Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Expression of Transcriptional Factors of T Helper Differentiation (T-bet, GATA-3, RORγt, and FOXP3), MIF Receptors (CD44, CD74, CXCR2, 4, 7), and Th1, Th2, and Th17 Cytokines in PBMC from Control Subjects and Rheumatoid Arthritis Patients

Author(s): Darbi Alfredo Zerpa-Hernández, Mariel García-Chagollán, Gabriela Athziri Sánchez-Zuno, Samuel García-Arellano, Jorge Hernández-Bello, Luis Alexis Hernández-Palma, Sergio Cerpa-Cruz, Gloria Martinez-Bonilla, Ferdinando Nicoletti and José Francisco Muñoz-Valle*

Volume 24, Issue 9, 2024

Published on: 03 October, 2023

Page: [1169 - 1182] Pages: 14

DOI: 10.2174/0115665240260976230925095330

Price: $65

Abstract

Introduction: The macrophage migration inhibitory factor (MIF) plays a pivotal role in the development of rheumatoid arthritis (RA). Previous research indicates that MIF can trigger the expression of cytokine profiles associated with Th1, Th2, and Th17 responses in peripheral blood mononuclear cells (PBMC) from both RA patients and control subjects (CS). Despite these, few studies to date precisely elucidate the molecular mechanisms involved. The present study aimed to associate the expression of Th differentiation TF (T-bet, GATA-3, RORγt) with MIF receptors (CD44, CD74, CXCR2, 4, 7) and Th1, Th2, and Th17 cytokines in PBMC from CS and RA patients.

Method: PBMC from both groups was cultured for 24 h. The expression of the canonical and non-canonical MIF receptors and the TF was determined by flow cytometry. Additionally, multiplex bead analysis was employed to assess the levels of cytokines in the culture supernatants. The findings revealed that T CD4+ lymphocytes in the CS group exhibited a heightened expression of CD74 (p<0.05), whereas RA patients displayed an elevated expression of CXCR7 (p<0.001). Furthermore, T CD4+ lymphocytes from RA patients exhibited greater expression of GATA3, RORγt, and FOXP3, along with elevated levels of pro-inflammatory cytokines compared to the CS group (p<0.001).

Result: These results indicate that CD74 is more prominently expressed in PBMC from the CS group, whereas CXCR7 is more expressed in PBMC from RA patients.

Conclusion: We also noted an increased secretion of Th17 profile cytokines in RA, potentially influenced by the activation of FOXP3 via CD74 and RORγt through CXCR7 using the endocytic pathway.

[1]
Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57: 76-88.
[http://dx.doi.org/10.1016/j.cellsig.2019.01.006] [PMID: 30682543]
[2]
Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): Mechanisms of action and role in disease. Microbes Infect 2002; 4(4): 449-60.
[http://dx.doi.org/10.1016/S1286-4579(02)01560-5] [PMID: 11932196]
[3]
Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J. Macrophage Migration Inhibitory Factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thromb Haemost 2019; 119(4): 553-66.
[http://dx.doi.org/10.1055/s-0039-1677803] [PMID: 30716779]
[4]
Hernández-Palma LA, García-Arellano S, Bucala R, et al. Functional MIF promoter haplotypes modulate Th17-related cytokine expression in peripheral blood mononuclear cells from control subjects and rheumatoid arthritis patients. Cytokine 2019; 115: 89-96.
[http://dx.doi.org/10.1016/j.cyto.2018.11.014] [PMID: 30467094]
[5]
Lee YH, Bae SC. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: A meta-analysis. Postgrad Med J 2017; 93(1102): 465-71.
[http://dx.doi.org/10.1136/postgradmedj-2016-134637] [PMID: 28069745]
[6]
Llamas-Covarrubias MA, Valle Y, Navarro-Hernández RE, et al. Serum levels of macrophage migration inhibitory factor are associated with rheumatoid arthritis course. Rheumatol Int 2012; 32(8): 2307-11.
[http://dx.doi.org/10.1007/s00296-011-1951-6] [PMID: 21607559]
[7]
Wakabayashi K, Otsuka K, Sato M, et al. Elevated serum levels of macrophage migration inhibitory factor and their significant correlation with rheumatoid vasculitis disease activity. Mod Rheumatol 2012; 22(1): 59-65.
[http://dx.doi.org/10.3109/s10165-011-0466-z] [PMID: 21607712]
[8]
García-Arellano S, Hernández-Palma LA, Bucala R, et al. Th1/Th17 cytokine profile is induced by macrophage migration inhibitory factor in peripheral blood mononuclear cells from rheumatoid arthritis patients. Curr Mol Med 2019; 18(10): 679-88.
[http://dx.doi.org/10.2174/1566524019666190129123240]
[9]
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7(6): 429-42.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[10]
Ayoub S, Hickey MJ, Morand EF. Mechanisms of Disease: Macrophage migration inhibitory factor in SLE, RA and atherosclerosis. Nat Clin Pract Rheumatol 2008; 4(2): 98-105.
[http://dx.doi.org/10.1038/ncprheum0701] [PMID: 18235539]
[11]
Kamali AN, Noorbakhsh SM, Hamedifar H, et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol 2019; 105: 107-15.
[http://dx.doi.org/10.1016/j.molimm.2018.11.015] [PMID: 30502718]
[12]
Santos LL, Morand EF. Macrophage migration inhibitory factor: A key cytokine in RA, SLE and atherosclerosis. Clin Chim Acta 2009; 399(1-2): 1-7.
[http://dx.doi.org/10.1016/j.cca.2008.09.014] [PMID: 18838066]
[13]
Sánchez-Zuno GA, Bucala R, Hernández-Bello J, et al. Canonical (CD74/CD44) and non-canonical (CXCR2, 4 and 7) MIF receptors are differentially expressed in rheumatoid arthritis patients evaluated by DAS28-ESR. J Clin Med 2021; 11(1): 120.
[http://dx.doi.org/10.3390/jcm11010120]
[14]
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New tricks for an old cytokine. Trends Immunol 2019; 40(5): 447-62.
[http://dx.doi.org/10.1016/j.it.2019.03.002] [PMID: 30962001]
[15]
De la Cruz-Mosso U, García-Iglesias T, Bucala R, et al. MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: Predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF- α in PBMC from active SLE patients. Cell Immunol 2018; 324: 42-9.
[http://dx.doi.org/10.1016/j.cellimm.2017.12.010] [PMID: 29397904]
[16]
Yoo SA, Leng L, Kim BJ, et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci 2016; 113(49): E7917-26.
[http://dx.doi.org/10.1073/pnas.1612717113] [PMID: 27872288]
[17]
Xie L, Qiao X, Wu Y, Tang J. β -Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One 2011; 6(1): e16428.
[http://dx.doi.org/10.1371/journal.pone.0016428] [PMID: 21283538]
[18]
Alampour-Rajabi S, El Bounkari O, Rot A, et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J 2015; 29(11): 4497-511.
[http://dx.doi.org/10.1096/fj.15-273904] [PMID: 26139098]
[19]
Koenen J, Bachelerie F, Balabanian K, Schlecht-Louf G, Gallego C. Atypical Chemokine Receptor 3 (ACKR3): A comprehensive overview of its expression and potential roles in the immune system. Mol Pharmacol 2019; 96(6): 809-18.
[http://dx.doi.org/10.1124/mol.118.115329] [PMID: 31040166]
[20]
Guggino G, Giardina AR, Raimondo S, et al. Targeting IL-6 signalling in early rheumatoid arthritis is followed by Th1 and Th17 suppression and Th2 expansion. Clin Exp Rheumatol 2014; 32(1): 77-81.
[PMID: 24429356]
[21]
Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol 2021; 12: 626193.
[http://dx.doi.org/10.3389/fimmu.2021.626193] [PMID: 33868244]
[22]
Baharlou R, Rashidi N, Ahmadi-Vasmehjani A, Khoubyari M, Sheikh M, Erfanian S. Immunomodulatory effects of human adipose tissue-derived mesenchymal stem cells on T cell subsets in patients with rheumatoid arthritis. Iran J Allergy Asthma Immunol 2019; 18(1): 114-9.
[http://dx.doi.org/10.18502/ijaai.v18i1.637]
[23]
Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62(9): 2569-81.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[24]
Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016; 42(1): 157-76. [ix-x].
[http://dx.doi.org/10.1016/j.rdc.2015.08.004] [PMID: 26611557]
[25]
Chikanza IC. Mechanisms of corticosteroid resistance in rheumatoid arthritis: A putative role for the corticosteroid receptor beta isoform. Ann N Y Acad Sci 2002; 966(1): 39-48.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04200.x] [PMID: 12114257]
[26]
Kim H-R, Park M-K, Cho M-L, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol 2007; 34(5): 927-36.
[PMID: 17407222]
[27]
David L, Gokhale A, Jois S, et al. CD74/DQA1 dimers predispose to the development of arthritis in humanized mice. Immunology 2016; 147(2): 204-11.
[http://dx.doi.org/10.1111/imm.12551] [PMID: 26524976]
[28]
Doherty E H, Piecychna M, Leng L, Bucala R. Adoptive transfer of a novel MIF receptor (CD74+) expressing memory T cell subpopulation is sufficient to transfer inflammatory arthritis. J Immunol 2017; 198: 156-3.
[http://dx.doi.org/10.4049/jimmunol.198.Supp.156.3]
[29]
Aizman E, Mor A, Levy A, George J, Kloog Y. Ras inhibition by FTS attenuates brain tumor growth in mice directly and by enhancing reactivity of cytotoxic lymphocytes. Oncotarget 2012; 3(2): 144-57.
[http://dx.doi.org/10.18632/oncotarget.420] [PMID: 22323550]
[30]
Farr L, Ghosh S, Moonah S. Role of MIF cytokine/CD74 receptor pathway in protecting against injury and promoting repair. Front Immunol 2020; 11: 1273.
[http://dx.doi.org/10.3389/fimmu.2020.01273] [PMID: 32655566]
[31]
Su H, Na N, Zhang X, Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm Res 2017; 66(3): 209-16.
[http://dx.doi.org/10.1007/s00011-016-0995-1] [PMID: 27752708]
[32]
Canals M, Scholten DJ, de Munnik S, Han MKL, Smit MJ, Leurs R. Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 2012; 7(3): e34192.
[http://dx.doi.org/10.1371/journal.pone.0034192] [PMID: 22457824]
[33]
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 signaling cascade for new therapeutic opportunities. Cells 2020; 9(9): 2044.
[http://dx.doi.org/10.3390/cells9092044] [PMID: 32906785]
[34]
Tang M, Tian L, Luo G, Yu X. Interferon-gamma-mediated osteoimmunology. Front Immunol 2018; 9: 1508.
[http://dx.doi.org/10.3389/fimmu.2018.01508] [PMID: 30008722]
[35]
Brennan FR, Mikecz K, Glant TT, et al. CD44 expression by leucocytes in rheumatoid arthritis and modulation by specific antibody: Implications for lymphocyte adhesion to endothelial cells and synoviocytes in vitro. Scand J Immunol 1997; 45(2): 213-20.
[http://dx.doi.org/10.1046/j.1365-3083.1997.d01-382.x] [PMID: 9042434]
[36]
Haynes BF, Hale LP, Patton KL, Martin ME, McCallum RM. Measurement of an adhesion molecule as an indicator of inflammatory disease activity: Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum 1991; 34(11): 1434-43.
[http://dx.doi.org/10.1002/art.1780341115] [PMID: 1719988]
[37]
Naor D, Nedvetzki S. CD44 in rheumatoid arthritis. Arthritis Res 2003; 5(3): 105-15.
[http://dx.doi.org/10.1186/ar746] [PMID: 12723975]
[38]
Ray P, Mihalko LA, Coggins NL, et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int J Biochem Cell Biol 2012; 44(4): 669-78.
[http://dx.doi.org/10.1016/j.biocel.2012.01.007] [PMID: 22300987]
[39]
Zheng Y, Sun L, Jiang T, Zhang D, He D, Nie H. TNF α promotes Th17 cell differentiation through IL-6 and IL-1β produced by monocytes in rheumatoid arthritis. J Immunol Res 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/385352] [PMID: 25436214]
[40]
Hu S, Guo P, Wang Z, et al. Down-regulation of A3AR signaling by IL-6-induced GRK2 activation contributes to Th17 cell differentiation. Exp Cell Res 2021; 399(2): 112482.
[http://dx.doi.org/10.1016/j.yexcr.2021.112482] [PMID: 33434531]
[41]
Croce M, Rigo V, Ferrini S. IL-21: A pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/696578] [PMID: 25961061]
[42]
Liu Y, Ma X, Yang H, et al. APLNR Regulates IFN-γ; signaling via β-arrestin 1 mediated JAK-STAT1 pathway in melanoma cells. Biochem J 2022; 479(3): 385-99.
[http://dx.doi.org/10.1042/BCJ20210813] [PMID: 35084016]
[43]
Mo W, Zhang L, Yang G, et al. Nuclear β-arrestin1 functions as a scaffold for the dephosphorylation of STAT1 and moderates the antiviral activity of IFN-γ. Mol Cell 2008; 31(5): 695-707.
[http://dx.doi.org/10.1016/j.molcel.2008.06.017] [PMID: 18775329]
[44]
Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. J Immunol 2005; 175(8): 5430-8.
[http://dx.doi.org/10.4049/jimmunol.175.8.5430] [PMID: 16210650]
[45]
Tripathi P, Sahoo N, Ullah U, et al. A novel mechanism for ERK dependent regulation of IL4 transcription during human Th2 cell differentiation. Immunol Cell Biol 2012; 90(7): 676-87.
[http://dx.doi.org/10.1038/icb.2011.87] [PMID: 21989417]
[46]
Nakayama T, Yoshimura M, Higashioka K, et al. Type 1 helper T cells generate CXCL9/10-producing T-bet+ effector B cells potentially involved in the pathogenesis of rheumatoid arthritis. Cell Immunol 2021; 360: 104263.
[http://dx.doi.org/10.1016/j.cellimm.2020.104263] [PMID: 33387686]
[47]
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active rheumatoid arthritis. Gene 2019; 698: 179-85.
[http://dx.doi.org/10.1016/j.gene.2019.01.048] [PMID: 30844477]
[48]
Zhou H, Deng Y, Xie Q. The modulatory effects of the volatile oil of ginger on the cellular immune response in vitro and in vivo in mice. J Ethnopharmacol 2006; 105(1-2): 301-5.
[http://dx.doi.org/10.1016/j.jep.2005.10.022] [PMID: 16338110]
[49]
Peter J, Sabu V, Aswathy IS, et al. Dietary amaranths modulate the immune response via balancing Th1/Th2 and Th17/Treg response in collagen-induced arthritis. Mol Cell Biochem 2020; 472(1-2): 57-66.
[http://dx.doi.org/10.1007/s11010-020-03783-x] [PMID: 32529499]
[50]
van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87: 69-81.
[http://dx.doi.org/10.1016/j.jaut.2017.12.006] [PMID: 29254845]
[51]
Boissier MC, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Th1/Th2 to Th17/treg: The changing rheumatoid arthritis paradigm. Joint Bone Spine 2008; 75(4): 373-5.
[http://dx.doi.org/10.1016/j.jbspin.2008.04.005] [PMID: 18571969]
[52]
Wang D, Lei L. Interleukin 35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases. Int J Rheum Dis 2021; 24(1): 21-7.
[http://dx.doi.org/10.1111/1756-185X.13962] [PMID: 32918357]
[53]
Yang P, Qian FY, Zhang MF, et al. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106(6): 1233-40.
[http://dx.doi.org/10.1002/JLB.4RU0619-197R] [PMID: 31497905]
[54]
Sarkar S, Fox DA. Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36(2): 345-66.
[http://dx.doi.org/10.1016/j.rdc.2010.02.006]
[55]
Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest 2007; 37(12): 987-96.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01882.x] [PMID: 18036033]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy