Abstract
Background: Myocardial ischemia-reperfusion injury (MI/RI) is a serious complication after revascularization of myocardial infarction, which causes myocardium damage. Kukoamine A (KuA) can repress oxidative stress and neuronal apoptosis in cerebral ischemia animal models.
Objective: In the present study, our objective was to explore the role of KuA in MI/RI and the underlying mechanism of KuA in oxidative stress and inflammation of MI/RI.
Methods: H9c2 cells’ cytotoxicity was detected using the lactate dehydrogenase (LDH) assay kit. ROS level was measured by immunofluorescence. Male C57BL/6 mice were used to establish MI/RI mice by ligating the left anterior descending coronary artery (LAD).
Results: KuA treatment decreased the apoptosis and the cytotoxicity, increased the viability, and reduced the activities of myocardial infarction markers (CKMB, MYO, and cTnI) in hypoxia/ reoxygenation (H/R)-induced H9c2 cells. KuA reduced the levels of ROS, MDA, and inflammatory factors (IL-6, IL-1β, and TNF-α), and facilitated MMP and SOD levels in H/R-induced H9c2 cells. Besides, KuA activated Akt/GSK-3β axis, which was repressed by PI3K inhibitor LY294002. Moreover, KuA improved survival times, decreased the infarct size of mice, and recovered cardiac function in MI/RI mice. Finally, KuA alleviated MI/RI through Akt/GSK-3β pathway in vivo.
Conclusion: Thus, KuA exerts a protective function in MI/RI through the Akt/GSK-3β axis to repress oxidative stress and inflammation.
[http://dx.doi.org/10.1155/2018/3804979] [PMID: 29770166]
[http://dx.doi.org/10.1016/j.redox.2019.101292] [PMID: 31419755]
[PMID: 27118196]
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.003] [PMID: 21236334]
[http://dx.doi.org/10.1002/jcp.29938] [PMID: 32657442]
[http://dx.doi.org/10.1016/j.bbagen.2014.11.006] [PMID: 25445711]
[http://dx.doi.org/10.1007/s11064-016-1967-0] [PMID: 27241194]
[http://dx.doi.org/10.1007/s00210-019-01661-y] [PMID: 31073648]
[PMID: 32033632]
[http://dx.doi.org/10.3389/fphar.2021.609702] [PMID: 34025396]
[http://dx.doi.org/10.1016/j.mito.2015.11.003] [PMID: 26593335]
[http://dx.doi.org/10.1016/j.biopha.2017.02.024]
[http://dx.doi.org/10.1042/BSR20171249] [PMID: 29089467]
[http://dx.doi.org/10.12659/MSM.913384] [PMID: 30504760]
[http://dx.doi.org/10.1038/aps.2016.14] [PMID: 27063216]
[http://dx.doi.org/10.1016/j.neuint.2016.12.024] [PMID: 28088348]
[http://dx.doi.org/10.1161/01.CIR.97.3.276] [PMID: 9462530]
[http://dx.doi.org/10.1038/sj.bjp.0703336] [PMID: 10807653]
[http://dx.doi.org/10.1007/s002100100483] [PMID: 11770004]
[http://dx.doi.org/10.1007/s10495-006-0292-5] [PMID: 17051325]
[http://dx.doi.org/10.1111/jcmm.12074] [PMID: 23789967]
[http://dx.doi.org/10.3389/fphar.2022.964475] [PMID: 36452230]
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.097] [PMID: 36587924]
[http://dx.doi.org/10.1111/jcmm.14919] [PMID: 31955523]
[http://dx.doi.org/10.3892/mmr.2019.10371] [PMID: 31257466]
[http://dx.doi.org/10.1155/2021/8870674] [PMID: 33763489]
[http://dx.doi.org/10.1080/14756360902779193] [PMID: 19772491]
[http://dx.doi.org/10.1016/j.fct.2007.05.017] [PMID: 17624649]
[http://dx.doi.org/10.1080/21655979.2021.1996018] [PMID: 34699312]
[http://dx.doi.org/10.1155/2020/1928410] [PMID: 33204684]
[http://dx.doi.org/10.1016/j.intimp.2021.107993] [PMID: 34330059]
[http://dx.doi.org/10.1590/s0102-865020190070000008] [PMID: 31531541]
[http://dx.doi.org/10.1155/2017/5278218] [PMID: 28928604]
[http://dx.doi.org/10.1016/j.bbrc.2020.07.047] [PMID: 32798018]
[http://dx.doi.org/10.1371/journal.pone.0070956] [PMID: 23976968]
[http://dx.doi.org/10.1007/s11064-020-03114-y] [PMID: 32892226]
[http://dx.doi.org/10.1161/01.RES.61.5.757] [PMID: 2822281]
[http://dx.doi.org/10.1073/pnas.84.5.1404] [PMID: 3029779]
[http://dx.doi.org/10.1016/0002-8703(90)90197-6] [PMID: 2171311]
[http://dx.doi.org/10.1016/0006-2952(93)90182-V] [PMID: 8383970]
[http://dx.doi.org/10.1016/j.jmr.2021.107024] [PMID: 34198184]