Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Hederagenin Induces Apoptosis of Human Hepatoma HepG2 Cells via the Mitochondrial Pathway

Author(s): Zhuo Liu, Xiaoning Tan, Lian Peng, Wenhui Gao and Puhua Zeng*

Volume 27, Issue 10, 2024

Published on: 04 October, 2023

Page: [1495 - 1503] Pages: 9

DOI: 10.2174/0113862073254353230925074944

Price: $65

Abstract

Objective: The objective of this study is to assess the antitumor effects of hederagenin (HDG) in liver cancer (LC) cells and explore the related mechanisms.

Materials and Methods: HepG2 cells were treated with HDG and cisplatin, respectively. The CCK8 assay was used to detect cell activity, DAPI staining was used to detect the proportion of living cells, TUNEL assay to detect the proportion of apoptotic cells, flow cytometry to detect the membrane potential, fluoroscopic electron microscopy to detect microstructural changes to the mitochondrial, and western blot analysis and high-content screening to detect apoptosisrelated proteins.

Results: Treatment with HDG inhibited the growth of HepG2 cells, decreased the proportion of viable cells, increased the proportion of apoptotic cells, and significantly increased the proportion of cells in the G1 phase. Fluorescence staining showed that HDG damaged the mitochondria of HepG2 cells and significantly decreased the number of mitochondria. Flow cytometry showed that HDG decreased the mitochondrial membrane potential of HepG2 cells. Observations by electron microscopy showed that HDG caused swelling and vacuole formation of the mitochondria of HepG2 cells. HDG significantly reduced the average fluorescence intensity of Bcl-2 in HepG2 cells and significantly increased that of the pro-apoptosis proteins Bax, Cytochrome-c, and Caspase-3.

Conclusion: HDG induced apoptosis of HepG2 cells via the mitochondrial pathway.

Graphical Abstract

[1]
Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P.; Andreu-Oller, C.; Taik, P.; Lee, Y.A.; Moeini, A.; Peix, J.; Faure-Dupuy, S.; Riedl, T.; Schuehle, S.; Oliveira, C.P.; Alves, V.A.; Boffetta, P.; Lachenmayer, A.; Roessler, S.; Minguez, B.; Schirmacher, P.; Dufour, J.F.; Thung, S.N.; Reeves, H.L.; Carrilho, F.J.; Chang, C.; Uzilov, A.V.; Heikenwalder, M.; Sanyal, A.; Friedman, S.L.; Sia, D.; Llovet, J.M. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol., 2021, 75(4), 865-878.
[http://dx.doi.org/10.1016/j.jhep.2021.04.049] [PMID: 33992698]
[2]
Ali, H.; Dixit, S.; Ali, D.; Ali, B.A.; Alkahtane, A.A.; Alarifi, S.; Alakahtani, S. Isolation and evaluation of biological efficacy of quercetol in human hepatic carcinoma cells. Drug Des. Devel. Ther., 2016, 10, 155-162.
[http://dx.doi.org/10.2147/DDDT.S95275] [PMID: 26792982]
[3]
Wang, X.; Fang, G.; Pang, Y. Chinese medicines in the treatment of prostate cancer: From formulas to extracts and compounds. Nutrients, 2018, 10(3), 283.
[http://dx.doi.org/10.3390/nu10030283] [PMID: 29495626]
[4]
Zeng, J.; Huang, T.; Xue, M.; Chen, J.; Feng, L.; Du, R.; Feng, Y. Current knowledge and development of hederagenin as a promising medicinal agent: A comprehensive review. RSC Adv., 2018, 8(43), 24188-24202.
[http://dx.doi.org/10.1039/C8RA03666G] [PMID: 35539158]
[5]
Wang, K.; Liu, X.; Liu, Q.; Ho, I.; Wei, X.; Yin, T.; Zhan, Y.; Zhang, W.; Zhang, W.; Chen, B.; Gu, J.; Tan, Y.; Zhang, L.; Chan, M.T.; Wu, W.K.; Du, B.; Xiao, J. Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death Dis., 2020, 11(8), 611.
[http://dx.doi.org/10.1038/s41419-020-02880-5] [PMID: 32792495]
[6]
Kim, E.H.; Baek, S.; Shin, D.; Lee, J.; Roh, J.L. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/5498908] [PMID: 29456786]
[7]
Wang, F.; Bai, J.; Li, F.; Liu, J.; Wang, Y.; Li, N.; Wang, Y.; Xu, J.; Liu, W.; Xu, L.; Chen, L. Investigation of the mechanism of the anti-cancer effects of Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) on melanoma via network pharmacology and experimental verification. Front. Pharmacol., 2022, 13, 895738.
[http://dx.doi.org/10.3389/fphar.2022.895738] [PMID: 36034875]
[8]
Iorio, R.; Celenza, G.; Petricca, S. Mitophagy: Molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 Axis. Cells, 2021, 11(1), 30.
[http://dx.doi.org/10.3390/cells11010030] [PMID: 35011593]
[9]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[10]
Bencze, G.; Bencze, S.; Rivera, K.D.; Watson, J.D.; Hidvegi, M.; Orfi, L.; Tonks, N.K.; Pappin, D.J. Mito-oncology agent: fermented extract suppresses the Warburg effect, restores oxidative mitochondrial activity, and inhibits in vivo tumor growth. Sci. Rep., 2020, 10(1), 14174.
[http://dx.doi.org/10.1038/s41598-020-71118-3] [PMID: 32843660]
[11]
Song, L.; Li, Q.; Shi, H.; Yue, H. Deciphering the molecular mechanism of red raspberry in apoptosis of liver cancer cells. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/2026865] [PMID: 35529935]
[12]
Cheng, D.; Gao, L.; Su, S.; Sargsyan, D.; Wu, R.; Raskin, I.; Kong, A.N. Moringa isothiocyanate activates Nrf2: Potential role in diabetic nephropathy. AAPS J., 2019, 21(2), 31.
[http://dx.doi.org/10.1208/s12248-019-0301-6] [PMID: 30783799]
[13]
Sun, Y.; Liu, Y.; Ma, X.; Hu, H. The influence of cell cycle regulation on chemotherapy. Int. J. Mol. Sci., 2021, 22(13), 6923.
[http://dx.doi.org/10.3390/ijms22136923] [PMID: 34203270]
[14]
Kong, C.; Xu, B.; Qiu, G.; Wei, M.; Zhang, M.; Bao, S.; Tang, J.; Li, L.; Liu, J. Multifunctional nanoparticles-mediated ptt/pdt synergistic immune activation and antitumor activity combined with anti-PD-L1 immunotherapy for breast cancer treatment. Int. J. Nanomed., 2022, 17, 5391-5411.
[http://dx.doi.org/10.2147/IJN.S373282] [PMID: 36419717]
[15]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[16]
Lee, J.; Gong, Y.X.; Xie, D.P.; Jeong, H.; Seo, H.; Kim, J.; Park, Y.H.; Sun, H.N.; Kwon, T. Anticancer effect of ERM210 on liver cancer cells through ROS/Mitochondria-dependent apoptosis signaling pathways. In Vivo, 2021, 35(5), 2599-2608.
[http://dx.doi.org/10.21873/invivo.12542] [PMID: 34410947]
[17]
Zhang, L.; Li, S.; Wang, R.; Chen, C.; Ma, W.; Cai, H. Cytokine augments the sorafenib-induced apoptosis in Huh7 liver cancer cell by inducing mitochondrial fragmentation and activating MAPK-JNK signalling pathway. Biomed. Pharmacother., 2019, 110, 213-223.
[18]
Lulli, M.; Del Coco, L.; Mello, T.; Sukowati, C.; Madiai, S.; Gragnani, L.; Forte, P.; Fanizzi, F.P.; Mazzocca, A.; Rombouts, K.; Galli, A.; Carloni, V. DNA damage response protein CHK2 regulates metabolism in liver cancer. Cancer Res., 2021, 81(11), 2861-2873.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3134] [PMID: 33762357]
[19]
Barrios-Maya, M.A.; Ruiz-Ramírez, A.; Quezada, H.; Céspedes Acuña, C.L.; El-Hafidi, M. Palmitoyl-CoA effect on cytochrome c release, a key process of apoptosis, from liver mitochondria of rat with sucrose diet-induced obesity. Food Chem. Toxicol., 2021, 154, 112351.
[http://dx.doi.org/10.1016/j.fct.2021.112351] [PMID: 34171418]
[20]
Li, J.; Cui, J.; Li, Z.; Fu, X.; Li, J.; Li, H.; Wang, S.; Zhang, M. ORP8 induces apoptosis by releasing cytochromec from mitochondria in non small cell lung cancer. Oncol. Rep., 2020, 43(5), 1516-1524.
[http://dx.doi.org/10.3892/or.2020.7517] [PMID: 32323800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy