Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Review Article

Automation of Drug Discovery through Cutting-edge In-silico Research in Pharmaceuticals: Challenges and Future Scope

Author(s): Smita Singh, Pranjal Kumar Singh*, Kapil Sachan, Mukesh Kumar and Poonam Bhardwaj

Volume 20, Issue 6, 2024

Published on: 02 October, 2023

Page: [723 - 735] Pages: 13

DOI: 10.2174/0115734099260187230921073932

Price: $65

Abstract

The rapidity and high-throughput nature of in silico technologies make them advantageous for predicting the properties of a large array of substances. In silico approaches can be used for compounds intended for synthesis at the beginning of drug development when there is either no or very little compound available. In silico approaches can be used for impurities or degradation products. Quantifying drugs and related substances (RS) with pharmaceutical drug analysis (PDA) can also improve drug discovery (DD) by providing additional avenues to pursue. Potential future applications of PDA include combining it with other methods to make insilico predictions about drugs and RS. One possible outcome of this is a determination of the drug potential of nontoxic RS. ADME estimation, QSAR research, molecular docking, bioactivity prediction, and toxicity testing all involve impurity profiling. Before committing to DD, RS with minimal toxicity can be utilised in silico. The efficacy of molecular docking in getting a medication to market is still debated despite its refinement and improvement. Biomedical labs and pharmaceutical companies were hesitant to adopt molecular docking algorithms for drug screening despite their decades of development and improvement. Despite the widespread use of "force fields" to represent the energy exerted within and between molecules, it has been impossible to reliably predict or compute the binding affinities between proteins and potential binding medications.

Graphical Abstract

[1]
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[2]
Tibbitts, J.; Canter, D.; Graff, R.; Smith, A.; Khawli, L.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs, 2016, 8(2), 229-245.
[http://dx.doi.org/10.1080/19420862.2015.1115937] [PMID: 26636901]
[3]
Grisoni, F.; Huisman, B.J.H.; Button, A.L.; Moret, M.; Atz, K.; Merk, D.; Schneider, G. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv., 2021, 7(24), eabg3338.
[http://dx.doi.org/10.1126/sciadv.abg3338] [PMID: 34117066]
[4]
Armbruster, D.A.; Overcash, D.R.; Reyes, J. Clinical chemistry laboratory automation in the 21st century - amat victoria curam (victory loves careful preparation). Clin. Biochem. Rev., 2014, 35(3), 143-153.
[PMID: 25336760]
[5]
Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int. J. Mol. Sci., 2011, 13(1), 427-452.
[http://dx.doi.org/10.3390/ijms13010427] [PMID: 22312262]
[6]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[7]
Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol., 2018, 16(6), 740-748.
[http://dx.doi.org/10.2174/1570159X15666171016163510] [PMID: 29046156]
[8]
Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; Xie, W.; Rosen, G.L.; Lengerich, B.J.; Israeli, J.; Lanchantin, J.; Woloszynek, S.; Carpenter, A.E.; Shrikumar, A.; Xu, J.; Cofer, E.M.; Lavender, C.A.; Turaga, S.C.; Alexandari, A.M.; Lu, Z.; Harris, D.J.; DeCaprio, D.; Qi, Y.; Kundaje, A.; Peng, Y.; Wiley, L.K.; Segler, M.H.S.; Boca, S.M.; Swamidass, S.J.; Huang, A.; Gitter, A.; Greene, C.S. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 2018, 15(141), 20170387.
[http://dx.doi.org/10.1098/rsif.2017.0387] [PMID: 29618526]
[9]
Katiyar, C.; Kanjilal, S.; Gupta, A.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33(1), 10-19.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[10]
Zhao, L.; Ciallella, H.L.; Aleksunes, L.M.; Zhu, H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today, 2020, 25(9), 1624-1638.
[http://dx.doi.org/10.1016/j.drudis.2020.07.005] [PMID: 32663517]
[11]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[12]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[13]
Grant, L.L.; Sit, C.S. De novo molecular drug design benchmarking. RSC Medicinal Chemistry, 2021, 12(8), 1273-1280.
[http://dx.doi.org/10.1039/D1MD00074H] [PMID: 34458735]
[14]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[15]
Myers, S.; Baker, A. Drug discovery—an operating model for a new era. Nat. Biotechnol., 2001, 19(8), 727-730.
[http://dx.doi.org/10.1038/90765] [PMID: 11479559]
[16]
Zhu, T.; Cao, S.; Su, P.C.; Patel, R.; Shah, D.; Chokshi, H.B.; Szukala, R.; Johnson, M.E.; Hevener, K.E. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J. Med. Chem., 2013, 56(17), 6560-6572.
[http://dx.doi.org/10.1021/jm301916b] [PMID: 23688234]
[17]
Kennedy, T. Managing the drug discovery/development interface. Drug Discov. Today, 1997, 2(10), 436-444.
[http://dx.doi.org/10.1016/S1359-6446(97)01099-4]
[18]
Venkatesh, S.; Lipper, R.A. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci., 2000, 89(2), 145-154.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6] [PMID: 10688744]
[19]
Noori, H.R.; Spanagel, R. In Silico Pharmacology: Drug Design and Discovery’s Gate to the Future; Springer, 2013.
[20]
Jorgensen, W.L. The many roles of computation in drug discovery. Science, 2004, 303(5665), 1813-1818.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[21]
Na, D. User Guides for Biologists to Learn Computational Methods; Springer, 2020.
[http://dx.doi.org/10.1007/s12275-020-9723-1]
[22]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolutionarised the drug discovery process. Drug Des. Devel. Ther., 2013, 1, 3.
[23]
Norinder, U.; Bergström, C.A.S. Prediction of ADMET properties. ChemMedChem, 2006, 1(9), 920-937.
[http://dx.doi.org/10.1002/cmdc.200600155] [PMID: 16952133]
[24]
Shaker, B.; Yu, M.S.; Lee, J.; Lee, Y.; Jung, C.; Na, D. User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation. J. Microbiol., 2020, 58(3), 235-244.
[http://dx.doi.org/10.1007/s12275-020-9563-z] [PMID: 32108318]
[25]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358.
[http://dx.doi.org/10.1021/jm020155c] [PMID: 12213076]
[26]
Prada-Gracia, D.; Huerta-Y’epez, S.; Moreno-Vargas, L.M. Application of computational methods for the discovery, design, and optimization of cancer drugs, Bol. M’ed. Hosp. Infan. M’ex., 2016, 73, 411-423.
[27]
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature, 1962, 194(4824), 178-180.
[http://dx.doi.org/10.1038/194178b0]
[28]
Leo, A.; Hoekman, D. Exploring QSAR; American Chemical Society, 1995.
[29]
Xie, L.; Evangelidis, T.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLOS Comput. Biol., 2011, 7(4), e1002037.
[http://dx.doi.org/10.1371/journal.pcbi.1002037] [PMID: 21552547]
[30]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design--a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[31]
Kothandan, G. A review about the importance of protonation of ionizable molecules on the predictability of CoMFA. J. Chosun Nat. Sci., 2011, 4, 99-102.
[32]
Kearsley, S.K.; Smith, G.M. An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap. Tetrahedron Comput. Methodol., 1990, 3(6), 615-633.
[http://dx.doi.org/10.1016/0898-5529(90)90162-2]
[33]
Madhavan, T. A review of 3D-QSAR in drug design. Int. J. Chosun Univ., 2012, 5(1), 1-5.
[http://dx.doi.org/10.13160/ricns.2012.5.1.001]
[34]
Rognan, D. Structure-based approaches to target fishing and ligand profiling. Mol. Inform., 2010, 29(3), 176-187.
[http://dx.doi.org/10.1002/minf.200900081] [PMID: 27462761]
[35]
Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study. J. Taiwan Inst. Chem. Eng., 2016, 58, 528-535.
[http://dx.doi.org/10.1016/j.jtice.2015.06.009]
[36]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[37]
Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
[38]
Hardy, L.W.; Abraham, D.J.; Safo, M.K. Structure-based drug design, Burger Med; Chem. Drug Discov, 2003, pp. 417-469.
[39]
Craig, J.C.; Duncan, I.B.; Hockley, D.; Grief, C.; Roberts, N.A.; Mills, J.S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res., 1991, 16(4), 295-305.
[http://dx.doi.org/10.1016/0166-3542(91)90045-S] [PMID: 1810306]
[40]
Kim, E.E.; Baker, C.T.; Dwyer, M.D.; Murcko, M.A.; Rao, B.G.; Tung, R.D.; Navia, M.A. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc., 1995, 117(3), 1181-1182.
[http://dx.doi.org/10.1021/ja00108a056]
[41]
McLeod, G.A.; Davies, H.T.O.; Munnoch, N.; Bannister, J.; Macrae, W. Postoperative pain relief using thoracic epidural analgesia: Outstanding success and disappointing failures. Anaesthesia, 2001, 56(1), 75-81.
[http://dx.doi.org/10.1046/j.1365-2044.2001.01763-7.x] [PMID: 11167441]
[42]
Clark, D.E. What has computer-aided molecular design ever done for drug discovery? Expert Opin. Drug Discov., 2006, 1(2), 103-110.
[http://dx.doi.org/10.1517/17460441.1.2.103] [PMID: 23495794]
[43]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[44]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[45]
Combs, A.P. Structure-based drug design of new leads for phosphatase research. IDrugs, 2007, 10(2), 112-115.
[PMID: 17285463]
[46]
Coumar, M.S.; Leou, J.S.; Shukla, P.; Wu, J.S.; Dixit, A.K.; Lin, W.H.; Chang, C.Y.; Lien, T.W.; Tan, U.K.; Chen, C.H.; Hsu, J.T.A.; Chao, Y.S.; Wu, S.Y.; Hsieh, H.P. Structure-based drug design of novel Aurora kinase A inhibitors: Structural basis for potency and specificity. J. Med. Chem., 2009, 52(4), 1050-1062.
[http://dx.doi.org/10.1021/jm801270e] [PMID: 19140666]
[47]
Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors, Angew, 41st ed; Chem. Inter, 2002, pp. 2644-2676.
[48]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[49]
Waugh, D.F. Protein-protein interactions. Adv. Protein Chem., 1954, 9, 325-437.
[http://dx.doi.org/10.1016/S0065-3233(08)60210-7] [PMID: 13217921]
[50]
Karim, M.; Islam, M.N.; Jewel, G.N.A. in silico Identification of Potential Drug Targets by Subtractive Genome Analysis of Enterococcus Faecium DO BioRxiv, 2020.
[51]
Hansson, T.; Oostenbrink, C.; van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol., 2002, 12(2), 190-196.
[http://dx.doi.org/10.1016/S0959-440X(02)00308-1] [PMID: 11959496]
[52]
McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature, 1977, 267(5612), 585-590.
[http://dx.doi.org/10.1038/267585a0] [PMID: 301613]
[53]
Grant, B.J.; Lukman, S.; Hocker, H.J.; Sayyah, J.; Brown, J.H.; McCammon, J.A.; Gorfe, A.A. Novel allosteric sites on Ras for lead generation. PLoS One, 2011, 6(10), e25711.
[http://dx.doi.org/10.1371/journal.pone.0025711] [PMID: 22046245]
[54]
Nair, P.C.; Malde, A.K.; Drinkwater, N.; Mark, A.E. Missing fragments: Detecting cooperative binding in fragment-based drug design. ACS Med. Chem. Lett., 2012, 3(4), 322-326.
[http://dx.doi.org/10.1021/ml300015u] [PMID: 24900472]
[55]
Gardiner, S.J.; Begg, E.J. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev., 2006, 58(3), 521-590.
[http://dx.doi.org/10.1124/pr.58.3.6] [PMID: 16968950]
[56]
Pollastri, M.P. Overview on the rule of five. Curr. Protoc. Pharmacol., 2010, 9.12
[57]
Viana, N.A.M.; das Chagas, P.A.F.; Filgueiras, L.A.; de Carvalho, M.O.A.; Cunha, R.L.O.R.; Rodezno, S.V.A.; Maia, F.A.L.M.; de Amorim, C.F.A.; Braz, D.C.; Mendes, A.N. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environ. Toxicol. Pharmacol., 2020, 80, 103470.
[http://dx.doi.org/10.1016/j.etap.2020.103470] [PMID: 32814174]
[58]
Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1136-1145.
[http://dx.doi.org/10.1021/ci025515j] [PMID: 12377001]
[59]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[60]
Dhanda, S.K.; Singla, D.; Mondal, A.K.; Raghava, G.P.S. DrugMint: A webserver for predicting and designing of drug-like molecules. Biol. Direct, 2013, 8(1), 28.
[http://dx.doi.org/10.1186/1745-6150-8-28] [PMID: 24188205]
[61]
Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol., 2017, 8, 889.
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[62]
Liu, R.; Tawa, G.; Wallqvist, A. Locally weighted learning methods for predicting dose-dependent toxicity with application to the human maximum recommended daily dose. Chem. Res. Toxicol., 2012, 25(10), 2216-2226.
[http://dx.doi.org/10.1021/tx300279f] [PMID: 22963722]
[63]
Karim, A.; Mishra, A.; Newton, M.A.H.; Sattar, A. Efficient toxicity prediction via simple features using shallow neural networks and decision trees. ACS Omega, 2019, 4(1), 1874-1888.
[http://dx.doi.org/10.1021/acsomega.8b03173]
[64]
Su, J.; Zhang, H. A Fast Decision Tree Learning Algorithm; AAAI, 2006, pp. 500-505.
[65]
Yu, M.S.; Lee, J.; Lee, Y.; Na, D. 2-D chemical structure image-based in silico model to predict agonist activity for androgen receptor. BMC Bioinformatics, 2020, 21(S5), 245.
[http://dx.doi.org/10.1186/s12859-020-03588-1] [PMID: 33106158]
[66]
Li, Y.; Hao, Z.; Lei, H. Survey of convolutional neural network. Jisuanji Yingyong, 2016, 36, 2508-2515.
[67]
Shaker, B.; Yu, M.S.; Song, J.S.; Ahn, S.; Ryu, J.Y.; Oh, K.S.; Na, D.; Light, B.B.B. LightBBB: Computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics, 2021, 37(8), 1135-1139.
[http://dx.doi.org/10.1093/bioinformatics/btaa918] [PMID: 33112379]
[68]
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst., 2017, 3146-3154.
[69]
Lee, H.M.; Yu, M.S.; Kazmi, S.R.; Oh, S.Y.; Rhee, K.H.; Bae, M.A.; Lee, B.H.; Shin, D.S.; Oh, K.S.; Ceong, H.; Lee, D.; Na, D. Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics, 2019, 20(S10), 250.
[http://dx.doi.org/10.1186/s12859-019-2814-5] [PMID: 31138104]
[70]
Santos, L.A.; Prandi, I.G.; Ramalho, T.C. Could quantum mechanical properties be reflected on classical molecular dynamics? the case of halogenated organic compounds of biological interest. Front Chem., 2019, 7, 848.
[http://dx.doi.org/10.3389/fchem.2019.00848] [PMID: 31921771]
[71]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[72]
de Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J.; Maidana, R.L.B.R.; Guimarães, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem., 2020, 8, 93.
[http://dx.doi.org/10.3389/fchem.2020.00093] [PMID: 32133344]
[73]
Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem., 2020, 8, 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[74]
Thafar, M.; Raies, A. Comparison study of computational prediction tools for drug-target binding affinities. Front Chem., 2019, 7, 782.
[75]
Reddy, R.; Mutyala, R.; Aparoy, P.; Reddanna, P.; Reddy, M. Computer aided drug design approaches to develop cyclooxygenase based novel anti-inflammatory and anti-cancer drugs. Curr. Pharm. Des., 2007, 13(34), 3505-3517.
[http://dx.doi.org/10.2174/138161207782794275] [PMID: 18220787]
[76]
Cordeiro, M.N.; Speck-Planche, A. Computer-aided drug design, synthesis and evaluation of new anti-cancer drugs. Curr. Top. Med. Chem., 2012, 12(24), 2703-2704.
[http://dx.doi.org/10.2174/1568026611212240001] [PMID: 23368097]
[77]
Semighini, E.P.; Resende, J.A.; de Andrade, P.; Morais, P.A.B.; Carvalho, I.; Taft, C.A.; Silva, C.H.T.P. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes. J. Biomol. Struct. Dyn., 2011, 28(5), 787-796.
[http://dx.doi.org/10.1080/07391102.2011.10508606] [PMID: 21294589]
[78]
Balamurugan, R.; Stalin, A.; Ignacimuthu, S. Molecular docking of γ-sitosterol with some targets related to diabetes. Eur. J. Med. Chem., 2012, 47(1), 38-43.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.007] [PMID: 22078765]
[79]
Krohn, A.; Redshaw, S.; Ritchie, J.C.; Graves, B.J.; Hatada, M.H. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J. Med. Chem., 1991, 34(11), 3340-3342.
[http://dx.doi.org/10.1021/jm00115a028] [PMID: 1956054]
[80]
Chen, Z.; Li, Y.; Chen, E.; Hall, D.L.; Darke, P.L.; Culberson, C.; Shafer, J.A.; Kuo, L.C. Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J. Biol. Chem., 1994, 269(42), 26344-26348.
[http://dx.doi.org/10.1016/S0021-9258(18)47199-2] [PMID: 7929352]
[81]
Sham, H.L.; Kempf, D.J.; Molla, A.; Marsh, K.C.; Kumar, G.N.; Chen, C.M.; Kati, W.; Stewart, K.; Lal, R.; Hsu, A.; Betebenner, D.; Korneyeva, M.; Vasavanonda, S.; McDonald, E.; Saldivar, A.; Wideburg, N.; Chen, X.; Niu, P.; Park, C.; Jayanti, V.; Grabowski, B.; Granneman, G.R.; Sun, E.; Japour, A.J.; Leonard, J.M.; Plattner, J.J.; Norbeck, D.W. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob. Agents Chemother., 1998, 42(12), 3218-3224.
[http://dx.doi.org/10.1128/AAC.42.12.3218] [PMID: 9835517]
[82]
Doyon, L.; Tremblay, S.; Bourgon, L.; Wardrop, E.; Cordingley, M.G. Selection and characterization of HIV-1 showing reduced susceptibility to the non-peptidic protease inhibitor tipranavir. Antiviral Res., 2005, 68(1), 27-35.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.003] [PMID: 16122817]
[83]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[84]
Honegr, J.; Malinak, D.; Dolezal, R.; Soukup, O.; Benkova, M.; Hroch, L.; Benek, O.; Janockova, J.; Kuca, K.; Prymula, R. Rational design of novel TLR4 ligands by in silico screening and their functional and structural characterization in vitro. Eur. J. Med. Chem., 2018, 146, 38-46.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.074] [PMID: 29407964]
[85]
Duan, H.; Liu, X.; Zhuo, W.; Meng, J.; Gu, J.; Sun, X.; Zuo, K.; Luo, Q.; Luo, Y.; Tang, D.; Shi, H.; Cao, S.; Hu, J. 3D-QSAR and molecular recognition of Klebsiella pneumoniae NDM-1 inhibitors. Mol. Simul., 2019, 45(9), 694-705.
[http://dx.doi.org/10.1080/08927022.2019.1579327]
[86]
Annapoorani, A.; Umamageswaran, V.; Parameswari, R.; Pandian, S.K.; Ravi, A.V. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J. Comput. Aided Mol. Des., 2012, 26(9), 1067-1077.
[http://dx.doi.org/10.1007/s10822-012-9599-1] [PMID: 22986632]
[87]
Ahmad, S.; Raza, S.; Abbasi, S.W.; Azam, S.S. Identification of natural inhibitors against Acinetobacter baumannii d-alanine-d-alanine ligase enzyme: A multi-spectrum in silico approach. J. Mol. Liq., 2018, 262, 460-475.
[http://dx.doi.org/10.1016/j.molliq.2018.04.124]
[88]
Skariyachan, S.; Narayan, N.S.; Aggimath, T.S.; Nagaraj, S.; Reddy, M.S.; Narayanappa, R. Molecular modeling on streptolysin-O of multidrug resistant Streptococcus pyogenes and computer aided screening and in vitro assay for novel herbal inhibitors. Curr. Comput. Aided Drug Des., 2014, 10(1), 59-74.
[89]
Xiong, M.; Guo, Z.; Han, B.; Chen, M. Combating multidrug resistance in bacterial infection by targeting functional proteome with natural products. Nat. Prod. Res., 2015, 29(17), 1624-1629.
[http://dx.doi.org/10.1080/14786419.2014.991926] [PMID: 25518752]
[90]
Ondetti, M.A.; Rubin, B.; Cushman, D.W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science, 1977, 196(4288), 441-444.
[http://dx.doi.org/10.1126/science.191908] [PMID: 191908]
[91]
Brimblecombe, R.; Duncan, W.; Durant, G.; Ganellin, C.; Parsons, M.; Black, J. Proceedings: The pharmacology of cimetidine, a new histamine H2-receptor antagonist. Br. J. Pharmacol., 1975, 53, 435.
[92]
Baldwin, J.J.; Ponticello, G.S.; Anderson, P.S.; Christy, M.E.; Murcko, M.A.; Randall, W.C.; Schwam, H.; Sugrue, M.F.; Gautheron, P.; Gautheron, P. Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem., 1989, 32(12), 2510-2513.
[http://dx.doi.org/10.1021/jm00132a003] [PMID: 2585439]
[93]
Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Müller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res., 1996, 56(1), 100-104.
[PMID: 8548747]
[94]
Li, W.; Escarpe, P.A.; Eisenberg, E.J.; Cundy, K.C.; Sweet, C.; Jakeman, K.J.; Merson, J.; Lew, W.; Williams, M.; Zhang, L.; Kim, C.U.; Bischofberger, N.; Chen, M.S.; Mendel, D.B. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob. Agents Chemother., 1998, 42(3), 647-653.
[http://dx.doi.org/10.1128/AAC.42.3.647] [PMID: 9517946]
[95]
von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; Colman, P.M.; Varghese, J.N.; Ryan, D.M.; Woods, J.M.; Bethell, R.C.; Hotham, V.J.; Cameron, J.M.; Penn, C.R. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993, 363(6428), 418-423.
[http://dx.doi.org/10.1038/363418a0] [PMID: 8502295]
[96]
Wlodawer, A. Rational approach to AIDS drug design through structural biology. Annu. Rev. Med., 2002, 53(1), 595-614.
[http://dx.doi.org/10.1146/annurev.med.53.052901.131947] [PMID: 11818491]
[97]
Falcoz, C.; Jenkins, J.M.; Bye, C.; Hardman, T.C.; Kenney, K.B.; Studenberg, S.; Fuder, H.; Prince, W.T. Pharmacokinetics of GW433908, a prodrug of amprenavir, in healthy male volunteers. J. Clin. Pharmacol., 2002, 42(8), 887-898.
[http://dx.doi.org/10.1177/009127002401102803] [PMID: 12162471]
[98]
Pollack, V.A.; Savage, D.M.; Baker, D.A.; Tsaparikos, K.E.; Sloan, D.E.; Moyer, J.D.; Barbacci, E.G.; Pustilnik, L.R.; Smolarek, T.A.; Davis, J.A.; Vaidya, M.P.; Arnold, L.D.; Doty, J.L.; Iwata, K.K.; Morin, M.J. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther., 1999, 291(2), 739-748.
[PMID: 10525095]
[99]
Heim, M.; Sharifi, M.; Hilger, R.A.; Scheulen, M.E.; Seeber, S.; Strumberg, D. Antitumor effect and potentiation or reduction in cytotoxic drug activity in human colon carcinoma cells by the Raf kinase inhibitor (RKI) BAY 43-9006. Int. J. Clin. Pharmacol. Ther., 2003, 41(12), 616-617.
[http://dx.doi.org/10.5414/CPP41616] [PMID: 14692718]
[100]
Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J.F.; Boross, P.; Wang, Y.F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R.W.; Weber, I.T.; Ghosh, A.K.; Mitsuya, H. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother., 2003, 47(10), 3123-3129.
[http://dx.doi.org/10.1128/AAC.47.10.3123-3129.2003] [PMID: 14506019]
[101]
Xia, W.; Liu, L.H.; Ho, P.; Spector, N.L. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene, 2004, 23(3), 646-653.
[http://dx.doi.org/10.1038/sj.onc.1207166] [PMID: 14737100]
[102]
Jarman, M.; Barrie, S.E.; Llera, J.M. The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017α by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3β-ol) and related steroidal inhibitors. J. Med. Chem., 1998, 41(27), 5375-5381.
[http://dx.doi.org/10.1021/jm981017j] [PMID: 9876107]
[103]
Rodig, S.J.; Shapiro, G.I. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr. Opin. Investig. Drugs, 2010, 11(12), 1477-1490.
[PMID: 21154129]
[104]
Syed, Y.Y. Ribociclib: First global approval. Drugs, 2017, 77(7), 799-807.
[http://dx.doi.org/10.1007/s40265-017-0742-0] [PMID: 28417244]
[105]
Gajdosik, Z. Larotrectinib sulfate. Drugs Future, 2017, 42, 275-280.
[106]
Al-Salama, Z.T. Apalutamide: A review in non-metastatic castration-resistant prostate cancer. Drugs, 2019, 79(14), 1591-1598.
[http://dx.doi.org/10.1007/s40265-019-01194-x] [PMID: 31489589]
[107]
Bryson, H.M.; Sorkin, E.M. Cladribine. Drugs, 1993, 46(5), 872-894.
[http://dx.doi.org/10.2165/00003495-199346050-00007] [PMID: 7507037]
[108]
Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021.
[http://dx.doi.org/10.1007/s40265-019-01142-9] [PMID: 31161538]
[109]
Syed, Y.Y. Zanubrutinib: First approval. Drugs, 2020, 80(1), 91-97.
[http://dx.doi.org/10.1007/s40265-019-01188-9] [PMID: 31429063]
[110]
Syed, Y.Y. Selinexor: First global approval. Drugs, 2019, 79(13), 1485-1494.
[http://dx.doi.org/10.1007/s40265-019-01188-9] [PMID: 31429063]
[111]
Robinson, B.S.; Riccardi, K.A.; Gong, Y.; Guo, Q.; Stock, D.A.; Blair, W.S.; Terry, B.J.; Deminie, C.A.; Djang, F.; Colonno, R.J.; Lin, P. BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob. Agents Chemother., 2000, 44(8), 2093-2099.
[http://dx.doi.org/10.1128/AAC.44.8.2093-2099.2000] [PMID: 10898681]
[112]
Kempf, D.J.; Marsh, K.C.; Denissen, J.F.; McDonald, E.; Vasavanonda, S.; Flentge, C.A.; Green, B.E.; Fino, L.; Park, C.H.; Kong, X.P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA, 1995, 92(7), 2484-2488.
[http://dx.doi.org/10.1073/pnas.92.7.2484] [PMID: 7708670]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy