.; Liu, A.; Li, C.; Tan, Z.; Liu, Y.; Fu, L.; Guo, H.; Novotny, W.; Huang, J.; Li, Y. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large B-cell lymphoma. Blood Adv., 2022, 6(6), 1629-1636.
[http://dx.doi.org/10.1182/bloodadvances.2020003698] [PMID: 34638136]
[52]
Czuczman, M.S.; Goy, A.; Lamonica, D.; Graf, D.A.; Munteanu, M.C.; van der Jagt, R.H. Phase II study of bendamustine combined with rituximab in relapsed/refractory mantle cell lymphoma: Efficacy, tolerability, and safety findings. Ann. Hematol., 2015, 94(12), 2025-2032.
[http://dx.doi.org/10.1007/s00277-015-2478-9] [PMID: 26411584]
[53]
U.S. Food Drug and Administration. Package Insert - ABECMA 2021. 2021. Available from: www.fda.gov/medwatch (Accessed on: August 21, 2023).
[54]
Reimbursement Team. Idecabtagene Vicleucel (Abecma). CADTH, 2022, 2(2)
[http://dx.doi.org/10.51731/cjht.2022.250]
[55]
U.S. Food and Drug Administration. FDA Approves First Cell-Based Gene Therapy for Adult Patients with Multiple Myeloma, 2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-multiple-myeloma (Accessed on: May 21, 2021).
[56]
Bristol Myers Squibb. Approves Bristol Myers Squibb’s and bluebird bio’s Abecma (idecabtagene vicleucel), the First Anti-BCMA CAR T Cell Therapy for Relapsed or Refractory Multiple Myeloma. 2021. Available from: https://news.bms.com/news/details/2021/U.S.-Food-and-Drug-Administration-Approves-Bristol-Myers-Squibbs-and-bluebird-bios-Abecma-idecabtagene-vicleucel-the-First-Anti-BCMA-CAR-T-Cell-Therapy-for-Relapsed-or-Refractory-Multiple-Myeloma/default.aspx (Accessed on: March 21, 2023).
[57]
Bristol Myers Squibb Canada Co. Health Canada Approves ABECMATM (idecabtagene vicleucel), the First and Only Anti-BCMA CAR T cell Therapy for Relapsed and Refractory Multiple Myeloma. 2021. Available from: https://www.newswire.ca/news-releases/health-canada-approves-abecma-tm-idecabtagene-vicleucel-the-first-and-only-anti-bcma-car-t-cell-therapy-for-relapsed-and-refractory-multiple-myeloma-878074128.html (Acessed on: March 21, 2022).
[58]
Celgene Corporation. Abecma (idecabtagene vicleucel), 2021. Available from: https://www.bms.com/assets/bms/ca/documents/productmonograph/ABECMA_EN_PM.pdf (Accessed on: April 21, 2021).
[59]
Geethakumari, P.R.; Ramasamy, D.P.; Dholaria, B.; Berdeja, J.; Kansagra, A. Balancing quality, cost, and access during delivery of newer cellular and immunotherapy treatments. Curr. Hematol. Malig. Rep., 2021, 16(4), 345-356.
[http://dx.doi.org/10.1007/s11899-021-00635-3] [PMID: 34089485]
[60]
Institute for Clinical and Economic Review. ICER Publishes Evidence Report on Therapies for Multiple Myeloma - ICER 2021, 2021. Available from: https://icer.org/news-insights/press-releases/icer-publishes-evidence-report-on-therapies-for-multiple-myeloma/
[61]
Institute for Clinical and Economic Review. Multiple Myeloma - ICER 202., 2021. Available from: https://icer.org/assessment/multiple-myeloma-2021/
[62]
Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; Lam, L.P.; Morgan, R.A.; Friedman, K.; Massaro, M.; Wang, J.; Russotti, G.; Yang, Z.; Campbell, T.; Hege, K.; Petrocca, F.; Quigley, M.T.; Munshi, N.; Kochenderfer, J.N. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med., 2019, 380(18), 1726-1737.
[http://dx.doi.org/10.1056/NEJMoa1817226] [PMID: 31042825]
[63]
Jasiński, M.; Basak, G.W.; Jedrzejczak, W.W. Perspectives for the use of CAR-T cells for the treatment of multiple myeloma. Front. Immunol., 2021, 12, 632937.
[http://dx.doi.org/10.3389/fimmu.2021.632937] [PMID: 33717171]
[64]
Munshi, N.C.; Anderson, L.D., Jr; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; Moreau, P.; Yakoub-Agha, I.; Delforge, M.; Cavo, M.; Einsele, H.; Goldschmidt, H.; Weisel, K.; Rambaldi, A.; Reece, D.; Petrocca, F.; Massaro, M.; Connarn, J.N.; Kaiser, S.; Patel, P.; Huang, L.; Campbell, T.B.; Hege, K.; San-Miguel, J. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med., 2021, 384(8), 705-716.
[http://dx.doi.org/10.1056/NEJMoa2024850] [PMID: 33626253]
[65]
Xu, J.; Ming, X.; Wang, C.; Xu, B.; Xiao, Y. Long event-free survival after anti-BCMA CAR-T cell treatment for relapsed and refractory multiple myeloma patients. Medicine, 2021, 100(18), e25784.
[http://dx.doi.org/10.1097/MD.0000000000025784] [PMID: 33950974]
[66]
Smith, E.L.; Mailankody, S.; Staehr, M.; Wang, X.; Senechal, B.; Purdon, T.J.; Daniyan, A.F.; Geyer, M.B.; Goldberg, A.D.; Mead, E.; Santomasso, B.D.; Landa, J.; Rimner, A.; Riviere, I.; Landgren, O.; Brentjens, R.J. BCMA-targeted CAR T-cell therapy plus radiotherapy for the treatment of refractory myeloma reveals potential synergy. Cancer Immunol. Res., 2019, 7(7), 1047-1053.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0551] [PMID: 31113804]
[67]
Samur, M.K.; Fulciniti, M.; Aktas Samur, A.; Bazarbachi, A.H.; Tai, Y.T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; Hege, K.; Kaiser, S.; Loiseau, H.A.; Anderson, K.C.; Munshi, N.C. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun., 2021, 12(1), 868.
[http://dx.doi.org/10.1038/s41467-021-21177-5] [PMID: 33558511]
[68]
Da Vià, M.C.; Dietrich, O.; Truger, M.; Arampatzi, P.; Duell, J.; Heidemeier, A.; Zhou, X.; Danhof, S.; Kraus, S.; Chatterjee, M.; Meggendorfer, M.; Twardziok, S.; Goebeler, M.E.; Topp, M.S.; Hudecek, M.; Prommersberger, S.; Hege, K.; Kaiser, S.; Fuhr, V.; Weinhold, N.; Rosenwald, A.; Erhard, F.; Haferlach, C.; Einsele, H.; Kortüm, K.M.; Saliba, A.E.; Rasche, L. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med., 2021, 27(4), 616-619.
[http://dx.doi.org/10.1038/s41591-021-01245-5] [PMID: 33619368]
[69]
Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; Plesa, G.; Chen, F.; Davis, M.M.; Hwang, W.T.; Young, R.M.; Brogdon, J.L.; Isaacs, R.; Pruteanu-Malinici, I.; Siegel, D.L.; Levine, B.L.; June, C.H.; Milone, M.C. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest., 2019, 129(6), 2210-2221.
[http://dx.doi.org/10.1172/JCI126397] [PMID: 30896447]
[70]
Milone, M.C.; Xu, J.; Chen, S.J.; Collins, M.A.; Zhou, J.; Powell, D.J., Jr; Melenhorst, J.J. Engineering-enhanced CAR T cells for improved cancer therapy. Nat. Can., 2021, 2(8), 780-793.
[http://dx.doi.org/10.1038/s43018-021-00241-5] [PMID: 34485921]
[71]
García-Guerrero, E.; Sierro-Martínez, B.; Pérez-Simón, J.A. Overcoming chimeric antigen receptor (CAR) modified t-cell therapy limitations in multiple myeloma. Front. Immunol., 2020, 11, 1128.
[http://dx.doi.org/10.3389/fimmu.2020.01128] [PMID: 32582204]
[72]
van der. S.J.J.; van de Donk, N.W.C.J.; Mutis, T. Dual targeting to overcome current challenges in multiple myeloma car t-cell treatment. Front. Oncol., 2020, 10, 1362.
[http://dx.doi.org/10.3389/fonc.2020.01362] [PMID: 32850436]
[73]
Chen, H. Yu, T.; Lin, L.; Xing, L.; Cho, S.F.; Wen, K.; Aardalen, K.; Oka, A.; Lam, J.; Daley, M.; Lu, H.; Munshi, N.; Anderson, K.C.; Tai, Y.T. γ-secretase inhibitors augment efficacy of BCMA-targeting bispecific antibodies against multiple myeloma cells without impairing T-cell activation and differentiation. Blood Cancer J., 2022, 12(8), 118.
[http://dx.doi.org/10.1038/s41408-022-00716-3] [PMID: 35973981]
[74]
van de Donk, N.W.C.J.; Usmani, S.Z.; Yong, K. CAR T-cell therapy for multiple myeloma: State of the art and prospects. Lancet Haematol., 2021, 8(6), e446-e461.
[http://dx.doi.org/10.1016/S2352-3026(21)00057-0] [PMID: 34048683]
[75]
Prescribing Information of Breyanzi; U.S. Food and Drug Administration, 2021.
[76]
Makita, S.; Imaizumi, K.; Kurosawa, S.; Tobinai, K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context, 2019, 8, 1-14.
[http://dx.doi.org/10.7573/dic.212567] [PMID: 30815024]
[77]
Ogasawara, K.; Lymp, J.; Mack, T.; Dell’Aringa, J. In vivo cellular expansion of lisocabtagene maraleucel and association with efficacy and safety in relapsed/refractory large B-cell lymphoma. Clin. Pharmacol. Ther., 2022, 112(1), 81-89.
[http://dx.doi.org/10.1002/cpt.2561]
[78]
Assessment report of Breyanzi; European Medicine Agency, 2022.
[79]
Kharfan-Dabaja, M.A.; Yassine, F.; Alhaj Moustafa, M.; Iqbal, M.; Murthy, H. Lisocabtagene maraleucel in relapsed or refractory diffuse large B cell lymphoma: What is the evidence? Hematol. Oncol. Stem Cell Ther., 2021, 15(4), 168-175.
[http://dx.doi.org/10.1016/j.hemonc.2021.09.004] [PMID: 34699774]
[80]
Bristol Myers Squibb. Breyanzi (lisocabtagene maraleucel), a New CAR T Cell Therapy for Adults with Relapsed or Refractory Large B-cell Lymphoma 2021., 2021. Available from: https://news.bms.com/news/details/2021/U.S.-Food-and-Drug-Administration-Approves-Bristol-Myers-Squibbs-Breyanzi-lisocabtagene-maraleucel-a-New-CAR-T-Cell-Therapy-for-Adults-with-Relapsed-or-Refractory-Large-B-cell-Lymphoma/default.aspx (Accessed on: March 21, 2022).
[81]
European Medicines Agency. New gene therapy treatment for patients with relapsed or refractory large B-cell lymphoma., 2022. Available from: https://www.ema.europa.eu/en/news/new-gene-therapy-treatment-patients-relapsed-refractory-large-b-cell-lymphoma (Accessed on: March 21, 2023).
[82]
Squibb, B.M. Japan’s Ministry of Health, Labour and Welfare Approves Breyanzi, a New CAR T Cell Therapy 2021. 2021. Available from: https://news.bms.com/news/details/2021/Japans-Ministry-of-Health-Labour-and-Welfare-Approves-Breyanzi-a-New-CAR-T-Cell-Therapy/default.aspx (Accessed on: April 21, 2022).
[83]
Pagliarulo, N.; Filder, B. Bristol Myers finally wins FDA approval for cancer cell therapy | BioPharma Dive. Biopharma Dive. 2021. Available from: https://www.biopharmadive.com/news/bristol-myers-liso-cel-fda-approval-car-t/594660/ (Accessed on: March 21, 2021).
[84]
Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol., 2021, 96(5), 617-629.
[http://dx.doi.org/10.1002/ajh.26151] [PMID: 33661537]
[85]
Westin, J.R.; Kersten, M.J.; Salles, G.; Abramson, J.S.; Schuster, S.J.; Locke, F.L.; Andreadis, C. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am. J. Hematol., 2021, 96(10), 1295-1312.
[http://dx.doi.org/10.1002/ajh.26301] [PMID: 34310745]
[86]
Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; Sehgal, A.; Solomon, S.R.; Ghosh, N.; Albertson, T.M.; Garcia, J.; Kostic, A.; Mallaney, M.; Ogasawara, K.; Newhall, K.; Kim, Y.; Li, D.; Siddiqi, T. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet, 2020, 396(10254), 839-852.
[http://dx.doi.org/10.1016/S0140-6736(20)31366-0] [PMID: 32888407]
[87]
European Medicines Agency. Yescarta: axicabtagene ciloleucel, 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/yescarta (Accessed on: May 21, 2021).
[88]
Prescribing Information of Yescarta® (axicabtagene ciloleucel); U.S. Food and Drug Administration, 2022.
[89]
Roth, J.A.; Sullivan, S.D.; Lin, V.W.; Bansal, A.; Purdum, A.G.; Navale, L.; Cheng, P.; Ramsey, S.D. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J. Med. Econ., 2018, 21(12), 1238-1245.
[http://dx.doi.org/10.1080/13696998.2018.1529674] [PMID: 30260711]
[90]
Heine, R.; Thielen, F.W.; Koopmanschap, M.; Kersten, M.J.; Einsele, H.; Jaeger, U.; Sonneveld, P.; Sierra, J.; Smand, C.; Uyl-de Groot, C.A. Health economic aspects of chimeric antigen receptor t-cell therapies for hematological cancers: Present and future. HemaSphere, 2021, 5(2), e524.
[http://dx.doi.org/10.1097/HS9.0000000000000524] [PMID: 33880433]
[91]
National Library of Medicine (U.S.). Study evaluating the safety and efficacy of KTE-C19 in adult participants with refractory aggressive non-Hodgkin lymphoma (ZUMA-1) 2015. 2015. Available from: https://clinicaltrials.gov/study/NCT02348216 (Accessed on: May 21, 2021).
[92]
Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Reagan, P.M.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; Crump, M.; Kuruvilla, J.; Van Den Neste, E.; Farooq, U.; Navale, L.; DePuy, V.; Kim, J.J.; Gisselbrecht, C. Comparison of 2-year outcomes with CAR T cells (ZUMA-1) vs salvage chemotherapy in refractory large B-cell lymphoma. Blood Adv., 2021, 5(20), 4149-4155.
[http://dx.doi.org/10.1182/bloodadvances.2020003848] [PMID: 34478487]
[93]
Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; Timmerman, J.M.; Stiff, P.J.; Friedberg, J.W.; Flinn, I.W.; Goy, A.; Hill, B.T.; Smith, M.R.; Deol, A.; Farooq, U.; McSweeney, P.; Munoz, J.; Avivi, I.; Castro, J.E.; Westin, J.R.; Chavez, J.C.; Ghobadi, A.; Komanduri, K.V.; Levy, R.; Jacobsen, E.D.; Witzig, T.E.; Reagan, P.; Bot, A.; Rossi, J.; Navale, L.; Jiang, Y.; Aycock, J.; Elias, M.; Chang, D.; Wiezorek, J.; Go, W.Y. Axicabtagene Ciloleucel CAR T-Cell therapy in refractory large b-cell lymphoma. N. Engl. J. Med., 2017, 377(26), 2531-2544.
[http://dx.doi.org/10.1056/NEJMoa1707447] [PMID: 29226797]
[94]
Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; Deol, A.; Reagan, P.M.; Stiff, P.; Flinn, I.W.; Farooq, U.; Goy, A.; McSweeney, P.A.; Munoz, J.; Siddiqi, T.; Chavez, J.C.; Herrera, A.F.; Bartlett, N.L.; Wiezorek, J.S.; Navale, L.; Xue, A.; Jiang, Y.; Bot, A.; Rossi, J.M.; Kim, J.J.; Go, W.Y.; Neelapu, S.S. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol., 2019, 20(1), 31-42.
[http://dx.doi.org/10.1016/S1470-2045(18)30864-7] [PMID: 30518502]
[95]
National Library of Medicine. (U.S. A phase 2 multicenter study of Axicabtagene Ciloleucel in subjects with relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5) 2017. 2017. Available from: https://clinicaltrials.gov/study/NCT03105336
[96]
Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; Reshef, R.; Leslie, L.A.; Yakoub-Agha, I.; Oluwole, O.O.; Fung, H.C.H.; Rosenblatt, J.; Rossi, J.M.; Goyal, L.; Plaks, V.; Yang, Y.; Vezan, R.; Avanzi, M.P.; Neelapu, S.S. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol., 2022, 23(1), 91-103.
[http://dx.doi.org/10.1016/S1470-2045(21)00591-X] [PMID: 34895487]
[97]
Pan, K.; Farrukh, H.; Chittepu, V.C.S.R.; Xu, H.; Pan, C.; Zhu, Z. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res., 2022, 41(1), 119.
[http://dx.doi.org/10.1186/s13046-022-02327-z]
[98]
National Library of Medicine (U.S.). Safety and efficacy of KTEC19 in combination with Atezolizumab in adults with refractory diffuse large b-cell lymphoma (DLBCL) (ZUMA-6). 2016. Available from: https://clinicaltrials.gov/study/NCT02926833 (Accessed on: May 21, 2021).
[99]
Bachmann, M. The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunol. Lett., 2019, 211, 13-22.
[http://dx.doi.org/10.1016/j.imlet.2019.05.003] [PMID: 31091431]
[100]
Graham, C.; Hewitson, R.; Pagliuca, A.; Benjamin, R. Cancer immunotherapy with CAR-T cells – behold the future. Clin. Med., 2018, 18(4), 324-328.
[http://dx.doi.org/10.7861/clinmedicine.18-4-324] [PMID: 30072559]
[101]
Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics, 2016, 3, 16011.
[http://dx.doi.org/10.1038/mto.2016.11] [PMID: 27626062]
[102]
Zhang, C.; Durer, S.; Thandra, K.C.; Kasi, A. Chimeric Antigen Receptor T-Cell Therapy. StatPearls; StatPearls Publishing, 2021.
[103]
Al-Samkari, H.; Berliner, N. Hemophagocytic lymphohistiocytosis. Annu. Rev. Pathol., 2018, 13, 27-49.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043625]
[104]
Schubert, M.L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol., 2021, 32(1), 34-48.
[http://dx.doi.org/10.1016/j.annonc.2020.10.478] [PMID: 33098993]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy