Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer

Author(s): Arshi Khanam, Gurvirender Singh*, Smita Narwal, Bhawna Chopra and Ashwani K. Dhingra

Volume 21, Issue 9, 2024

Published on: 04 October, 2023

Page: [1161 - 1179] Pages: 19

DOI: 10.2174/0115672018180695230925113521

Price: $65

Abstract

Background: Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism.

Method: The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer.

Result: In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities.

Conclusion: The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.

Next »
Graphical Abstract

[1]
Cancer stat facts: Prostate cancer. https://seer.cancer.gov/statfacts/html/prost.html
[2]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[3]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3(1), 994-1013.
[http://dx.doi.org/10.3390/cancers3010994] [PMID: 24212651]
[4]
Messex, J.K.; Byrd, C.J.; Thomas, M.U.; Liou, G.Y. Macrophages cytokine Spp1 increases growth of prostate intraepithelial neoplasia to promote prostate tumor progression. Int. J. Mol. Sci., 2022, 23(8), 4247.
[http://dx.doi.org/10.3390/ijms23084247] [PMID: 35457063]
[5]
Putzi, M.J.; De Marzo, A.M. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology, 2000, 56(5), 828-832.
[http://dx.doi.org/10.1016/S0090-4295(00)00776-7] [PMID: 11068311]
[6]
Taplin, M.E.; Bubley, G.J.; Shuster, T.D.; Frantz, M.E.; Spooner, A.E.; Ogata, G.K.; Keer, H.N.; Balk, S.P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med., 1995, 332(21), 1393-1398.
[http://dx.doi.org/10.1056/NEJM199505253322101] [PMID: 7723794]
[7]
Ribeiro, T.P.; Moreira, J.A.; Monteiro, F.J.; Laranjeira, M.S. Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J. Control. Release, 2022, 347, 89-103.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.045] [PMID: 35513211]
[8]
Hu, C.M.J.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[http://dx.doi.org/10.4155/tde.10.13] [PMID: 22816135]
[9]
Chow, E.K.H.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med., 2013, 5(216), 216rv4.
[http://dx.doi.org/10.1126/scitranslmed.3005872] [PMID: 24353161]
[10]
Koochekpour, S. Androgen receptor signaling and mutations in prostate cancer. Asian J. Androl., 2010, 12(5), 639-657.
[http://dx.doi.org/10.1038/aja.2010.89] [PMID: 20711217]
[11]
Afshari, A.R.; Sanati, M.; Mollazadeh, H.; Kesharwani, P.; Johnston, T.P.; Sahebkar, A. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin. Cancer Biol., 2022, 86(Pt 2), 860-872.
[http://dx.doi.org/10.1016/j.semcancer.2022.01.008] [PMID: 35115226]
[12]
Wang, E.C.; Lee, W.R.; Armstrong, A.J. Second generation anti-androgens and androgen deprivation therapy with radiation therapy in the definitive management of high-risk prostate cancer. Prostate Cancer Prostatic Dis., 2023, 26(1), 30-40.
[http://dx.doi.org/10.1038/s41391-022-00598-3] [PMID: 36203051]
[13]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[14]
Ramsay, C.; Pickard, R.; Robertson, C.; Close, A.; Vale, L.; Armstrong, N.; Barocas, D.A.; Eden, C.G.; Fraser, C.; Gurung, T.; Jenkinson, D.; Jia, X.; Lam, T.B.; Mowatt, G.; Neal, D.E.; Robinson, M.C.; Royle, J.; Rushton, S.P.; Sharma, P.; Shirley, M.D.F.; Soomro, N. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol. Assess., 2012, 16(41), 1-313.
[http://dx.doi.org/10.3310/hta16410] [PMID: 23127367]
[15]
Bostrom, P.J.; Soloway, M.S. Secondary cancer after radiotherapy for prostate cancer: Should we be more aware of the risk? Eur. Urol., 2007, 52(4), 973-982.
[http://dx.doi.org/10.1016/j.eururo.2007.07.002] [PMID: 17644245]
[16]
Ning, Y.M.; Gulley, J.L.; Arlen, P.M.; Woo, S.; Steinberg, S.M.; Wright, J.J.; Parnes, H.L.; Trepel, J.B.; Lee, M.J.; Kim, Y.S.; Sun, H.; Madan, R.A.; Latham, L.; Jones, E.; Chen, C.C.; Figg, W.D.; Dahut, W.L. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2010, 28(12), 2070-2076.
[http://dx.doi.org/10.1200/JCO.2009.25.4524] [PMID: 20308663]
[17]
Goel, M.; Mackeyev, Y.; Krishnan, S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnol., 2023, 14(1), 15.
[http://dx.doi.org/10.1186/s12645-023-00165-y] [PMID: 36865684]
[18]
Hofheinz, R.D.; Gnad-Vogt, S.U.; Beyer, U.; Hochhaus, A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 2005, 16(7), 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a] [PMID: 16027517]
[19]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[20]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[21]
Jere, D.; Jiang, H.L.; Arote, R.; Kim, Y.K.; Choi, Y.J.; Cho, M.H.; Akaike, T.; Cho, C.S. Degradable polyethylenimines as DNA and small interfering RNA carriers. Expert Opin. Drug Deliv., 2009, 6(8), 827-834.
[http://dx.doi.org/10.1517/17425240903029183] [PMID: 19558333]
[22]
Xiang, B.; Dong, D.W.; Shi, N.Q.; Gao, W.; Yang, Z.Z.; Cui, Y.; Cao, D.Y.; Qi, X.R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34(28), 6976-6991.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.055] [PMID: 23777916]
[23]
Huang, Y.; Lin, D.; Jiang, Q.; Zhang, W.; Guo, S.; Xiao, P.; Zheng, S.; Wang, X.; Chen, H.; Zhang, H.Y.; Deng, L.; Xing, J.; Du, Q.; Dong, A.; Liang, Z. Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl methacrylate) for targeted siRNA delivery. Biomaterials, 2012, 33(18), 4653-4664.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.052] [PMID: 22480869]
[24]
Koslov, D.S.; Andersson, K.E. Physiological and pharmacological aspects of the vas deferens—an update. Front. Pharmacol., 2013, 4, 101.
[http://dx.doi.org/10.3389/fphar.2013.00101] [PMID: 23986701]
[25]
Guha, SK Drug delivery system for finasteride to prostate. WO2009113108A2, 2009.
[26]
Guha, SK Drug delivery system for finasteride to prostate. WO2013124865A1, 2013.
[27]
Schutzer, M.E.; Orio, P.F.; Biagioli, M.C.; Asher, D.A.; Lomas, H.; Moghanaki, D. A review of rectal toxicity following permanent low dose-rate prostate brachytherapy and the potential value of biodegradable rectal spacers. Prostate Cancer Prostatic Dis., 2015, 18(2), 96-103.
[http://dx.doi.org/10.1038/pcan.2015.4] [PMID: 25687401]
[28]
Penzkofer, T.; Tempany-Afdhal, C.M. Prostate cancer detection and diagnosis: The role of MR and its comparison with other diagnostic modalities - a radiologist’s perspective. NMR Biomed., 2014, 27(1), 3-15.
[http://dx.doi.org/10.1002/nbm.3002] [PMID: 24000133]
[29]
Kosheleva, O.K.; Lai, T.C.; Chen, N.G.; Hsiao, M.; Chen, C.H. Selective killing of cancer cells by nanoparticle-assisted ultrasound. J. Nanobiotechnology, 2016, 14(1), 46.
[http://dx.doi.org/10.1186/s12951-016-0194-9] [PMID: 27301243]
[30]
Wang, L.; Zhang, M.; Tan, K.; Guo, Y.; Tong, H.; Fan, X.; Fang, K.; Li, R. Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation. PLoS One, 2014, 9(5), e96586.
[http://dx.doi.org/10.1371/journal.pone.0096586] [PMID: 24798477]
[31]
Wang, Y.; Gao, S.; Ye, W.H.; Yoon, H.S.; Yang, Y.Y. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater., 2006, 5(10), 791-796.
[http://dx.doi.org/10.1038/nmat1737] [PMID: 16998471]
[32]
Taylor, R.; Sillerud, L. Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int. J. Nanomedicine, 2012, 7, 4341-4352.
[http://dx.doi.org/10.2147/IJN.S34381] [PMID: 22915856]
[33]
Yao, M.; Ma, M.; Chen, Y.; Jia, X.; Xu, G.; Xu, H.; Chen, H.; Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials, 2014, 35(28), 8197-8205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.010] [PMID: 24973300]
[34]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[35]
Sylvester, J.; Blasko, J.C.; Grimm, P.; Ragde, H. Interstitial implantation techniques in prostate cancer. J. Surg. Oncol., 1997, 66(1), 65-75.
[http://dx.doi.org/10.1002/(SICI)1096-9098(199709)66:1<65:AID-JSO13>3.0.CO;2-N] [PMID: 9290696]
[36]
Venkatesan, R.; Pichaimani, A.; Hari, K.; Balasubramanian, P.K.; Kulandaivel, J.; Premkumar, K. Doxorubicin conjugated gold nanorods: A sustained drug delivery carrier for improved anticancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 1010-1018.
[http://dx.doi.org/10.1039/C2TB00078D] [PMID: 32262365]
[37]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[38]
Park, J.H.; Cho, H.J.; Yoon, H.Y.; Yoon, I.S.; Ko, S.H.; Shim, J.S.; Cho, J.H.; Park, J.H.; Kim, K.; Kwon, I.C.; Kim, D.D. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release, 2014, 174, 98-108.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.016] [PMID: 24280260]
[39]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[40]
Thangapazham, R.; Puri, A.; Tele, S.; Blumenthal, R.; Maheshwari, R. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1119-1123.
[http://dx.doi.org/10.3892/ijo.32.5.1119] [PMID: 18425340]
[41]
Hawkins, M.J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev., 2008, 60(8), 876-885.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[42]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[43]
Cucinotto, I.; Fiorillo, L.; Gualtieri, S.; Arbitrio, M.; Ciliberto, D.; Staropoli, N.; Grimaldi, A.; Luce, A.; Tassone, P.; Caraglia, M.; Tagliaferri, P. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: Nanodelivery reaches prime-time? J. Drug Deliv., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/905091] [PMID: 23738077]
[44]
Shepard, D.R.; Dreicer, R.; Garcia, J.; Elson, P.; Magi-Galluzzi, C.; Raghavan, D.; Stephenson, A.J.; Klein, E.A. Phase II trial of neoadjuvant nab-paclitaxel in high risk patients with prostate cancer undergoing radical prostatectomy. J. Urol., 2009, 181(4), 1672-1677.
[http://dx.doi.org/10.1016/j.juro.2008.11.121] [PMID: 19230915]
[45]
Ren, Y.; Liu, T.; Liu, C.; Guo, X.; Wang, F.; Zhu, H.; Yang, Z. An Albumin-Binding PSMA Ligand with Higher Tumor Accumulation for PET Imaging of Prostate Cancer. Pharmaceuticals, 2022, 15(5), 513.
[http://dx.doi.org/10.3390/ph15050513] [PMID: 35631340]
[46]
Run, M.; Huimin, Z.; Ziwei, W.; Shilei, H.; Bochu, W. Preparation of drug-loaded albumin nanoparticles and its application in cancer therapy. J. Nanomater., 2022, 2022, 3052175.
[47]
Patel, K.D.; Singh, R.K.; Kim, H-W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz., 2019, 6(3), 434-469.
[http://dx.doi.org/10.1039/C8MH00966J]
[48]
Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep., 2013, 3(1), 1473.
[http://dx.doi.org/10.1038/srep01473] [PMID: 23502324]
[49]
Kumar, V.; Toffoli, G.; Rizzolio, F. Fluorescent carbon nanoparticles in medicine for cancer therapy. ACS Med. Chem. Lett., 2013, 4(11), 1012-1013.
[http://dx.doi.org/10.1021/ml400394a] [PMID: 24936239]
[50]
Krishnan, S.; Diagaradjane, P.; Cho, S.H. Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. Int. J. Hyperthermia, 2010, 26(8), 775-789.
[http://dx.doi.org/10.3109/02656736.2010.485593] [PMID: 20858069]
[51]
Williams, R.M.; Lee, C.; Heller, D.A. A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sens., 2018, 3(9), 1838-1845.
[http://dx.doi.org/10.1021/acssensors.8b00631] [PMID: 30169018]
[52]
Salaam, A.D.; Hwang, P.; McIntosh, R.; Green, H.N.; Jun, H.W.; Dean, D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J. Nanotechnol., 2014, 5, 937-945.
[http://dx.doi.org/10.3762/bjnano.5.107] [PMID: 25161829]
[53]
Salaam, A.D.; Hwang, P.T.J.; Poonawalla, A.; Green, H.N.; Jun, H.; Dean, D. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology, 2014, 25(42), 425103.
[http://dx.doi.org/10.1088/0957-4484/25/42/425103] [PMID: 25277401]
[54]
Jamil, M.; Fatima, B.; Hussain, D.; Chohan, T.A.; Majeed, S.; Imran, M.; Khan, A.A.; Manzoor, S.; Nawaz, R.; Ashiq, M.N.; Najam-ul-Haq, M. Quantitative determination of creatinine from serum of prostate cancer patients by N-doped porous carbon antimony (Sb/NPC) nanoparticles. Bioelectrochemistry, 2021, 140, 107815.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107815] [PMID: 33862546]
[55]
Murugesan, R.; Raman, S. Recent trends in carbon nanotubes based prostate cancer therapy- A biomedical n hybrid for diagnosis and treatment. Curr. Drug Deliv., 2021, 19(2), 229-237.
[http://dx.doi.org/10.2174/18755704MTE08NDki3] [PMID: 33655834]
[56]
Zenze, M.; Daniels, A.; Singh, M. Dendrimers as modifiers of inorganic nanoparticles for therapeutic delivery in cancer. Pharmaceutics, 2023, 15(2), 398.
[http://dx.doi.org/10.3390/pharmaceutics15020398] [PMID: 36839720]
[57]
Wu, L.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031] [PMID: 25654320]
[58]
Svenson, S. Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm., 2009, 71(3), 445-462.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.023] [PMID: 18976707]
[59]
Myung, J.H.; Cha, A.; Tam, K.A.; Poellmann, M.; Borgeat, A.; Sharifi, R.; Molokie, R.E.; Votta-Velis, G.; Hong, S. Dendrimer-based platform for effective capture of tumor cells after TGFβ1-induced epithelial—mesenchymal transition. Anal. Chem., 2019, 91(13), 8374-8382.
[http://dx.doi.org/10.1021/acs.analchem.9b01181] [PMID: 31247718]
[60]
Lesniak, W.G.; Boinapally, S.; Banerjee, S.R.; Behnam Azad, B.; Foss, C.A.; Shen, C.; Lisok, A.; Wharram, B.; Nimmagadda, S.; Pomper, M.G. Evaluation of PSMA-targeted PAMAM dendrimer nanoparticles in a murine model of prostate cancer. Mol. Pharm., 2019, 16(6), 2590-2604.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00181] [PMID: 31002252]
[61]
Seixas, N.; Ravanello, B.; Morgan, I.; Kaluđerović, G.; Wessjohann, L. Chlorambucil conjugated ugi den-drimers with PAMAM-NH2 core and evaluation of their anticancer activity. Pharmaceutics, 2019, 11(2), 59.
[http://dx.doi.org/10.3390/pharmaceutics11020059] [PMID: 30717083]
[62]
Sun, J.; Bi, C.; Chan, H.M.; Sun, S.; Zhang, Q.; Zheng, Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf. B Biointerfaces, 2013, 111, 367-375.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.032] [PMID: 23856543]
[63]
Bharali, D.J.; Sudha, T.; Cui, H.; Mian, B.M.; Mousa, S.A. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer. Nanomedicine, 2017, 13(1), 263-273.
[http://dx.doi.org/10.1016/j.nano.2016.08.017] [PMID: 27565690]
[64]
Paliwal, R.; Rai, S.; Vaidya, B.; Khatri, K.; Goyal, A.K.; Mishra, N.; Mehta, A.; Vyas, S.P. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine, 2009, 5(2), 184-191.
[http://dx.doi.org/10.1016/j.nano.2008.08.003] [PMID: 19095502]
[65]
Akanda, M.; Getti, G.; Nandi, U.; Mithu, M.S.; Douroumis, D. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int. J. Pharm., 2021, 599, 120416.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120416] [PMID: 33647403]
[66]
Akanda, M.H.; Rai, R.; Slipper, I.J.; Chowdhry, B.Z.; Lamprou, D.; Getti, G.; Douroumis, D. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm., 2015, 493(1-2), 161-171.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.042] [PMID: 26200751]
[67]
Sarkar, S.; Gogoi, M.; Mahato, M.; Joshi, A.B.; Baruah, A.J.; Kodgire, P.; Boruah, P. Biosensors for detection of prostate cancer: A review. Biomed. Microdevices, 2022, 24(4), 32.
[http://dx.doi.org/10.1007/s10544-022-00631-1] [PMID: 36169742]
[68]
Beg, S.; Malik, A.K.; Ansari, M.J.; Malik, A.A.; Ali, A.M.A.; Theyab, A.; Algahtani, M.; Almalki, W.H.; Alharbi, K.S.; Alenezi, S.K.; Barkat, M.A.; Rahman, M.; Choudhry, H. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega, 2022, 7(20), 16968-16979.
[http://dx.doi.org/10.1021/acsomega.1c07254] [PMID: 35647451]
[69]
Berbeco, R.I.; Ngwa, W.; Makrigiorgos, G.M. Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: New potential for external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2011, 81(1), 270-276.
[http://dx.doi.org/10.1016/j.ijrobp.2010.10.022] [PMID: 21163591]
[70]
Chandra, P.; Singh, J.; Singh, A.; Srivastava, A.; Goyal, R.N.; Shim, Y.B. Gold nanoparticles and nanocompo- sites in clinical diagnostics using electrochemical methods. Journal of Nanoparticles, 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/535901]
[71]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[72]
Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells. Cancer Nanotechnol., 2013, 4(6), 137-143.
[http://dx.doi.org/10.1007/s12645-013-0045-4] [PMID: 26069509]
[73]
Dreaden, E.C.; Gryder, B.E.; Austin, L.A.; Tene, Defo B.A.; Hayden, S.C.; Pi, M.; Quarles, L.D.; Oyelere, A.K.; El-Sayed, M.A. Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells. Bioconjug. Chem., 2012, 23(8), 1507-1512.
[http://dx.doi.org/10.1021/bc300158k] [PMID: 22768914]
[74]
Abaza, A.; Hegazy, E.A.; Ghada, A.M.; Elsheikh, B. Characterization and antitumor activity of chitosan/Poly (Vinyl Alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J. Pharm. Pharmacol., 2018, 6, 659-673.
[75]
Farshchi, F.; Hasanzadeh, M.; Solhi, E. Immunosensing of prostate cancer in human plasma samples using immobilization of antibody on the surface of mesoporous silica-modified silver nanoparticles and its immunocomplex with prostate-specific antigen. Anal. Methods, 2019, 11(48), 6159-6167.
[http://dx.doi.org/10.1039/C9AY02058F]
[76]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[77]
Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv., 2010, 7(6), 753-763.
[http://dx.doi.org/10.1517/17425241003777010] [PMID: 20408736]
[78]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 128(6), 2115-2120.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[79]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[80]
Wolfe, T.; Chatterjee, D.; Lee, J.; Grant, J.D.; Bhattarai, S.; Tailor, R.; Goodrich, G.; Nicolucci, P.; Krishnan, S. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine, 2015, 11(5), 1277-1283.
[http://dx.doi.org/10.1016/j.nano.2014.12.016] [PMID: 25652893]
[81]
Fitzgerald, K.A.; Rahme, K.; Guo, J.; Holmes, J.D.; O’Driscoll, C.M. Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer – synthesis, physicochemical characterisation and in vitro evaluation. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(13), 2242-2252.
[http://dx.doi.org/10.1039/C6TB00082G] [PMID: 32263220]
[82]
Vodnik, V.V.; Mojić, M.; Stamenović, U.; Otoničar, M.; Ajdžanović, V.; Maksimović-Ivanić, D.; Mijatović, S.; Marković, M.M.; Barudžija, T.; Filipović, B.; Milošević, V.; Šošić-Jurjević, B. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Mater. Sci. Eng. C, 2021, 124, 112078.
[http://dx.doi.org/10.1016/j.msec.2021.112078] [PMID: 33947570]
[83]
Malugin, A.; Ghandehari, H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. J. Appl. Toxicol., 2010, 30(3), 212-217.
[PMID: 19902477]
[84]
de Oliveira, R.; Zhao, P.; Li, N.; de Santa Maria, L.C.; Vergnaud, J.; Ruiz, J.; Astruc, D.; Barratt, G. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int. J. Pharm., 2013, 454(2), 703-711.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.031] [PMID: 23701998]
[85]
Mody, V.; Siwale, R.; Singh, A.; Mody, H. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[86]
Bulte, J.W.M.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 2004, 17(7), 484-499.
[http://dx.doi.org/10.1002/nbm.924] [PMID: 15526347]
[87]
Harisinghani, M.G.; Saini, S.; Weissleder, R.; Hahn, P.F.; Yantiss, R.K.; Tempany, C.; Wood, B.J.; Mueller, P.R. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: Radiographic-pathologic correlation. AJR Am. J. Roentgenol., 1999, 172(5), 1347-1351.
[http://dx.doi.org/10.2214/ajr.172.5.10227514] [PMID: 10227514]
[88]
Fortuin, A.S.; Smeenk, R.J.; Meijer, H.J.M.; Witjes, A.J.; Barentsz, J.O. Lymphotropic nanoparticle-enhanced MRI in prostate cancer: Value and therapeutic potential. Curr. Urol. Rep., 2014, 15(3), 389.
[http://dx.doi.org/10.1007/s11934-013-0389-7] [PMID: 24430170]
[89]
Kader, A.; Kaufmann, J.O.; Mangarova, D.B.; Moeckel, J.; Brangsch, J.; Adams, L.C.; Zhao, J.; Reimann, C.; Saatz, J.; Traub, H.; Buchholz, R.; Karst, U.; Hamm, B.; Makowski, M.R. Iron oxide nanoparticles for visualization of prostate cancer in MRI. Cancers, 2022, 14(12), 2909.
[http://dx.doi.org/10.3390/cancers14122909] [PMID: 35740575]
[90]
Quarta, A.; Manna, L.; Pellegrino, T. Antibody-functionalized inorganic NPs: Mimicking nature for targeted diagnosis and therapy. In: Bioinspired Approaches for Human-Centric Technologies; Springer International Publishing: Cham, 2014; pp. 1-28.
[http://dx.doi.org/10.1007/978-3-319-04924-3_1]
[91]
Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine, 2016, 12(1), 81-103.
[http://dx.doi.org/10.1016/j.nano.2015.08.006] [PMID: 26370707]
[92]
Nayerpour Dizaj, T.; Jafari-Gharabaghlou, D.; Farhoudi Sefidan Jadid, M.; Jahanban, R.; Rahimi, M.; Farajollahi, M.; Mohsenzadegan, M.; Zarghami, N. Fabrication of antibody conjugated super magnetic oxide nanoparticles for early detection of prostate cancer. Asian Pac. J. Cancer Prev., 2023, 24(6), 2089-2097.
[http://dx.doi.org/10.31557/APJCP.2023.24.6.2089] [PMID: 37378940]
[93]
Pang, S.T.; Lin, F.W.; Chuang, C.K.; Yang, H.W. Co-delivery of docetaxel and p44/42 MAPK siRNA using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol. Biosci., 2017, 17(5), 1600421.
[http://dx.doi.org/10.1002/mabi.201600421] [PMID: 28128882]
[94]
Soltani, F.; Sankian, M.; Hatefi, A.; Ramezani, M. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery. Int. J. Pharm., 2013, 441(1-2), 307-315.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.027] [PMID: 23200954]
[95]
Barbato, C.; Ruberti, F.; Cogoni, C. Searching for MIND: microRNAs in neurodegenerative diseases. J. Biomed. Biotechnol., 2009, 2009, 1-8.
[http://dx.doi.org/10.1155/2009/871313] [PMID: 19707536]
[96]
Li, L.; Wei, Y.; Gong, C. Polymeric nanocarriers for non-viral gene delivery. J. Biomed. Nanotechnol., 2015, 11(5), 739-770.
[http://dx.doi.org/10.1166/jbn.2015.2069] [PMID: 26349389]
[97]
Senapati, D.; Patra, B.C.; Kar, A.; Chini, D.S.; Ghosh, S.; Patra, S.; Bhattacharya, M. Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene, 2019, 719, 144071.
[http://dx.doi.org/10.1016/j.gene.2019.144071] [PMID: 31454539]
[98]
Becker, A.L.; Orlotti, N.I.; Folini, M.; Cavalieri, F.; Zelikin, A.N.; Johnston, A.P.R.; Zaffaroni, N.; Caruso, F. Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells. ACS Nano, 2011, 5(2), 1335-1344.
[http://dx.doi.org/10.1021/nn103044z] [PMID: 21226510]
[99]
Hasan, W.; Chu, K.; Gullapalli, A.; Dunn, S.S.; Enlow, E.M.; Luft, J.C.; Tian, S.; Napier, M.E.; Pohlhaus, P.D.; Rolland, J.P.; DeSimone, J.M. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett., 2012, 12(1), 287-292.
[http://dx.doi.org/10.1021/nl2035354] [PMID: 22165988]
[100]
Bhat, M.P.; Kumar, R.S.; Rudrappa, M.; Basavarajappa, D.S.; Swamy, P.S.; Almansour, A.I.; Perumal, K.; Nayaka, S. Bio-inspired silver nanoparticles from Artocarpus lakoocha fruit extract and evaluation of their antibacterial activity and anticancer activity on human prostate cancer cell line. Appl. Nanosci., 2023, 13(4), 3041-3051.
[http://dx.doi.org/10.1007/s13204-022-02381-1]
[101]
Ashrafizadeh, M.; Hushmandi, K.; Rahmani Moghadam, E.; Zarrin, V.; Hosseinzadeh Kashani, S.; Bokaie, S.; Najafi, M.; Tavakol, S.; Mohammadinejad, R.; Nabavi, N.; Hsieh, C.L.; Zarepour, A.; Zare, E.N.; Zarrabi, A.; Makvandi, P. Progress in delivery of sirna-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering, 2020, 7(3), 91.
[http://dx.doi.org/10.3390/bioengineering7030091] [PMID: 32784981]
[102]
Walsh, M.; Tangney, M.; O’Neill, M.J.; Larkin, J.O.; Soden, D.M.; McKenna, S.L.; Darcy, R.; O’Sullivan, G.C.; O’Driscoll, C.M. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: Implications for cancer gene therapy. Mol. Pharm., 2006, 3(6), 644-653.
[http://dx.doi.org/10.1021/mp0600034] [PMID: 17140252]
[103]
Guo, J.; Bourre, L.; Soden, D.M.; O’Sullivan, G.C.; O’Driscoll, C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol. Adv., 2011, 29(4), 402-417.
[http://dx.doi.org/10.1016/j.biotechadv.2011.03.003] [PMID: 21435387]
[104]
Guo, J.; Cheng, W.P.; Gu, J.; Ding, C.; Qu, X.; Yang, Z.; O’Driscoll, C. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur. J. Pharm. Sci., 2012, 45(5), 521-532.
[http://dx.doi.org/10.1016/j.ejps.2011.11.024] [PMID: 22186295]
[105]
Xue, H.; Narvikar, M.; Zhao, J.; Wong, H. Lipid encapsulation of cationic cells. Pharm. Res., 2013, 30(2), 572-583.
[http://dx.doi.org/10.1007/s11095-012-0902-6] [PMID: 23135818]
[106]
Stevens, P.J.; Sekido, M.; Lee, R.J. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm. Res., 2004, 21(12), 2153-2157.
[http://dx.doi.org/10.1007/s11095-004-7667-5] [PMID: 15648245]
[107]
Huang, W.; Lv, M.; Gao, Z. Polyethylenimine grafted with diblock copolymers of polyethylene glycol and polycaprolactone as siRNA delivery vector. J. Control. Release, 2011, 152(Suppl. 1), e143-e145.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.051] [PMID: 22195810]
[108]
Wu, Y.; Yu, J.; Liu, Y.; Yuan, L.; Yan, H.; Jing, J.; Xu, G. Delivery of EZH2-shRNA with mPEG-PEI nanoparticles for the treatment of prostate cancer in vitro. Int. J. Mol. Med., 2014, 33(6), 1563-1569.
[http://dx.doi.org/10.3892/ijmm.2014.1724] [PMID: 24714818]
[109]
Zhang, T.; Xue, X.; He, D.; Hsieh, J.T. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett., 2015, 365(2), 156-165.
[http://dx.doi.org/10.1016/j.canlet.2015.05.003] [PMID: 26054847]
[110]
Tandon, P.; Farahani, K. NCI image-guided drug delivery summit. Cancer Res., 2011, 71(2), 314-317.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2629] [PMID: 21224356]
[111]
Stephan, M.T.; Stephan, S.B.; Bak, P.; Chen, J.; Irvine, D.J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials, 2012, 33(23), 5776-5787.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.029] [PMID: 22594972]
[112]
Lin, Q.; Jin, C.S.; Huang, H.; Ding, L.; Zhang, Z.; Chen, J.; Zheng, G. Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. Small, 2014, 10(15), 3072-3082.
[http://dx.doi.org/10.1002/smll.201303842] [PMID: 24706435]
[113]
Tai, W.; Qin, B.; Cheng, K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol. Pharm., 2010, 7(2), 543-556.
[http://dx.doi.org/10.1021/mp9002514] [PMID: 20047302]
[114]
Lee, S.J.; Yook, S.; Yhee, J.Y.; Yoon, H.Y.; Kim, M.G.; Ku, S.H.; Kim, S.H.; Park, J.H.; Jeong, J.H.; Kwon, I.C.; Lee, S.; Lee, H.; Kim, K. Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J. Control. Release, 2015, 220(Pt B), 631-641.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.032] [PMID: 26307351]
[115]
Xu, X.; Xie, K.; Zhang, X.Q.; Pridgen, E.M.; Park, G.Y.; Cui, D.S.; Shi, J.; Wu, J.; Kantoff, P.W.; Lippard, S.J.; Langer, R.; Walker, G.C.; Farokhzad, O.C. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. USA, 2013, 110(46), 18638-18643.
[http://dx.doi.org/10.1073/pnas.1303958110] [PMID: 24167294]
[116]
Hu, Y.; Lv, S.; Wan, J.; Zheng, C.; Shao, D.; Wang, H.; Tao, Y.; Li, M.; Luo, Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(26), 4907-4934.
[http://dx.doi.org/10.1039/D2TB00448H] [PMID: 35712990]
[117]
Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 2002, 13(1), 40-46.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[118]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[119]
Jigyasu, A.K.; Siddiqui, S.; Jafri, A.; Arshad, M.; Lohani, M.; Khan, I.A. Biological synthesis of CdTe quantum dots and their anti-proliferative assessment against prostate cancer cell line. J. Nanosci. Nanotechnol., 2020, 20(6), 3398-3403.
[http://dx.doi.org/10.1166/jnn.2020.17316] [PMID: 31748032]
[120]
Nishiyama, N. Nanocarriers shape up for long life. Nat. Nanotechnol., 2007, 2(4), 203-204.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[121]
Siddiqui, I.A.; Adhami, V.M.; Bharali, D.J.; Hafeez, B.B.; Asim, M.; Khwaja, S.I.; Ahmad, N.; Cui, H.; Mousa, S.A.; Mukhtar, H. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res., 2009, 69(5), 1712-1716.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3978] [PMID: 19223530]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy