Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Evaluation of Flavonoid-rich Fraction of Portulaca Grandiflora Aerial Part Extract in Atherogenic Diet-induced Atherosclerosis

Author(s): Xiuping Wang, Aishwarya Sharma, Yongchao Liu, Xiaoying Wang, Deepika Kumari and Ritu Kainth*

Volume 27, Issue 9, 2024

Published on: 02 October, 2023

Page: [1394 - 1402] Pages: 9

DOI: 10.2174/0113862073267025230925062407

Price: $65

Abstract

Background: Portulaca grandiflora is a tiny, upright herb that contains a variety of chemical components, including alkaloids, glycosides, mucilage, proteins, tannins, flavonoids, saponins, polysaccharides, and triterpenoids possessing properties that may help with atherosclerosis. The reported pharmacological properties of Portulaca grandiflora are antioxidant, antidiabetic, antiasthmatic, antibacterial, antiulcer and anti-inflammatory properties.

Objectives: The yield of methanol extract is higher than that of ethanol and acetone, and its phytoconstituents, like flavonoids and polyphenols, and has potent antioxidant properties. In order to determine the effectiveness of Portulaca grandiflora methanol extract fraction against high-fat diet (HFD)-induced hyperlipidemia, hemodynamic change, antioxidant levels, and vascular dysfunction in rats, a study was carried out on a flavonoid-rich methanol extract fraction of the aerial part of Portulaca grandiflora Hook.

Methods: This method involves a study of 30 days involving male Wistar rats (240–250 g) (n=5) that were fed with an Ath diet. Study groups were divided into (i) The Control Group, (ii) the Diseases Control Group, (iii) Disease + Standard drug (Atorvastatin 20mg/kg, orally, (iv) Disease + Test Extract dose 1 (Portulaca grandiflora 200 mg/kg orally), and (v) Disease + Test Extract dose 2 (Portulaca grandiflora 400 mg/kg orally). Both the test drug Portulaca grandiflora and the standard drug Atorvastatin were given orally for 30 days.

Results: At the end of the study, blood samples were taken to measure the serum lipid profile, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and levels of oxidative tissue stress. Hemodynamic parameters and aortic staining were performed. Portulaca grandiflora treatment improved the lipid profile and considerably reduced oxidative stress levels. Aortic staining examination revealed a marked reduction in atherosclerotic lesions.

Conclusion: These results revealed that Portulaca grandiflora is an effective treatment approach in preventing atherosclerotic lesion progression, which is attributed to its protection against oxidative stress and various enzymatic activities in the Atherogenic model.

« Previous
Graphical Abstract

[1]
Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and cardiovascular health. Int. J. Mol. Sci., 2018, 19(12), 3988.
[2]
Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology., 2020, 9(3), 60.
[http://dx.doi.org/10.3390/biology9030060]
[3]
Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res., 2019, 124(5), 799-815.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312669]
[4]
Fan, J.; Watanabe, T. Atherosclerosis: Known and unknown. Pathol. Int., 2022, 72(3), 151-160.
[http://dx.doi.org/10.1111/pin.13202]
[5]
Mury, P.; Chirico, E.N.; Mura, M.; Millon, A.; Canet-Soulas, E.; Pialoux, V. Oxidative stress and inflammation, key targets of atherosclerotic plaque progression and vulnerability: Potential impact of physical activity. Sports Med., 2018, 48(12), 2725-2741.
[http://dx.doi.org/10.1007/s40279-018-0996-z]
[6]
Asahina, M.; Sato, M.; Imaizumi, K. Genetic analysis of diet-induced hypercholesterolemia in exogenously hypercholesterolemic rats. J. Lipid Res., 2005, 46(10), 2289-2294.
[http://dx.doi.org/10.1194/jlr.M500257-JLR200]
[7]
Hegsted, D.M.; McGandy, R.B.; Myers, M.L.; Stare, F.J. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr., 1965, 17(5), 281-295.
[http://dx.doi.org/10.1093/ajcn/17.5.281]
[8]
Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep., 2010, 12(6), 384-390.
[http://dx.doi.org/10.1007/s11883-010-0131-6]
[9]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203]
[10]
Soliman, G. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 2018, 10(6), 780.
[http://dx.doi.org/10.3390/nu10060780]
[11]
Cheraghi, M.; Asadi-Samani, M. Atherosclerosis: Pathophysiology and promising herbal remedies in traditional persian medicine. Pharm. Lett., 2016, 8, 58-66.
[12]
McGill, H.C., Jr. The relationship of dietary cholesterol to serum cholesterol concentration and to atherosclerosis in man. Am. J. Clin. Nutr., 1979, 32(12), 2664-2702.
[http://dx.doi.org/10.1093/ajcn/32.12.2664]
[13]
Reddy, M.S. Steps of atherosclerosis and its complication. J. Med. Pharm. Allied Sci., 2020, 9(4), 2577-2579.
[http://dx.doi.org/10.22270/jmpas.v9i4.967]
[14]
Patil, Y.A. Review: Atherosclerosis & its treatment. PharmaTutor, 2014, 2, 73-77.
[15]
Kakadiya, J. Causes, symptoms, pathophysiology and diagnosis of atherosclerosis - a review. Pharmacologyonline, 2009, 3, 420-442.
[16]
van Trier, T.J.; Mohammadnia, N.; Snaterse, M.; Peters, R.J.G.; Jørstad, H.T.; Bax, W.A. Lifestyle management to prevent atherosclerotic cardiovascular disease: Evidence and challenges. Neth. Heart J., 2022, 30(1), 3-14.
[http://dx.doi.org/10.1007/s12471-021-01642-y]
[17]
Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; Goldberg, R.; Heidenreich, P.A.; Hlatky, M.A.; Jones, D.W.; Lloyd-Jones, D.; Lopez-Pajares, N.; Ndumele, C.E.; Orringer, C.E.; Peralta, C.A.; Saseen, J.J.; Smith, S.C., Jr; Sperling, L.; Virani, S.S.; Yeboah, J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J. Am. Coll. Cardiol., 2019, 73(24), e285-e350.
[http://dx.doi.org/10.1016/j.jacc.2018.11.003]
[18]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416]
[19]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0]
[20]
Commoner, B.; Townsend, J.; Pake, G. Free radicals in biological materials. Nature., 1954, 174(4432), 689-691.
[http://dx.doi.org/10.1038/174689a0]
[21]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[22]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm., 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339]
[23]
Kumari, A.; Singh, R.K. Synthesis, molecular docking and biological evaluation of N substituted indole derivatives as potential anti‐inflammatory and antioxidant agents. Chem. Biodivers., 2022, 19(9), 19.
[http://dx.doi.org/10.1002/cbdv.202200290]
[24]
Kumari, A.; Singh, R.K. Synthesis, molecular docking and ADME prediction of 1H-Indole/5-substituted indole derivatives as potential antioxidant and anti-inflammatory agents. MC, 2023, 19, 163-173.
[25]
Kumari, A.; Singh, R.K. Synthesis, drug-likeness evaluation of some heterocyclic moieties fused indole derivatives as potential antioxidants. Comb. Chem. High Throughput Screen., 2023, 26(11), 2077-2084.
[http://dx.doi.org/10.2174/1386207326666230102111810]
[26]
Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 2019, 24(22), 4132.
[http://dx.doi.org/10.3390/molecules24224132]
[27]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028]
[28]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354]
[29]
Lim, C.K.; Tiong, W.N.; Loo, J.L. Antioxidant activity and total phenolic content of different varieties of portulaca grandiflora. Int. J. Phytopharm., 2014, 4, 1-5.
[30]
Anghel, A.I.; Olaru, O.T.; Gatea, F.; Dinu, M.; Ancuceanu, R.V.; Istudor, V. Preliminary research on portulaca grandiflora hook. species (portulacaceae) for therapeutic use. Farmacia, 2013, 61, 694-702.
[31]
Lim, Y.Y.; Quah, E.P.L. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem., 2007, 103(3), 734-740.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.025]
[32]
Devi, M.; Komal, S.; Logeshwari, B. Preliminary phytochemistry and antidiabetic activity of portulaca grandiflora hook plant extract on streptozotocin-induced diabetes in rats. Asian J. Pharm. Clin. Res., 2019, 12, 87-90.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i12.35216]
[33]
Ahmad, S.; Zahiruddin, S.; Parveen, B.; Basist, P.; Parveen, A.; Gaurav; Parveen, R.; Ahmad, M. Indian medicinal plants and formulations and their potential against COVID-19–preclinical and clinical research. Front. Pharmacol., 2021, 11, 578970.
[http://dx.doi.org/10.3389/fphar.2020.578970]
[34]
Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Traditional herbs: A remedy for cardiovascular disorders. Phytomedicine., 2016, 23(11), 1082-1089.
[http://dx.doi.org/10.1016/j.phymed.2015.10.012]
[35]
Binita, S.M.L. Hypolipidemic effect of ethanolic extract of leaves of bryophyllum pinnatum in hyperlipidemic rats. Asian J. Pharm. Sci., 2020, 10(3), 2334-2339.
[36]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3]
[37]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6]
[38]
Kono, Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys., 1978, 186(1), 189-195.
[http://dx.doi.org/10.1016/0003-9861(78)90479-4]
[39]
Nunnari, J.J.; Zand, T.; Joris, I.; Majno, G. Quantitation of oil red O staining of the aorta in hypercholesterolemic rats. Exp. Mol. Pathol., 1989, 51(1), 1-8.
[http://dx.doi.org/10.1016/0014-4800(89)90002-6]
[40]
Ravnskov, U. Is atherosclerosis caused by high cholesterol? QJM, 2002, 95(6), 397-403.
[http://dx.doi.org/10.1093/qjmed/95.6.397]
[41]
Musunuru, K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids, 2010, 45(10), 907-914.
[http://dx.doi.org/10.1007/s11745-010-3408-1]
[42]
Matsuzawa, N.; Takamura, T.; Kurita, S.; Misu, H.; Ota, T.; Ando, H.; Yokoyama, M.; Honda, M.; Zen, Y.; Nakanuma, Y.; Miyamoto, K.; Kaneko, S. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology, 2007, 46(5), 1392-1403.
[http://dx.doi.org/10.1002/hep.21874]
[43]
Du, L.J.; Dong, P.S.; Jia, J.J.; Fan, X.M.; Yang, X.M.; Wang, S.X.; Yang, X.S.; Li, Z.J.; Wang, H.L. Association between left ventricular end-diastolic pressure and coronary artery disease as well as its extent and severity. Int J Clin Exp Med., 2015, 8(10), 18673-18680.
[44]
Haider, B.; Yeh, C.K.; Thomas, G.; Oldewurtel, H.A.; Lyons, M.M.; Regan, T.J. Altered myocardial function and collagen in diabetic rhesus monkeys on atherogenic diet. Trans. Assoc. Am. Physicians, 1978, 91, 197-203.
[45]
Iqbal, M.P.; Mehboobali, N.; Pervez, S. Plaque formation reduction with glutathione monoester in mice fed on atherogenic diet. J. Coll. Physicians Surg. Pak., 2006, 16, 571-575.
[46]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201.
[http://dx.doi.org/10.1016/j.biopha.2016.11.125]
[47]
Denisenko, Y.K.; Novgorodtseva, T.P. Effect of prolonged high-fat diet on thiol-disulfide homeostasis in rats. Int. J. Biom., 2013, 3, 197-200.
[48]
Ramírez-Zacarías, J.L.; Castro-Muñozledo, F.; Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry., 1992, 97, 493-497.
[http://dx.doi.org/10.1007/BF00316069]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy