Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles

Author(s): Isha Mishra*, Komal Gupta, Raghav Mishra*, Kajal Chaudhary and Vikram Sharma

Volume 25, Issue 8, 2024

Published on: 29 September, 2023

Page: [1000 - 1020] Pages: 21

DOI: 10.2174/0113892010273024230925075231

Price: $65

Abstract

Background: Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures.

Objectives: This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research.

Methods: The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases.

Results: The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases.

Conclusion: The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.

Next »
Graphical Abstract

[1]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]
[2]
Murti, Y.; Agrawal, K.K. Tangeretin: A biologically potential citrus flavone. Curr. Tradit. Med., 2022, 8(4), e040322201698.
[http://dx.doi.org/10.2174/2215083808666220304100702]
[3]
Ahuja, A.; Singh, S. Impact of the current scenario and future perspectives for the management of oral diseases: Remarkable contribution of herbs in dentistry. Antiinfect. Agents, 2022, 20(5), e050422203119.
[http://dx.doi.org/10.2174/2211352520666220405124929]
[4]
Singh, S.; Bajpai, M.; Mishra, P. Herbal folklore medication for liver disorders. Curr. Tradit. Med., 2021, 7(3), 415-433.
[http://dx.doi.org/10.2174/2215083806999201112093503]
[5]
Mishra, I.; Sachan, N. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects. ECS Trans., 2022, 107(1), 17745-17768.
[http://dx.doi.org/10.1149/10701.17745ecst]
[6]
Mishra, R.; Tomer, I.; Kumar, S. Synthesis and antimicrobial evaluation of novel thiophene derivatives. Pharm. Sin., 2012, 3, 332-336.
[7]
Upadhyay, P.K.; Pathak, S.; Mishra, R.; Kumar, R.; Jain, A. A multifaceted scaffold for building bioactive compounds. Phenothiazine. Lett. Org. Chem., 2023, 20(7), 618-631.
[http://dx.doi.org/10.2174/1570178620666221202100529]
[8]
Mishra, R.; da Cunha Xavier, J.; dos Santos, H.S.; Machado Marinho, M.; Nunes da Rocha, M.; Rodrigues Teixeira, A.M.; Coutinho, H.D.M.; Marinho, E.S. Sucheta; Kumar, N. Chalcones as potent agents against Staphylococcus aureus: A Computational Approach. Lett. Drug Des. Discov., 2023, 20
[http://dx.doi.org/10.2174/1570180820666230120145921]
[9]
Mishra, I. Preferences of Indian women on COVID-19 medical solutions. Biosci. Biotechnol. Res. Commun., 2021, 14(3), 1381-1384.
[http://dx.doi.org/10.21786/bbrc/14.3.71]
[10]
Mishra, R.; Chaudhary, K.; Mishra, I. Weapons and strategies against COVID-19: A perspective. Curr. Pharm. Biotechnol., 2023, 24
[http://dx.doi.org/10.2174/1389201024666230525161432] [PMID: 37231727]
[11]
Mishra, R.; Chaudhary, K.; Mishra, I. AI in health science: A perspective. Curr. Pharm. Biotechnol., 2023, 24(9), 1149-1163.
[http://dx.doi.org/10.2174/1389201023666220929145220] [PMID: 36177622]
[12]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540.
[http://dx.doi.org/10.2174/1570180819666220117123958]
[13]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives. Oncologie, 2021, 23(4), 493-514.
[http://dx.doi.org/10.32604/oncologie.2021.018532]
[14]
Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965.
[http://dx.doi.org/10.2174/1389557520666200715104555] [PMID: 32669077]
[15]
Neal, J.T.; Kuo, C.J. Organoids as models for neoplastic transformation. Annu. Rev. Pathol., 2016, 11(1), 199-220.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044249] [PMID: 26907527]
[16]
Bredenoord, A.L.; Clevers, H.; Knoblich, J.A. Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355(6322), eaaf9414.
[http://dx.doi.org/10.1126/science.aaf9414] [PMID: 28104841]
[17]
Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; Roman-Roman, S.; Seoane, J.; Trusolino, L.; Villanueva, A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov., 2014, 4(9), 998-1013.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0001] [PMID: 25185190]
[18]
Heydari, Z.; Moeinvaziri, F.; Agarwal, T.; Pooyan, P.; Shpichka, A.; Maiti, T.K.; Timashev, P.; Baharvand, H.; Vosough, M. Organoids: a novel modality in disease modeling. Biodes. Manuf., 2021, 4(4), 689-716.
[http://dx.doi.org/10.1007/s42242-021-00150-7] [PMID: 34395032]
[19]
Fang, Y.; Eglen, R.M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov., 2017, 22(5), 456-472.
[http://dx.doi.org/10.1177/1087057117696795] [PMID: 28520521]
[20]
Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194), 1247125.
[http://dx.doi.org/10.1126/science.1247125] [PMID: 25035496]
[21]
Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467), 373-379.
[http://dx.doi.org/10.1038/nature12517] [PMID: 23995685]
[22]
Paşca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.H.; Park, J.Y.; O’Rourke, N.A.; Nguyen, K.D.; Smith, S.J.; Huguenard, J.R.; Geschwind, D.H.; Barres, B.A.; Paşca, S.P. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods, 2015, 12(7), 671-678.
[http://dx.doi.org/10.1038/nmeth.3415] [PMID: 26005811]
[23]
Kadoshima, T.; Sakaguchi, H.; Nakano, T.; Soen, M.; Ando, S.; Eiraku, M.; Sasai, Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20284-20289.
[http://dx.doi.org/10.1073/pnas.1315710110] [PMID: 24277810]
[24]
Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011, 472(7341), 51-56.
[http://dx.doi.org/10.1038/nature09941] [PMID: 21475194]
[25]
Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6), 771-785.
[http://dx.doi.org/10.1016/j.stem.2012.05.009] [PMID: 22704518]
[26]
Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
[27]
Ootani, A.; Li, X.; Sangiorgi, E.; Ho, Q.T.; Ueno, H.; Toda, S.; Sugihara, H.; Fujimoto, K.; Weissman, I.L.; Capecchi, M.R.; Kuo, C.J. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med., 2009, 15(6), 701-706.
[http://dx.doi.org/10.1038/nm.1951] [PMID: 19398967]
[28]
Spence, J.R.; Mayhew, C.N.; Rankin, S.A.; Kuhar, M.F.; Vallance, J.E.; Tolle, K.; Hoskins, E.E.; Kalinichenko, V.V.; Wells, S.I.; Zorn, A.M.; Shroyer, N.F.; Wells, J.M. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332), 105-109.
[http://dx.doi.org/10.1038/nature09691] [PMID: 21151107]
[29]
Fordham, R.P.; Yui, S.; Hannan, N.R.F.; Soendergaard, C.; Madgwick, A.; Schweiger, P.J.; Nielsen, O.H.; Vallier, L.; Pedersen, R.A.; Nakamura, T.; Watanabe, M.; Jensen, K.B. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell, 2013, 13(6), 734-744.
[http://dx.doi.org/10.1016/j.stem.2013.09.015] [PMID: 24139758]
[30]
Takasato, M.; Er, P.X.; Chiu, H.S.; Maier, B.; Baillie, G.J.; Ferguson, C.; Parton, R.G.; Wolvetang, E.J.; Roost, M.S.; Chuva de Sousa Lopes, S.M.; Little, M.H. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2015, 526(7574), 564-568.
[http://dx.doi.org/10.1038/nature15695] [PMID: 26444236]
[31]
Freedman, B.S.; Brooks, C.R.; Lam, A.Q.; Fu, H.; Morizane, R.; Agrawal, V.; Saad, A.F.; Li, M.K.; Hughes, M.R.; Werff, R.V.; Peters, D.T.; Lu, J.; Baccei, A.; Siedlecki, A.M.; Valerius, M.T.; Musunuru, K.; McNagny, K.M.; Steinman, T.I.; Zhou, J.; Lerou, P.H.; Bonventre, J.V. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun., 2015, 6(1), 8715.
[http://dx.doi.org/10.1038/ncomms9715] [PMID: 26493500]
[32]
Morizane, R.; Lam, A.Q.; Freedman, B.S.; Kishi, S.; Valerius, M.T.; Bonventre, J.V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol., 2015, 33(11), 1193-1200.
[http://dx.doi.org/10.1038/nbt.3392] [PMID: 26458176]
[33]
Takasato, M.; Er, P.X.; Becroft, M.; Vanslambrouck, J.M.; Stanley, E.G.; Elefanty, A.G.; Little, M.H. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol., 2014, 16(1), 118-126.
[http://dx.doi.org/10.1038/ncb2894] [PMID: 24335651]
[34]
Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499(7459), 481-484.
[http://dx.doi.org/10.1038/nature12271] [PMID: 23823721]
[35]
Huch, M.; Dorrell, C.; Boj, S.F.; van Es, J.H.; Li, V.S.W.; van de Wetering, M.; Sato, T.; Hamer, K.; Sasaki, N.; Finegold, M.J.; Haft, A.; Vries, R.G.; Grompe, M.; Clevers, H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494(7436), 247-250.
[http://dx.doi.org/10.1038/nature11826] [PMID: 23354049]
[36]
Huch, M.; Gehart, H.; van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.A.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; van de Wetering, M.; Sasaki, N.; Boers, S.J.; Kemperman, H.; de Jonge, J.; Ijzermans, J.N.M.; Nieuwenhuis, E.E.S.; Hoekstra, R.; Strom, S.; Vries, R.R.G.; van der Laan, L.J.W.; Cuppen, E.; Clevers, H. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2), 299-312.
[http://dx.doi.org/10.1016/j.cell.2014.11.050] [PMID: 25533785]
[37]
Lee, J.H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.H.; Ryeom, S.; Kim, C.F. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 2014, 156(3), 440-455.
[http://dx.doi.org/10.1016/j.cell.2013.12.039] [PMID: 24485453]
[38]
Dye, B.R.; Hill, D.R.; Ferguson, M.A.H.; Tsai, Y.H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; White, E.S.; Deutsch, G.H.; Spence, J.R. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015, 4, e05098.
[http://dx.doi.org/10.7554/eLife.05098] [PMID: 25803487]
[39]
Konishi, S.; Gotoh, S.; Tateishi, K.; Yamamoto, Y.; Korogi, Y.; Nagasaki, T.; Matsumoto, H.; Muro, S.; Hirai, T.; Ito, I.; Tsukita, S.; Mishima, M. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports, 2016, 6(1), 18-25.
[http://dx.doi.org/10.1016/j.stemcr.2015.11.010] [PMID: 26724905]
[40]
Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013, 500(7461), 217-221.
[http://dx.doi.org/10.1038/nature12298] [PMID: 23842490]
[41]
Koehler, K.R.; Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat. Protoc., 2014, 9(6), 1229-1244.
[http://dx.doi.org/10.1038/nprot.2014.100] [PMID: 24784820]
[42]
Nie, J.; Hashino, E. Organoid technologies meet genome engineering. EMBO Rep., 2017, 18(3), 367-376.
[http://dx.doi.org/10.15252/embr.201643732] [PMID: 28202491]
[43]
Wilson, H.V. A new method by which sponges may be artificially reared. Science, 1907, 25(649), 912-915.
[http://dx.doi.org/10.1126/science.25.649.912] [PMID: 17842577]
[44]
Armah, H.B.; Parwani, A.V.; Perepletchikov, A.M. Synchronous primary carcinoid tumor and primary adenocarcinoma arising within mature cystic teratoma of horseshoe kidney: a unique case report and review of the literature. Diagn. Pathol., 2009, 4(1), 17.
[http://dx.doi.org/10.1186/1746-1596-4-17] [PMID: 19523243]
[45]
Weiss, P.; Taylor, A.C. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc. Natl. Acad. Sci. USA, 1960, 46(9), 1177-1185.
[http://dx.doi.org/10.1073/pnas.46.9.1177] [PMID: 16590731]
[46]
Xinaris, C.; Brizi, V.; Remuzzi, G. Organoid models and applications in biomedical research. Nephron J., 2015, 130(3), 191-199.
[http://dx.doi.org/10.1159/000433566] [PMID: 26112599]
[47]
Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254.
[http://dx.doi.org/10.1038/ncb3312] [PMID: 26911908]
[48]
Corbet, C. Stem cell metabolism in cancer and healthy tissues: pyruvate in the limelight. Front. Pharmacol., 2018, 8, 958.
[http://dx.doi.org/10.3389/fphar.2017.00958] [PMID: 29403375]
[49]
Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347.
[http://dx.doi.org/10.1242/dmm.039347] [PMID: 31383635]
[50]
Clevers, H. Modeling development and disease with organoids. Cell, 2016, 165(7), 1586-1597.
[http://dx.doi.org/10.1016/j.cell.2016.05.082] [PMID: 27315476]
[51]
Dutta, D.; Heo, I.; Clevers, H. Disease modeling in stem cell-derived 3d organoid systems. Trends Mol. Med., 2017, 23(5), 393-410.
[http://dx.doi.org/10.1016/j.molmed.2017.02.007] [PMID: 28341301]
[52]
Bartfeld, S.; Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. (Berl.), 2017, 95(7), 729-738.
[http://dx.doi.org/10.1007/s00109-017-1531-7] [PMID: 28391362]
[53]
Organoids. Available from: https://www.moleculardevices.com/applications/3d-cell-models/organoids (Accessed on: 2023-08-19).
[54]
Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.J.; van Es, J.H.; van den Brink, S.; van Houdt, W.J.; Pronk, A.; van Gorp, J.; Siersema, P.D.; Clevers, H. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 2011, 141(5), 1762-1772.
[http://dx.doi.org/10.1053/j.gastro.2011.07.050] [PMID: 21889923]
[55]
Jung, P.; Sato, T.; Merlos-Suárez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E. Isolation and in vitro expansion of human colonic stem cells. Nat. Med., 2011, 17(10), 1225-1227.
[http://dx.doi.org/10.1038/nm.2470] [PMID: 21892181]
[56]
Barker, N.; Huch, M.; Kujala, P.; van de Wetering, M.; Snippert, H.J.; van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; Danenberg, E.; van den Brink, S.; Korving, J.; Abo, A.; Peters, P.J.; Wright, N.; Poulsom, R.; Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1), 25-36.
[http://dx.doi.org/10.1016/j.stem.2009.11.013] [PMID: 20085740]
[57]
Artegiani, B.; Clevers, H. Use and application of 3D-organoid technology. Hum. Mol. Genet., 2018, 27(R2), R99-R107.
[http://dx.doi.org/10.1093/hmg/ddy187] [PMID: 29796608]
[58]
Fan, H.; Demirci, U.; Chen, P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol., 2019, 12(1), 142.
[http://dx.doi.org/10.1186/s13045-019-0832-4] [PMID: 31884964]
[59]
Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527.
[http://dx.doi.org/10.1016/j.bbcan.2021.188527] [PMID: 33640383]
[60]
Heath, J.K. Transcriptional networks and signaling pathways that govern vertebrate intestinal development. Curr. Top. Dev. Biol., 2010, 90, 159-192.
[http://dx.doi.org/10.1016/S0070-2153(10)90004-5] [PMID: 20691849]
[61]
Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013, 340(6137), 1190-1194.
[http://dx.doi.org/10.1126/science.1234852] [PMID: 23744940]
[62]
Bartfeld, S.; Bayram, T.; van de Wetering, M.; Huch, M.; Begthel, H.; Kujala, P.; Vries, R.; Peters, P.J.; Clevers, H. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1), 126-136.e6.
[http://dx.doi.org/10.1053/j.gastro.2014.09.042] [PMID: 25307862]
[63]
McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; Wells, J.M. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531), 400-404.
[http://dx.doi.org/10.1038/nature13863] [PMID: 25363776]
[64]
McCracken, K.W.; Aihara, E.; Martin, B.; Crawford, C.M.; Broda, T.; Treguier, J.; Zhang, X.; Shannon, J.M.; Montrose, M.H.; Wells, J.M. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature, 2017, 541(7636), 182-187.
[http://dx.doi.org/10.1038/nature21021] [PMID: 28052057]
[65]
Liu, Q.; Zeng, A.; Liu, Z.; Wu, C.; Song, L. Liver organoids: From fabrication to application in liver diseases. Front. Physiol., 2022, 13, 956244.
[http://dx.doi.org/10.3389/fphys.2022.956244] [PMID: 35923228]
[66]
Chi, K.Y.; Kim, J.H. Recent advances in liver organoids and their use in in vitro modeling of non-alcoholic fatty liver disease. Organoid, 2022, 2, e6.
[http://dx.doi.org/10.51335/organoid.2022.2.e6]
[67]
Dorrell, C.; Tarlow, B.; Wang, Y.; Canaday, P.S.; Haft, A.; Schug, J.; Streeter, P.R.; Finegold, M.J.; Shenje, L.T.; Kaestner, K.H.; Grompe, M. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. (Amst.), 2014, 13(2), 275-283.
[http://dx.doi.org/10.1016/j.scr.2014.07.006] [PMID: 25151611]
[68]
Sakabe, K.; Takebe, T.; Asai, A. Organoid medicine in hepatology. Clin. Liver Dis. (Hoboken), 2020, 15(1), 3-8.
[http://dx.doi.org/10.1002/cld.855] [PMID: 32104569]
[69]
Hu, H.; Gehart, H.; Artegiani, B. LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; van den Born, M.; Zou, C.; Quirk, C.; Chiriboga, L.; Rice, C.M.; Ma, S.; Rios, A.; Peters, P.J.; de Jong, Y.P.; Clevers, H. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6), 1591-1606.e19.
[http://dx.doi.org/10.1016/j.cell.2018.11.013] [PMID: 30500538]
[70]
Prior, N.; Inacio, P.; Huch, M. Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237.
[http://dx.doi.org/10.1136/gutjnl-2019-319256] [PMID: 31300517]
[71]
Birgersdotter, A.; Sandberg, R.; Ernberg, I. Gene expression perturbation in vitro—A growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol., 2005, 15(5), 405-412.
[http://dx.doi.org/10.1016/j.semcancer.2005.06.009] [PMID: 16055341]
[72]
Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol., 2014, 12(4), 207-218.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
[73]
van Staveren, W.C.G.; Solís, D.Y.W.; Hébrant, A.; Detours, V.; Dumont, J.E.; Maenhaut, C. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta Rev. Cancer, 2009, 1795(2), 92-103.
[http://dx.doi.org/10.1016/j.bbcan.2008.12.004] [PMID: 19167460]
[74]
Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; Park, J.K.; Fine, H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9(5), 391-403.
[http://dx.doi.org/10.1016/j.ccr.2006.03.030] [PMID: 16697959]
[75]
Stein, W.D.; Litman, T.; Fojo, T.; Bates, S.E. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res., 2004, 64(8), 2805-2816.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3383] [PMID: 15087397]
[76]
Gadaleta, E.; Cutts, R.J.; Kelly, G.P.; Crnogorac-Jurcevic, T.; Kocher, H.M.; Lemoine, N.R.; Chelala, C. A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws. Nucleic Acids Res., 2011, 39(18), 7900-7907.
[http://dx.doi.org/10.1093/nar/gkr533] [PMID: 21724610]
[77]
Kopp, J.L.; Dubois, C.L.; Schaffer, A.E.; Hao, E.; Shih, H.P.; Seymour, P.A.; Ma, J.; Sander, M. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development, 2011, 138(4), 653-665.
[http://dx.doi.org/10.1242/dev.056499] [PMID: 21266405]
[78]
Sugiyama, T.; Benitez, C.M.; Ghodasara, A.; Liu, L.; McLean, G.W.; Lee, J.; Blauwkamp, T.A.; Nusse, R.; Wright, C.V.E.; Gu, G.; Kim, S.K. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12691-12696.
[http://dx.doi.org/10.1073/pnas.1304507110] [PMID: 23852729]
[79]
Huch, M.; Koo, B.K. Modeling mouse and human development using organoid cultures. Development, 2015, 142(18), 3113-3125.
[http://dx.doi.org/10.1242/dev.118570] [PMID: 26395140]
[80]
Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.C.; Engle, D.D.; Corbo, V.; Jager, M.; Ponz-Sarvise, M.; Tiriac, H.; Spector, M.S.; Gracanin, A.; Oni, T.; Yu, K.H.; van Boxtel, R.; Huch, M.; Rivera, K.D.; Wilson, J.P.; Feigin, M.E.; Öhlund, D.; Handly-Santana, A.; Ardito-Abraham, C.M.; Ludwig, M.; Elyada, E.; Alagesan, B.; Biffi, G.; Yordanov, G.N.; Delcuze, B.; Creighton, B.; Wright, K.; Park, Y.; Morsink, F.H.M.; Molenaar, I.Q.; Borel Rinkes, I.H.; Cuppen, E.; Hao, Y.; Jin, Y.; Nijman, I.J.; Iacobuzio-Donahue, C.; Leach, S.D.; Pappin, D.J.; Hammell, M.; Klimstra, D.S.; Basturk, O.; Hruban, R.H.; Offerhaus, G.J.; Vries, R.G.J.; Clevers, H.; Tuveson, D.A. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015, 160(1-2), 324-338.
[http://dx.doi.org/10.1016/j.cell.2014.12.021] [PMID: 25557080]
[81]
Dekkers, J.F.; Wiegerinck, C.L.; de Jonge, H.R.; Bronsveld, I.; Janssens, H.M.; de Winter-de Groot, K.M.; Brandsma, A.M.; de Jong, N.W.M.; Bijvelds, M.J.C.; Scholte, B.J.; Nieuwenhuis, E.E.S.; van den Brink, S.; Clevers, H.; van der Ent, C.K.; Middendorp, S.; Beekman, J.M. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med., 2013, 19(7), 939-945.
[http://dx.doi.org/10.1038/nm.3201] [PMID: 23727931]
[82]
Dekkers, J.F.; Berkers, G.; Kruisselbrink, E.; Vonk, A.; de Jonge, H.R.; Janssens, H.M.; Bronsveld, I.; van de Graaf, E.A.; Nieuwenhuis, E.E.S.; Houwen, R.H.J.; Vleggaar, F.P.; Escher, J.C.; de Rijke, Y.B.; Majoor, C.J.; Heijerman, H.G.M.; de Winter-de Groot, K.M.; Clevers, H.; van der Ent, C.K.; Beekman, J.M. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med., 2016, 8(344), 344ra84.
[http://dx.doi.org/10.1126/scitranslmed.aad8278] [PMID: 27334259]
[83]
Chen, R.; Giliani, S.; Lanzi, G.; Mias, G.I.; Lonardi, S.; Dobbs, K.; Manis, J. Im, H.; Gallagher, J.E.; Phanstiel, D.H.; Euskirchen, G.; Lacroute, P.; Bettinger, K.; Moratto, D.; Weinacht, K.; Montin, D.; Gallo, E.; Mangili, G.; Porta, F.; Notarangelo, L.D.; Pedretti, S.; Al-Herz, W.; Alfahdli, W.; Comeau, A.M.; Traister, R.S.; Pai, S.Y.; Carella, G.; Facchetti, F.; Nadeau, K.C.; Snyder, M.; Notarangelo, L.D. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A ( TTC7A ) mutations for combined immunodeficiency with intestinal atresias. J. Allergy Clin. Immunol., 2013, 132(3), 656-664.e17.
[http://dx.doi.org/10.1016/j.jaci.2013.06.013] [PMID: 23830146]
[84]
Ho, B.; Pek, N.; Soh, B.S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci., 2018, 19(4), 936.
[http://dx.doi.org/10.3390/ijms19040936] [PMID: 29561796]
[85]
Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12(3), 518-531.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.020] [PMID: 30799274]
[86]
Cruz, N.M.; Song, X.; Czerniecki, S.M.; Gulieva, R.E.; Churchill, A.J.; Kim, Y.K.; Winston, K.; Tran, L.M.; Diaz, M.A.; Fu, H.; Finn, L.S.; Pei, Y.; Himmelfarb, J.; Freedman, B.S. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater., 2017, 16(11), 1112-1119.
[http://dx.doi.org/10.1038/nmat4994] [PMID: 28967916]
[87]
Golenhofen, K.; Hannappel, J. Normal spontaneous activity of the pyeloureteral system in the guinea-pig. Pflugers Arch., 1973, 341(3), 257-270.
[http://dx.doi.org/10.1007/BF00592794] [PMID: 4737416]
[88]
Guan, Y.; Xu, D.; Garfin, P.M.; Ehmer, U.; Hurwitz, M.; Enns, G.; Michie, S.; Wu, M.; Zheng, M.; Nishimura, T.; Sage, J.; Peltz, G. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight, 2017, 2(17), e94954.
[http://dx.doi.org/10.1172/jci.insight.94954] [PMID: 28878125]
[89]
Thomas, C.A.; Tejwani, L.; Trujillo, C.A.; Negraes, P.D.; Herai, R.H.; Mesci, P.; Macia, A.; Crow, Y.J.; Muotri, A.R. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell, 2017, 21(3), 319-331.e8.
[http://dx.doi.org/10.1016/j.stem.2017.07.009] [PMID: 28803918]
[90]
Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regen. (Lond.), 2020, 9(1), 21.
[http://dx.doi.org/10.1186/s13619-020-00059-z] [PMID: 33135109]
[91]
Broutier, L.; Mastrogiovanni, G.; Verstegen, M. M. Cultivos de Organoid Derivados Del Cancer de Higado Primario Humano Para El Modelado de Enfermedades y La Deteccion de Farmacos Medicina natural, 2017, 23(12), 1424-1435.
[92]
Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res., 2007, 67(19), 8980-8984.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0895] [PMID: 17908997]
[93]
Godos, J.; Giampieri, F.; Micek, A.; Battino, M.; Forbes-Hernández, T.Y.; Quiles, J.L.; Paladino, N.; Falzone, L.; Grosso, G. Effect of Brazil Nuts on Selenium Status, Blood Lipids, and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants, 2022, 11(2), 403.
[http://dx.doi.org/10.3390/antiox11020403] [PMID: 35204285]
[94]
Sondorp, L.H.J.; Ogundipe, V.M.L.; Groen, A.H.; Kelder, W.; Kemper, A.; Links, T.P.; Coppes, R.P.; Kruijff, S. Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers (Basel), 2020, 12(11), 3212.
[http://dx.doi.org/10.3390/cancers12113212] [PMID: 33142750]
[95]
Driehuis, E.; Kretzschmar, K.; Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 2020, 15(10), 3380-3409.
[http://dx.doi.org/10.1038/s41596-020-0379-4] [PMID: 32929210]
[96]
Jardé, T.; Lloyd-Lewis, B.; Thomas, M.; Kendrick, H.; Melchor, L.; Bougaret, L.; Watson, P.D.; Ewan, K.; Smalley, M.J.; Dale, T.C. Wnt and neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun., 2016, 7(1), 13207.
[http://dx.doi.org/10.1038/ncomms13207] [PMID: 27782124]
[97]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10.
[http://dx.doi.org/10.1016/j.cell.2017.11.010] [PMID: 29224780]
[98]
Johnson, K.M.; Hacker, M.R.; Thornton, K.; Young, B.C.; Modest, A.M. Association between in vitro fertilization and ischemic placental disease by gestational age. Fertil. Steril., 2020, 114(3), 579-586.
[http://dx.doi.org/10.1016/j.fertnstert.2020.04.029] [PMID: 32709377]
[99]
Mazzucchelli, S.; Piccotti, F.; Allevi, R.; Truffi, M.; Sorrentino, L.; Russo, L.; Agozzino, M.; Signati, L.; Bonizzi, A.; Villani, L.; Corsi, F. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol. Proced. Online, 2019, 21(1), 12.
[http://dx.doi.org/10.1186/s12575-019-0099-8] [PMID: 31223292]
[100]
Emerman, J.T.; Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In vitro, 1977, 13(5), 316-328.
[http://dx.doi.org/10.1007/BF02616178] [PMID: 559643]
[101]
Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320.
[http://dx.doi.org/10.1016/S0092-8674(00)00122-7] [PMID: 11057903]
[102]
Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Göktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; Rupec, R.A.; Gerhard, M.; Schmid, R.; Barker, N.; Clevers, H.; Lang, R.; Neumann, J.; Kirchner, T.; Taketo, M.M.; van den Brink, G.R.; Sansom, O.J.; Arkan, M.C.; Greten, F.R. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 2013, 152(1-2), 25-38.
[http://dx.doi.org/10.1016/j.cell.2012.12.012] [PMID: 23273993]
[103]
Nanki, K.; Toshimitsu, K.; Takano, A.; Fujii, M.; Shimokawa, M.; Ohta, Y.; Matano, M.; Seino, T.; Nishikori, S.; Ishikawa, K.; Kawasaki, K.; Togasaki, K.; Takahashi, S.; Sukawa, Y.; Ishida, H.; Sugimoto, S.; Kawakubo, H.; Kim, J.; Kitagawa, Y.; Sekine, S.; Koo, B.K.; Kanai, T.; Sato, T. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell, 2018, 174(4), 856-869.e17.
[http://dx.doi.org/10.1016/j.cell.2018.07.027] [PMID: 30096312]
[104]
Seidlitz, T.; Merker, S.R.; Rothe, A.; Zakrzewski, F.; von Neubeck, C.; Grützmann, K.; Sommer, U.; Schweitzer, C.; Schölch, S.; Uhlemann, H.; Gaebler, A.M.; Werner, K.; Krause, M.; Baretton, G.B.; Welsch, T.; Koo, B.K.; Aust, D.E.; Klink, B.; Weitz, J.; Stange, D.E. Human gastric cancer modelling using organoids. Gut, 2019, 68(2), 207-217.
[http://dx.doi.org/10.1136/gutjnl-2017-314549] [PMID: 29703791]
[105]
Li, X.; Nadauld, L.; Ootani, A.; Corney, D.C.; Pai, R.K.; Gevaert, O.; Cantrell, M.A.; Rack, P.G.; Neal, J.T.; Chan, C.W.M.; Yeung, T.; Gong, X.; Yuan, J.; Wilhelmy, J.; Robine, S.; Attardi, L.D.; Plevritis, S.K.; Hung, K.E.; Chen, C.Z.; Ji, H.P.; Kuo, C.J. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med., 2014, 20(7), 769-777.
[http://dx.doi.org/10.1038/nm.3585] [PMID: 24859528]
[106]
Nadauld, L.D.; Garcia, S.; Natsoulis, G.; Bell, J.M.; Miotke, L.; Hopmans, E.S.; Xu, H.; Pai, R.K.; Palm, C.; Regan, J.F.; Chen, H.; Flaherty, P.; Ootani, A.; Zhang, N.R.; Ford, J.M.; Kuo, C.J.; Ji, H.P. Metastatic tumor evolution and organoid modeling implicate TGFBR2as a cancer driver in diffuse gastric cancer. Genome Biol., 2014, 15(8), 428.
[http://dx.doi.org/10.1186/s13059-014-0428-9] [PMID: 25315765]
[107]
Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; Wongvipat, J.; Kossai, M.; Ramazanoglu, S.; Barboza, L.P.; Di, W.; Cao, Z.; Zhang, Q.F.; Sirota, I.; Ran, L.; MacDonald, T.Y.; Beltran, H.; Mosquera, J.M.; Touijer, K.A.; Scardino, P.T.; Laudone, V.P.; Curtis, K.R.; Rathkopf, D.E.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; Solomon, S.B.; Eastham, J.A.; Chi, P.; Carver, B.; Rubin, M.A.; Scher, H.I.; Clevers, H.; Sawyers, C.L.; Chen, Y. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1), 176-187.
[http://dx.doi.org/10.1016/j.cell.2014.08.016] [PMID: 25201530]
[108]
Kopper, O.; de Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; van Wijk, L.M.; Revilla, S.A.; Theeuwsen, R.; van de Ven, M.; van Roosmalen, M.J.; Ponsioen, B.; Ho, V.W.H.; Neel, B.G.; Bosse, T.; Gaarenstroom, K.N.; Vrieling, H.; Vreeswijk, M.P.G.; van Diest, P.J.; Witteveen, P.O.; Jonges, T.; Bos, J.L.; van Oudenaarden, A.; Zweemer, R.P.; Snippert, H.J.G.; Kloosterman, W.P.; Clevers, H. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med., 2019, 25(5), 838-849.
[http://dx.doi.org/10.1038/s41591-019-0422-6] [PMID: 31011202]
[109]
da Silva, B.; Mathew, R.K.; Polson, E.S.; Williams, J.; Wurdak, H. Spontaneous glioblastoma spheroid infiltration of early-stage cerebral organoids models brain tumor invasion. SLAS Discov., 2018, 23(8), 862-868.
[http://dx.doi.org/10.1177/2472555218764623] [PMID: 29543559]
[110]
Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; Chua, C.W.; Barlow, L.J.; Kandoth, C.; Williams, A.B.; Bergren, S.K.; Pietzak, E.J.; Anderson, C.B.; Benson, M.C.; Coleman, J.A.; Taylor, B.S.; Abate-Shen, C.; McKiernan, J.M.; Al-Ahmadie, H.; Solit, D.B.; Shen, M.M. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2), 515-528.e17.
[http://dx.doi.org/10.1016/j.cell.2018.03.017] [PMID: 29625057]
[111]
Bolck, H.A.; Corrò, C.; Kahraman, A.; von Teichman, A.; Toussaint, N.C.; Kuipers, J.; Chiovaro, F.; Koelzer, V.H.; Pauli, C.; Moritz, W.; Bode, P.K.; Rechsteiner, M.; Beerenwinkel, N.; Schraml, P.; Moch, H. Tracing clonal dynamics reveals that two- and three-dimensional patient-derived cell models capture tumor heterogeneity of clear cell renal cell carcinoma. Eur. Urol. Focus, 2021, 7(1), 152-162.
[http://dx.doi.org/10.1016/j.euf.2019.06.009] [PMID: 31266731]
[112]
Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; de Ligt, J.; van Hoeck, A.; Proost, N.; Viveen, M.C.; Lyubimova, A.; Teeven, L.; Derakhshan, S.; Korving, J.; Begthel, H.; Dekkers, J.F.; Kumawat, K.; Ramos, E.; van Oosterhout, M.F.M.; Offerhaus, G.J.; Wiener, D.J.; Olimpio, E.P.; Dijkstra, K.K.; Smit, E.F.; van der Linden, M.; Jaksani, S.; van de Ven, M.; Jonkers, J.; Rios, A.C.; Voest, E.E.; van Moorsel, C.H.M.; van der Ent, C.K.; Cuppen, E.; van Oudenaarden, A.; Coenjaerts, F.E.; Meyaard, L.; Bont, L.J.; Peters, P.J.; Tans, S.J.; van Zon, J.S.; Boj, S.F.; Vries, R.G.; Beekman, J.M.; Clevers, H. Long‐term expanding human airway organoids for disease modeling. EMBO J., 2019, 38(4), e100300.
[http://dx.doi.org/10.15252/embj.2018100300] [PMID: 30643021]
[113]
Li, X.; Francies, H.E.; Secrier, M.; Perner, J.; Miremadi, A.; Galeano-Dalmau, N.; Barendt, W.J.; Letchford, L.; Leyden, G.M.; Goffin, E.K.; Barthorpe, A.; Lightfoot, H.; Chen, E.; Gilbert, J.; Noorani, A.; Devonshire, G.; Bower, L.; Grantham, A.; MacRae, S.; Grehan, N.; Wedge, D.C.; Fitzgerald, R.C.; Garnett, M.J. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun., 2018, 9(1), 2983.
[http://dx.doi.org/10.1038/s41467-018-05190-9] [PMID: 30061675]
[114]
Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; Uraoka, T.; Watanabe, T.; Kanai, T.; Sato, T. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18(6), 827-838.
[http://dx.doi.org/10.1016/j.stem.2016.04.003] [PMID: 27212702]
[115]
Roerink, S. F.; Sasaki, N.; Lee-Six, H.; Young, M. D.; Alexandrov, L. B.; Behjati, S.; Mitchell, T. J.; Grossmann, S.; Lightfoot, H.; Egan, D. A.; Pronk, A.; Smakman, N.; van Gorp, J.; Anderson, E.; Gamble, S. J.; Alder, C.; van de Wetering, M.; Campbell, P. J.; Stratton, M. R.; Clevers, H. Intra-Tumour Diversification in Colorectal Cancer at the Single-Cell Level Nature, 2018, 556(7702), 457-462.
[http://dx.doi.org/10.1038/s41586-018-0024-3]
[116]
Tian, L.; Gao, J.; Garcia, I.M.; Chen, H.J.; Castaldi, A.; Chen, Y.W. Human pluripotent stem cell‐derived lung organoids: Potential applications in development and disease modeling. Wiley Interdiscip. Rev. Dev. Biol., 2021, 10(6), e399.
[http://dx.doi.org/10.1002/wdev.399] [PMID: 33145915]
[117]
Reyfman, P.A.; Walter, J.M.; Joshi, N.; Anekalla, K.R.; McQuattie-Pimentel, A.C.; Chiu, S.; Fernandez, R.; Akbarpour, M.; Chen, C-I.; Ren, Z.; Verma, R.; Abdala-Valencia, H.; Nam, K.; Chi, M.; Han, S.; Gonzalez-Gonzalez, F.J.; Soberanes, S.; Watanabe, S.; Williams, K.J.N.; Flozak, A.S.; Nicholson, T.T.; Morgan, V.K.; Hrusch, C.L.; Guzy, R.D.; Bonham, C.A.; Sperling, A.I.; Bag, R.; Hamanaka, R.B.; Mutlu, G.M.; Yeldandi, A.V.; Marshall, S.A.; Shilatifard, A.; Amaral, L.A.N.; Perlman, H.; Sznajder, J.I.; Winter, D.R.; Hinchcliff, M.; Argento, A.C.; Gillespie, C.T.; D’Amico Dematte, J.; Jain, M.; Singer, B.D.; Ridge, K.M.; Gottardi, C.J.; Lam, A.P.; Bharat, A.; Bhorade, S.M.; Budinger, G.R.S.; Misharin, A.V. Single-cell transcriptomic analysis of human lung reveals complex multicellular changes during pulmonary fibrosis. bioRxiv, 2018.
[http://dx.doi.org/10.1101/296608]
[118]
Plasschaert, L.W.; Žilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 2018, 560(7718), 377-381.
[http://dx.doi.org/10.1038/s41586-018-0394-6] [PMID: 30069046]
[119]
Schiller, H.B.; Montoro, D.T.; Simon, L.M.; Rawlins, E.L.; Meyer, K.B.; Strunz, M.; Vieira Braga, F.A.; Timens, W.; Koppelman, G.H.; Budinger, G.R.S.; Burgess, J.K.; Waghray, A.; van den Berge, M.; Theis, F.J.; Regev, A.; Kaminski, N.; Rajagopal, J.; Teichmann, S.A.; Misharin, A.V.; Nawijn, M.C. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 31-41.
[http://dx.doi.org/10.1165/rcmb.2018-0416TR] [PMID: 30995076]
[120]
van der Vaart, J.; Clevers, H. Airway organoids as models of human disease. J. Intern. Med., 2021, 289(5), 604-613.
[http://dx.doi.org/10.1111/joim.13075] [PMID: 32350962]
[121]
Strikoudis, A.; Cieślak, A.; Loffredo, L.; Chen, Y.W.; Patel, N.; Saqi, A.; Lederer, D.J.; Snoeck, H.W. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep., 2019, 27(12), 3709-3723.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.05.077] [PMID: 31216486]
[122]
Demchenko, A.; Lavrov, A.; Smirnikhina, S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res., 2022, 390(3), 317-333.
[http://dx.doi.org/10.1007/s00441-022-03686-x] [PMID: 36178558]
[123]
Shitamukai, A.; Konno, D.; Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci., 2011, 31(10), 3683-3695.
[http://dx.doi.org/10.1523/JNEUROSCI.4773-10.2011] [PMID: 21389223]
[124]
Wang, Z.; Wang, S.N.; Xu, T.Y.; Miao, Z.W.; Su, D.F.; Miao, C.Y. Organoid technology for brain and therapeutics research. CNS Neurosci. Ther., 2017, 23(10), 771-778.
[http://dx.doi.org/10.1111/cns.12754] [PMID: 28884977]
[125]
van de Leemput, J.; Boles, N.C.; Kiehl, T.R.; Corneo, B.; Lederman, P.; Menon, V.; Lee, C.; Martinez, R.A.; Levi, B.P.; Thompson, C.L.; Yao, S.; Kaykas, A.; Temple, S.; Fasano, C.A. CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron, 2014, 83(1), 51-68.
[http://dx.doi.org/10.1016/j.neuron.2014.05.013] [PMID: 24991954]
[126]
Layer, P.G.; Weikert, T.; Willbold, E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell Tissue Res., 1992, 268(3), 409-418.
[http://dx.doi.org/10.1007/BF00319147] [PMID: 1628298]
[127]
Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun., 2015, 6(1), 6286.
[http://dx.doi.org/10.1038/ncomms7286] [PMID: 25695148]
[128]
Chichagova, V.; Dorgau, B.; Felemban, M.; Georgiou, M.; Armstrong, L.; Lako, M. Differentiation of retinal organoids from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol., 2019, 50(1), e95.
[http://dx.doi.org/10.1002/cpsc.95] [PMID: 31479596]
[129]
Fligor, C.M.; Langer, K.B.; Sridhar, A.; Ren, Y.; Shields, P.K.; Edler, M.C.; Ohlemacher, S.K.; Sluch, V.M.; Zack, D.J.; Zhang, C.; Suter, D.M.; Meyer, J.S. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep., 2018, 8(1), 14520.
[http://dx.doi.org/10.1038/s41598-018-32871-8] [PMID: 30266927]
[130]
Phillips, M.J.; Capowski, E.E.; Petersen, A.; Jansen, A.D.; Barlow, K.; Edwards, K.L.; Gamm, D.M. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci. Rep., 2018, 8(1), 2370.
[http://dx.doi.org/10.1038/s41598-018-20813-3] [PMID: 29402929]
[131]
Reichman, S.; Terray, A.; Slembrouck, A.; Nanteau, C.; Orieux, G.; Habeler, W.; Nandrot, E.F.; Sahel, J.A.; Monville, C.; Goureau, O. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8518-8523.
[http://dx.doi.org/10.1073/pnas.1324212111] [PMID: 24912154]
[132]
Vergara, M.N.; Flores-Bellver, M.; Aparicio-Domingo, S.; McNally, M.; Wahlin, K.J.; Saxena, M.T.; Mumm, J.S.; Canto-Soler, M.V. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development, 2017, 144(20), 3698-3705.
[http://dx.doi.org/10.1242/dev.146290] [PMID: 28870990]
[133]
Völkner, M.; Zschätzsch, M.; Rostovskaya, M.; Overall, R.W.; Busskamp, V.; Anastassiadis, K.; Karl, M.O. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports, 2016, 6(4), 525-538.
[http://dx.doi.org/10.1016/j.stemcr.2016.03.001] [PMID: 27050948]
[134]
Lamba, D.A.; Reh, T.A. Microarray characterization of human embryonic stem cell--derived retinal cultures. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4897-4906.
[http://dx.doi.org/10.1167/iovs.10-6504] [PMID: 21345990]
[135]
Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; Gamm, D.M.; Yau, K.W.; Canto-Soler, M.V. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun., 2014, 5(1), 4047.
[http://dx.doi.org/10.1038/ncomms5047] [PMID: 24915161]
[136]
Wahlin, K.J.; Maruotti, J.A.; Sripathi, S.R.; Ball, J.; Angueyra, J.M.; Kim, C.; Grebe, R.; Li, W.; Jones, B.W.; Zack, D.J. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci. Rep., 2017, 7(1), 766.
[http://dx.doi.org/10.1038/s41598-017-00774-9] [PMID: 28396597]
[137]
Gabriel, E.; Albanna, W.; Pasquini, G.; Ramani, A.; Josipovic, N.; Mariappan, A.; Schinzel, F.; Karch, C.M.; Bao, G.; Gottardo, M.; Suren, A.A.; Hescheler, J.; Nagel-Wolfrum, K.; Persico, V.; Rizzoli, S.O.; Altmüller, J.; Riparbelli, M.G.; Callaini, G.; Goureau, O.; Papantonis, A.; Busskamp, V.; Schneider, T.; Gopalakrishnan, J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10), 1740-1757.e8.
[http://dx.doi.org/10.1016/j.stem.2021.07.010] [PMID: 34407456]
[138]
Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther., 2022, 7(1), 168.
[http://dx.doi.org/10.1038/s41392-022-01024-9] [PMID: 35610212]
[139]
Miyoshi, T.; Hiratsuka, K.; Saiz, E.G.; Morizane, R. Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Dev. Dyn., 2020, 249(1), 34-45.
[http://dx.doi.org/10.1002/dvdy.22] [PMID: 30843293]
[140]
Takasato, M.; Er, P.X.; Chiu, H.S.; Little, M.H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc., 2016, 11(9), 1681-1692.
[http://dx.doi.org/10.1038/nprot.2016.098] [PMID: 27560173]
[141]
Xia, Y.; Nivet, E.; Sancho-Martinez, I.; Gallegos, T.; Suzuki, K.; Okamura, D.; Wu, M.Z.; Dubova, I.; Esteban, C.R.; Montserrat, N.; Campistol, J.M.; Belmonte, J.C.I. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol., 2013, 15(12), 1507-1515.
[http://dx.doi.org/10.1038/ncb2872] [PMID: 24240476]
[142]
Shan, Z.; Xie, X.; Wu, X.; Zhuang, S.; Zhang, C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J. Orthop. Translat., 2022, 36, 184-193.
[http://dx.doi.org/10.1016/j.jot.2022.09.013] [PMID: 36263386]
[143]
Liu, H.; Zhang, Q.; Wang, S.; Weng, W.; Jing, Y.; Su, J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact. Mater., 2022, 14, 169-181.
[http://dx.doi.org/10.1016/j.bioactmat.2021.12.006] [PMID: 35310361]
[144]
Gan, D.; Jiang, Y.; Hu, Y.; Wang, X.; Wang, Q.; Wang, K.; Xie, C.; Han, L.; Lu, X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J. Orthop. Translat., 2022, 33, 120-131.
[http://dx.doi.org/10.1016/j.jot.2022.02.006] [PMID: 35330942]
[145]
Xue, X.; Hu, Y.; Wang, S.; Chen, X.; Jiang, Y.; Su, J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact. Mater., 2022, 12, 327-339.
[http://dx.doi.org/10.1016/j.bioactmat.2021.10.029] [PMID: 35128180]
[146]
Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432.
[http://dx.doi.org/10.1002/adfm.202009432]
[147]
Liu, H.; Sun, J.; Wang, M.; Wang, S.; Su, J.; Xu, C. Intestinal organoids and organoids extracellular vesicles for inflammatory bowel disease treatment. Chem. Eng. J., 2023, 465(142842), 142842.
[http://dx.doi.org/10.1016/j.cej.2023.142842]
[148]
Kale, S.; Biermann, S.; Edwards, C.; Tarnowski, C.; Morris, M.; Long, M.W. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol., 2000, 18(9), 954-958.
[http://dx.doi.org/10.1038/79439] [PMID: 10973215]
[149]
Mallette, J.M.; Anthony, A. Growth in culture of trypsin dissociated thyroid cells from adult rats. Exp. Cell Res., 1966, 41(3), 642-651.
[http://dx.doi.org/10.1016/S0014-4827(66)80115-5] [PMID: 4952051]
[150]
Ogundipe, V.M.L.; Plukker, J.T.M.; Links, T.P.; Coppes, R.P. Thyroid gland organoids: Current models and insights for application in tissue engineering. Tissue Eng. Part A, 2022, 28(11-12), 500-510.
[http://dx.doi.org/10.1089/ten.tea.2021.0221] [PMID: 35262402]
[151]
ILiver organoid Available from: https://ki-images.mit.edu/2018/fortuna-1 (Accessed on: 2023-08-19).
[152]
Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; Huch, M.; Zeng, Y.A.; Wang, Q.; Yu, H. Organoids. Nature Reviews Methods Primers, 2022, 2(1), 94.
[http://dx.doi.org/10.1038/s43586-022-00174-y] [PMID: 37325195]
[153]
Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; Polonio, C.M.; Cunha, I.; Freitas, C.L.; Brandão, W.N.; Rossato, C.; Andrade, D.G.; Faria, D.P.; Garcez, A.T.; Buchpigel, C.A.; Braconi, C.T.; Mendes, E.; Sall, A.A.; Zanotto, P.M.A.; Peron, J.P.S.; Muotri, A.R.; Beltrão-Braga, P.C.B. The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534(7606), 267-271.
[http://dx.doi.org/10.1038/nature18296] [PMID: 27279226]
[154]
Li, H.; Saucedo-Cuevas, L.; Shresta, S.; Gleeson, J.G. The neurobiology of zika Virus. Neuron, 2016, 92(5), 949-958.
[http://dx.doi.org/10.1016/j.neuron.2016.11.031] [PMID: 27930910]
[155]
Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; Timofeev, J.; Rodriguez, F.J.; Levanov, L.; Razak, J.; Iyengar, P.; Hennenfent, A.; Kennedy, R.; Lanciotti, R.; du Plessis, A.; Vapalahti, O. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med., 2016, 374(22), 2142-2151.
[http://dx.doi.org/10.1056/NEJMoa1601824] [PMID: 27028667]
[156]
Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 2016, 19(2), 258-265.
[http://dx.doi.org/10.1016/j.stem.2016.04.014] [PMID: 27162029]
[157]
Finkbeiner, S.R.; Zeng, X.L.; Utama, B.; Atmar, R.L.; Shroyer, N.F.; Estes, M.K. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio, 2012, 3(4), e00159-e12.
[http://dx.doi.org/10.1128/mBio.00159-12] [PMID: 22761392]
[158]
Huang, J.Y.; Sweeney, E.G.; Sigal, M.; Zhang, H.C.; Remington, S.J.; Cantrell, M.A.; Kuo, C.J.; Guillemin, K.; Amieva, M.R. Chemodetection and destruction of host urea allows helicobacter pylori to locate the epithelium. Cell Host Microbe, 2015, 18(2), 147-156.
[http://dx.doi.org/10.1016/j.chom.2015.07.002] [PMID: 26269952]
[159]
Heo, I.; Dutta, D.; Schaefer, D.A.; Iakobachvili, N.; Artegiani, B.; Sachs, N.; Boonekamp, K.E.; Bowden, G.; Hendrickx, A.P.A.; Willems, R.J.L.; Peters, P.J.; Riggs, M.W.; O’Connor, R.; Clevers, H. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol., 2018, 3(7), 814-823.
[http://dx.doi.org/10.1038/s41564-018-0177-8] [PMID: 29946163]
[160]
Dedhia, P.H.; Bertaux-Skeirik, N.; Zavros, Y.; Spence, J.R. Organoid models of human gastrointestinal development and disease. Gastroenterology, 2016, 150(5), 1098-1112.
[http://dx.doi.org/10.1053/j.gastro.2015.12.042] [PMID: 26774180]
[161]
Crespo, M.; Vilar, E.; Tsai, S.Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N.H.; Chen, H.J.; Witherspoon, M.; Gordillo, M.; Xiang, J.Z.; Maxfield, F.R.; Lipkin, S.; Evans, T.; Chen, S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med., 2017, 23(7), 878-884.
[http://dx.doi.org/10.1038/nm.4355] [PMID: 28628110]
[162]
Skardal, A.; Murphy, S.V.; Devarasetty, M.; Mead, I.; Kang, H.W.; Seol, Y.J.; Shrike Zhang, Y.; Shin, S.R.; Zhao, L.; Aleman, J.; Hall, A.R.; Shupe, T.D.; Kleensang, A.; Dokmeci, M.R.; Jin Lee, S. Jackson, J.D.; Yoo, J.J.; Hartung, T.; Khademhosseini, A.; Soker, S.; Bishop, C.E.; Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep., 2017, 7(1), 8837.
[http://dx.doi.org/10.1038/s41598-017-08879-x] [PMID: 28821762]
[163]
Bose, S.; Clevers, H.; Shen, X. Promises and challenges of organoid-guided precision medicine. Med, 2021, 2(9), 1011-1026.
[http://dx.doi.org/10.1016/j.medj.2021.08.005] [PMID: 34617071]
[164]
Letai, A. Functional precision cancer medicine—moving beyond pure genomics. Nat. Med., 2017, 23(9), 1028-1035.
[http://dx.doi.org/10.1038/nm.4389] [PMID: 28886003]
[165]
Le Tourneau, C.; Delord, J.P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.; Mauborgne, C.; Armanet, S.; Servant, N.; Bièche, I.; Bernard, V.; Gentien, D.; Jezequel, P.; Attignon, V.; Boyault, S.; Vincent-Salomon, A.; Servois, V.; Sablin, M.P.; Kamal, M.; Paoletti, X. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol., 2015, 16(13), 1324-1334.
[http://dx.doi.org/10.1016/S1470-2045(15)00188-6] [PMID: 26342236]
[166]
Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; Hong, D.; De Groot, J.; Ravi, V.; Li, Y.; Luthra, R.; Patel, K.; Broaddus, R.; Mendelsohn, J.; Mills, G.B. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol., 2015, 33(25), 2753-2762.
[http://dx.doi.org/10.1200/JCO.2014.60.4165] [PMID: 26014291]
[167]
Sholl, L.M.; Do, K.; Shivdasani, P.; Cerami, E.; Dubuc, A.M.; Kuo, F.C.; Garcia, E.P.; Jia, Y.; Davineni, P.; Abo, R.P.; Pugh, T.J.; van Hummelen, P.; Thorner, A.R.; Ducar, M.; Berger, A.H.; Nishino, M.; Janeway, K.A.; Church, A.; Harris, M.; Ritterhouse, L.L.; Campbell, J.D.; Rojas-Rudilla, V.; Ligon, A.H.; Ramkissoon, S.; Cleary, J.M.; Matulonis, U.; Oxnard, G.R.; Chao, R.; Tassell, V.; Christensen, J.; Hahn, W.C.; Kantoff, P.W.; Kwiatkowski, D.J.; Johnson, B.E.; Meyerson, M.; Garraway, L.A.; Shapiro, G.I.; Rollins, B.J.; Lindeman, N.I.; MacConaill, L.E. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1(19), e87062.
[http://dx.doi.org/10.1172/jci.insight.87062] [PMID: 27882345]
[168]
Schwaederle, M.; Daniels, G.A.; Piccioni, D.E.; Fanta, P.T.; Schwab, R.B.; Shimabukuro, K.A.; Parker, B.A.; Kurzrock, R. On the road to precision cancer medicine: Analysis of genomic biomarker actionability in 439 patients. Mol. Cancer Ther., 2015, 14(6), 1488-1494.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1061] [PMID: 25852059]
[169]
Guillen, K.P.; Fujita, M.; Butterfield, A.J.; Scherer, S.D.; Bailey, M.H.; Chu, Z.; DeRose, Y.S.; Zhao, L.; Cortes-Sanchez, E.; Yang, C.H.; Toner, J.; Wang, G.; Qiao, Y.; Huang, X.; Greenland, J.A.; Vahrenkamp, J.M.; Lum, D.H.; Factor, R.E.; Nelson, E.W.; Matsen, C.B.; Poretta, J.M.; Rosenthal, R.; Beck, A.C.; Buys, S.S.; Vaklavas, C.; Ward, J.H.; Jensen, R.L.; Jones, K.B.; Li, Z.; Oesterreich, S.; Dobrolecki, L.E.; Pathi, S.S.; Woo, X.Y.; Berrett, K.C.; Wadsworth, M.E.; Chuang, J.H.; Lewis, M.T.; Marth, G.T.; Gertz, J.; Varley, K.E.; Welm, B.E.; Welm, A.L. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Can., 2022, 3(2), 232-250.
[http://dx.doi.org/10.1038/s43018-022-00337-6] [PMID: 35221336]
[170]
Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; Ohta, Y.; Nanki, K.; Igarashi, R.; Ishimaru, K.; Ishida, H.; Sukawa, Y.; Sugimoto, S.; Saito, Y.; Maejima, K.; Sasagawa, S.; Lee, H.; Kim, H.G.; Ha, K.; Hamamoto, J.; Fukunaga, K.; Maekawa, A.; Tanabe, M.; Ishihara, S.; Hamamoto, Y.; Yasuda, H.; Sekine, S.; Kudo, A.; Kitagawa, Y.; Kanai, T.; Nakagawa, H.; Sato, T. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell, 2020, 183(5), 1420-1435.e21.
[http://dx.doi.org/10.1016/j.cell.2020.10.023] [PMID: 33159857]
[171]
Kondo, T. Current status and perspectives of patient-derived rare cancer models. Hum. Cell, 2020, 33(4), 919-929.
[http://dx.doi.org/10.1007/s13577-020-00391-1] [PMID: 32537685]
[172]
van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.W.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.J.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[173]
Metavarayuth, K.; Sitasuwan, P.; Zhao, X.; Lin, Y.; Wang, Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater. Sci. Eng., 2016, 2(2), 142-151.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00377] [PMID: 33418629]
[174]
Karzbrun, E.; Khankhel, A.H.; Megale, H.C.; Glasauer, S.M.K.; Wyle, Y.; Britton, G.; Warmflash, A.; Kosik, K.S.; Siggia, E.D.; Shraiman, B.I.; Streichan, S.J. Human neural tube morphogenesis in vitro by geometric constraints. Nature, 2021, 599(7884), 268-272.
[http://dx.doi.org/10.1038/s41586-021-04026-9] [PMID: 34707290]
[175]
Loomans, C.J.M.; Williams Giuliani, N.; Balak, J.; Ringnalda, F.; van Gurp, L.; Huch, M.; Boj, S.F.; Sato, T.; Kester, L.; de Sousa Lopes, S.M.C.; Roost, M.S.; Bonner-Weir, S.; Engelse, M.A.; Rabelink, T.J.; Heimberg, H.; Vries, R.G.J.; van Oudenaarden, A.; Carlotti, F.; Clevers, H.; de Koning, E.J.P. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Reports, 2018, 10(3), 712-724.
[http://dx.doi.org/10.1016/j.stemcr.2018.02.005] [PMID: 29539434]
[176]
Elizondo, D.M.; Brandy, N.Z.D.; da Silva, R.L.L.; de Moura, T.R.; Ali, J.; Yang, D.; Lipscomb, M.W. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci. Rep., 2020, 10(1), 4362.
[http://dx.doi.org/10.1038/s41598-020-60947-x] [PMID: 32152396]
[177]
Lukonin, I.; Serra, D.; Challet Meylan, L.; Volkmann, K.; Baaten, J.; Zhao, R.; Meeusen, S.; Colman, K.; Maurer, F.; Stadler, M.B.; Jenkins, J.; Liberali, P. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020, 586(7828), 275-280.
[http://dx.doi.org/10.1038/s41586-020-2776-9] [PMID: 33029001]
[178]
Vacanti, J.P.; Morse, M.A.; Saltzman, W.M.; Domb, A.J.; Perez-Atayde, A.; Langer, R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg., 1988, 23(1), 3-9.
[http://dx.doi.org/10.1016/S0022-3468(88)80529-3] [PMID: 2895175]
[179]
Yui, S.; Nakamura, T.; Sato, T.; Nemoto, Y.; Mizutani, T.; Zheng, X.; Ichinose, S.; Nagaishi, T.; Okamoto, R.; Tsuchiya, K.; Clevers, H.; Watanabe, M. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med., 2012, 18(4), 618-623.
[http://dx.doi.org/10.1038/nm.2695] [PMID: 22406745]
[180]
Rutherford, D.; Ho, G.T. Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases. Inflamm. Bowel Dis., 2023, 29(9), 1488-1498.
[http://dx.doi.org/10.1093/ibd/izad044] [PMID: 37094358]
[181]
Sprangers, J.; Zaalberg, I.C.; Maurice, M.M. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ., 2021, 28(1), 95-107.
[http://dx.doi.org/10.1038/s41418-020-00665-z] [PMID: 33208888]
[182]
Yan, H.H.N.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.K.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O.; Bartfeld, S.; Man, A.H.Y.; Lee, B.C.H.; Chan, A.S.Y.; Wong, J.W.H.; Cheng, P.S.W.; Chan, A.K.W.; Zhang, J.; Shi, J.; Fan, X.; Kwong, D.L.W.; Mak, T.W.; Yuen, S.T.; Clevers, H.; Leung, S.Y. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell, 2018, 23(6), 882-897.e11.
[http://dx.doi.org/10.1016/j.stem.2018.09.016] [PMID: 30344100]
[183]
Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; Ryan, C.J.; Francis, J.; Vermulen, P.B.; Reynolds, A.R.; Reaper, P.M.; Pollard, J.R.; Ashworth, A.; Lord, C.J. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun., 2016, 7(1), 13837.
[http://dx.doi.org/10.1038/ncomms13837] [PMID: 27958275]
[184]
Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; van Rooij, N.; van Leerdam, M.E.; Depla, A.; Smit, E.F.; Hartemink, K.J.; de Groot, R.; Wolkers, M.C.; Sachs, N.; Snaebjornsson, P.; Monkhorst, K.; Haanen, J.; Clevers, H.; Schumacher, T.N.; Voest, E.E. Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 2018, 174(6), 1586-1598.e12.
[http://dx.doi.org/10.1016/j.cell.2018.07.009] [PMID: 30100188]
[185]
Rozich, N.S.; Blair, A.B.; Burkhart, R.A. Organoids. In: Precision Medicine for Investigators, Practitioners and Providers; Elsevier, 2020; pp. 123-129.
[http://dx.doi.org/10.1016/B978-0-12-819178-1.00012-5]
[186]
Spence, J.; Cruz-Acuna, R.; Quiros, M.; Farkas, A.; Dedhia, P.; Huang, S.; Siuda, D.; Garcia-Hernandez, V.; Miller, A.; Spence, J.; Nusrat, A.; Garcia, A. PEG-4MAL hydrogels for in vitro culture of human organoids and in vivo delivery to sites of injury. Protoc. Exch., 2017.
[http://dx.doi.org/10.1038/protex.2017.098]
[187]
Davies, J.A. Organoids and mini-organs. In: Organs and Organoids; Elsevier, 2018; pp. 3-23.
[188]
Park, S.E.; Georgescu, A.; Huh, D. Organoids-on-a-chip. Science, 2019, 364(6444), 960-965.
[http://dx.doi.org/10.1126/science.aaw7894] [PMID: 31171693]
[189]
Zhu, J.; Ji, L.; Chen, Y.; Li, H.; Huang, M.; Dai, Z.; Wang, J.; Xiang, D.; Fu, G.; Lei, Z.; Chu, X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov., 2023, 9(1), 72.
[http://dx.doi.org/10.1038/s41420-023-01354-9] [PMID: 36813783]
[190]
Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. 3D printing of inertial microfluidic devices. Sci. Rep., 2020, 10(1), 5929.
[http://dx.doi.org/10.1038/s41598-020-62569-9] [PMID: 32246111]
[191]
Baptista, L.S.; Porrini, C.; Kronemberger, G.S.; Kelly, D.J.; Perrault, C.M. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front. Cell Dev. Biol., 2022, 10, 1043117.
[http://dx.doi.org/10.3389/fcell.2022.1043117] [PMID: 36478741]
[192]
Wu, L.; Ai, Y.; Xie, R.; Xiong, J.; Wang, Y.; Liang, Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab Chip, 2023, 23(5), 1192-1212.
[http://dx.doi.org/10.1039/D2LC00804A] [PMID: 36644984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy