Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Clinical Depression, the Mechanistic Target of Rapamycin (mTOR), and Forkhead Transcription Factors (FoxOs)

Author(s): Kenneth Maiese

Volume 20, Issue 4, 2023

Published on: 28 September, 2023

Page: [429 - 433] Pages: 5

DOI: 10.2174/1567202620999230928124725

Price: $65

Next »
[1]
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123: 110721.
[2]
Barnett JA, Bandy ML, Gibson DL. Is the Use of Glyphosate in Modern Agriculture Resulting in Increased Neuropsychiatric Conditions Through Modulation of the Gut-brain-microbiome Axis? Front Nutr 2022; 9: 827384.
[3]
Sakai M, Yu Z, Hirayama R, Nakasato M, Kikuchi Y, Ono C. et al. Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plast 2022; 2022: 7503553.
[4]
Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert opinion on drug discovery 2013; 8(12): 1515-27.
[5]
GHDx). GHDE. Institute of Health Metrics and Evaluation. https://vizhubhealthdataorg/gbd-results/. 2023; Accessed September 8, 2023
[6]
An X, Yao X, Li B, Yang W, Cui R, Zhao G. et al. Role of BDNF-mTORC1 Signaling Pathway in Female Depression. Neural Plast 2021; 2021: 6619515.
[7]
Birnie MT, Claydon MDB, Troy O, Flynn BP, Yoshimura M, Kershaw YM. et al. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proc Natl Acad Sci U S A 2023; 120(15): e2211996120.
[8]
Bunney BG, Li JZ, Walsh DM, Stein R, Vawter MP, Cartagena P. et al. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol Psychiatry 2015; 20(1): 48-55.
[9]
Felten M, Dame C, Lachmann G, Spies C, Rubarth K, Balzer F. et al. Circadian rhythm disruption in critically ill patients. Acta Physiol (Oxf) 2023; 238(1): e13962.
[10]
Kalam F, James DL, Li YR, Coleman MF, Kiesel VA, Cespedes Feliciano EM. et al. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023(61): 84-103.
[11]
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biological reviews of the Cambridge Philosophical Society 2023.
[12]
Olejniczak I, Pilorz V, Oster H. Circle(s) of Life: The Circadian Clock from Birth to Death. Biology (Basel) 2023; 12(3)
[13]
Xu Y, Wang Y, Jiang Y, Liu M, Zhong W, Ge Z. et al. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Frontiers in aging neuroscience 2023; 15: 1174541.
[14]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[15]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[16]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(7): 1-18.
[17]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in bioscience (Landmark edition) 2021; 26(9): 614-27.
[18]
Corrigan JD, Cuthbert JP, Harrison-Felix C, Whiteneck GG, Bell JM, Miller AC. et al. US population estimates of health and social outcomes 5 years after rehabilitation for traumatic brain injury. The Journal of head trauma rehabilitation 2014; 29(6): E1-9.
[19]
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12(4)
[20]
Ahmad R, Khan A, Rehman IU, Lee HJ, Khan I, Kim MO. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. International journal of molecular sciences 2022; 23(11)
[21]
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181: 154-65.
[22]
Livieri T, Cuttaia C, Vetrini R, Concato M, Peruch M, Neri M. et al. Old and Promising Markers Related to Autophagy in Traumatic Brain Injury. International journal of molecular sciences 2022; 24(1)
[23]
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M. et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40(3): 232-47.
[24]
Maiese K. Charting a course for erythropoietin in traumatic brain injury. J Transl Sci 2016; 2(2): 140-4.
[25]
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N. et al. Enhancing autophagy in Alzheimer’s disease through drug repositioning. Pharmacol Ther 2022; 237: 108171.
[26]
Assogna M, Di Lorenzo F, Martorana A, Koch G. Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12(8)
[27]
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12(9)
[28]
Maiese K. Apolipoprotein-ε4 allele (APOE-ε4) as a Mediator of Cognitive Loss and Dementia in Long COVID-19. Curr Neurovasc Res 2022; 19(5): 435-9.
[29]
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer’s Disease. Mol Neurobiol 2022.
[30]
Zhu G, Tong Q, Ye X, Li J, Zhou L, Sun P. et al. Phototherapy for Cognitive Function in Patients With Dementia: A Systematic Review and Meta-Analysis. Frontiers in aging neuroscience 2022; 14: 936489.
[31]
Fessel J. Cure of Alzheimer’s Dementia Requires Addressing All of the Affected Brain Cell Types. J Clin Med 2023; 12(2049): 1-14.
[32]
Jahan R, Yousaf M, Khan H, Shah SA, Khan AA, Bibi N. et al. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2023. ;Jun 1.
[33]
Lai KY, Webster C, Kumari S, Gallacher JEJ, Sarkar C. The associations of socioeconomic status with incident dementia and Alzheimer’s disease are modified by leucocyte telomere length: a population-based cohort study. Scientific reports 2023; 13(1): 6163.
[34]
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13(5): 816.
[35]
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10(7)
[36]
Ullah H, Hussain A, Asif M, Nawaz F, Rasool M. Natural Products as Bioactive Agents in the Prevention of Dementia. CNS Neurol Disord Drug Targets 2023; 22(4): 466-76.
[37]
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci Adv 2023; 9(7): eabq1141.
[38]
Ignacio ZM, Reus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 2016; 82(5): 1280-90.
[39]
Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M. et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 2020; 72(3): 641-58.
[40]
Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3beta/mTOR pathway. Biochem Biophys Res Commun 2015; 465(3): 368-73.
[41]
Pilar-Cuellar F, Vidal R, Diaz A, Castro E, dos Anjos S, Pascual-Brazo J. et al. Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013: 537265.
[42]
Bramante CT, Beckman KB, Mehta T, Karger AB, Odde DJ, Tignanelli CJ. et al. Metformin reduces SARS-CoV-2 in a Phase 3 Randomized Placebo Controlled Clinical Trial. medRxiv 2023.
[43]
Farid HA, Sayed RH, El-Shamarka ME, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats. Inflammopharmacology 2023.
[44]
Hafez N, Refaat L, ElGebaly OK, Elhariry HM, Ghareeb M, Fathalla LA. Prognostic value of RGS1 and mTOR Immunohistochemical expression in Egyptian multiple myeloma patients; A single center study. PLoS One 2023; 18(7): e0288357.
[45]
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH. et al. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer’s disease. Translational neurodegeneration 2023; 12(1): 1.
[46]
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Curr Neurovasc Res 2023; 20(3): 314-33.
[47]
Tan C, Ai J, Zhu Y. mTORC1-Dependent Protein and Parkinson’s Disease: A Mendelian Randomization Study. Brain sciences 2023; 13(4)
[48]
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28(4)
[49]
Zhang YC, Fan KY, Wang Q, Hu JX, Wang Q, Zhang HY. et al. Genetically Determined Levels of mTOR-Dependent Circulating Proteins and Risk of Multiple Sclerosis. Neurol Ther 2023.
[50]
Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. Brain Behav 2023; e2995.
[51]
Inkster B, Zai G, Lewis G, Miskowiak KW. GSK3beta: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Translational psychiatry 2018; 8(1): 216.
[52]
Ma C, Cheng F, Wang X, Zhai C, Yue W, Lian Y. et al. Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Internationaljournal of molecular sciences 2016; 17(5)
[53]
Osborn M, Rustom N, Clarke M, Litteljohn D, Rudyk C, Anisman H. et al. Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes. PLoS One 2013; 8(9): e72813.
[54]
Yang K, Zhang L, Chen W, Cheng J, Zhao X, Zhang Y. et al. Expression of EPO and related factors in the liver and kidney of plain and Tibetan sheep. Histol Histopathol 2023; 18592.
[55]
Govindappa PK, Elfar JC. Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell Death & disease 2022; 13(3): 245.
[56]
Hu G, Wang T, Ma C. EPO activates PI3K-IKKα-CDK1 signaling pathway to promote the proliferation of Glial Cells under hypoxia environment. Genet Mol Biol 2022; 45(1): e20210249.
[57]
Liu H, Wang C, Sun X, Zhan C, Li Z, Qiu L. et al. Silk Fibroin/Collagen/Hydroxyapatite Scaffolds Obtained by 3D Printing Technology and Loaded with Recombinant Human Erythropoietin in the Reconstruction of Alveolar Bone Defects. ACS Biomater Sci Eng 2022.
[58]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guérin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS chemical neuroscience 2022.
[59]
Sergio CM, Rolando CA. Erythropoietin regulates signaling pathways associated with neuroprotective events. Exp Brain Res 2022.
[60]
Maiese K. Mitochondria: “Mood Altering Organelles” that Impact Disease Throughout the Nervous System. Curr Neurovasc Res 2015; 12(4): 309-11.
[61]
Barcena ML, Tonini G, Haritonow N, Breiter P, Milting H, Baczko I. et al. Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients. Aging Cell 2023; e13894.
[62]
Fang X, Song J, Chen Y, Zhu S, Tu W, Ke B. et al. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis via miR-16-5p/ACSL4 axis to alleviate diabetic nephropathy. J Diabetes Investig 2023; 14(9): 1056-69.
[63]
Maiese K. Innovative Therapeutic Strategies for Cardiovascular Disease. EXCLI Journal 2023; 22: 690-715.
[64]
Ng PQ, Saint-Geniez M, Kim LA, Shu DY. Divergent Metabolomic Signatures of TGFβ2 and TNFα in the Induction of Retinal Epithelial-Mesenchymal Transition. Metabolites 2023; 13(2)
[65]
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22(8): 870-905.
[66]
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12(12)
[67]
Tramutola A, Lanzillotta S, Aceto G, Pagnotta S, Ruffolo G, Cifelli P. et al. Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer’s Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel, Switzerland). 2023; 12.(1)
[68]
Wang J, Chen S, Zhao X, Guo Q, Yang R, Zhang C. et al. Effect of PPARγ on oxidative stress in diabetes-related dry eye. Exp Eye Res 2023; 231: 109498.
[69]
Zhong S, Chen W, Wang B, Gao C, Liu X, Song Y. et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox biology 2023; 63: 102760.
[70]
Maiese K. Regeneration in the nervous system with erythropoietin. Frontiers in bioscience (Landmark edition) 2016; 21: 561-96.
[71]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural regeneration research 2021; 16(3): 448-55.
[72]
Orkaby AR, Dushkes R, Ward R, Djousse L, Buring JE, Lee IM. et al. Effect of Vitamin D3 and Omega-3 Fatty Acid Supplementation on Risk of Frailty: An Ancillary Study of a Randomized Clinical Trial. JAMA Network Open 2022; 5(9): e2231206.
[73]
AlSaleh A, Shahid M, Farid E, Bindayna K. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study. Toxins (Basel) 2023; 15(1)
[74]
Liu X, Peng Y, Xu Y, He G, Liang J, Masanja F. et al. Responses of digestive metabolism to marine heatwaves in pearl oysters. Mar Pollut Bull 2023; 186: 114395.
[75]
Pradhan SS, Rao KR, Manjunath M, Saiswaroop R, Patnana DP, Phalguna KS. et al. Vitamin B(6,) B(12) and folate modulate deregulated pathways and protein aggregation in yeast model of Huntington disease. 3 Biotech 2023; 13(3): 96.
[76]
Raghuvanshi DS, Chakole S, Kumar M. Relationship Between Vitamins and Diabetes. Cureus 2023; 15(3): e36815.
[77]
S-H T, L-C C, S-Y H, H-W L, A-H L, Y-Y C, et al. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia–Reperfusion Injury in Mice. Biomedicines 2023; 11(8): 2145.
[78]
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z. et al. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer’s Diseases. Nutrients 2023; 15(12)
[79]
Zhou L, Liu J, Zhou M. A comprehensive meta-analysis on the association between vitamin C intake and gestational diabetes mellitus: Insights and novel perspectives. Medicine 2023; 102(32): e34740.
[80]
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7(2): 235-42.
[81]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[82]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Fronters in bioscience (Landmark edition) 2020; 25: 1925-73.
[83]
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[84]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[85]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[86]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[87]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[88]
Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021; 240: 1-8.
[89]
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer’s disease. International journal of biological macromolecules 2021; 192: 895-903.
[90]
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN. et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer cell international 2022; 22(1): 284.
[91]
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021; 10(5)
[92]
Carter CC, Mast FD, Olivier JP, Bourgeois NM, Kaushansky A, Aitchison JD. Dengue activates mTORC2 signaling to counteract apoptosis and maximize viral replication. Fronters in cellular and infection mcrobiology 2022; 12: 979996.
[93]
Chen X, Le Y, He WY, He J, Wang YH, Zhang L. et al. Abnormal Insulin-like Growth Factor 1 Signaling Regulates Neuropathic Pain by Mediating the Mechanistic Target of Rapamycin-Related Autophagy and Neuroinflammation in Mice. ACS chemical neuroscience 2021.
[94]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[95]
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the Bull’s Eye for Enhancing Neurogenesis After Cerebral Ischemia? Stroke 2022.
[96]
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Loera-Arias MJ, Saucedo-Cardenas O, Montes de Oca-Luna R. et al. Peripheral tissular analysis of rapamycin’s effect as a neuroprotective agent in vivo. Naunyn Schmiedebergs Arch Pharmacol 2022.
[97]
Hua K, Li T, He Y, Guan A, Chen L, Gao Y. et al. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 2171636.
[98]
Katsianou MA, Papavassiliou KA, Gargalionis AN, Agrogiannis G, Korkolopoulou P, Panagopoulos D. et al. Polycystin-1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model. J Cell Mol Med 2022; 26(8): 2428-37.
[99]
Kim SH, Yu HS, Huh S, Kang UG, Kim YS. Electroconvulsive seizure inhibits the mTOR signaling pathway via AMPK in the rat frontal cortex. Psychopharmacology 2022; 239(2): 443-54.
[100]
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K. et al. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Scientific reports 2022; 12(1): 17805.
[101]
Sforza G, Monte G, Voci A, Figà Talamanca L, Papetti L, Ferilli MAN, . et al. A Case Report of Pediatric Patient with Tuberous Sclerosis and Radiologically Isolated Syndrome. J Clin Med 2023; 12(9)
[102]
Temiz-Resitoglu M, Guden DS, Senol SP, Vezir O, Sucu N, Kibar D. et al. Pharmacological Inhibition of Mammalian Target of Rapamycin Attenuates Deoxycorticosterone Acetate Salt-Induced Hypertension and Related Pathophysiology: Regulation of Oxidative Stress, Inflammation, and Cardiovascular Hypertrophy in Male Rats. J Cardiovasc Pharmacol 2022; 79(3): 355-67.
[103]
Wu Z, Li H, Zhang Y, Ding C, Zhao W, Dai J. et al. Liver transcriptome analyses of acute poisoning and recovery of male ICR mice exposed to the mushroom toxin α-amanitin. Arch Toxicol 2022.
[104]
Hadamitzky M, Herring A, Keyvani K, Doenlen R, Krugel U, Bosche K. et al. Acute systemic rapamycin induces neurobehavioral alterations in rats. Behav Brain Res 2014; 273: 16-22.
[105]
Abuzenadah A, Al-Saedi S, Karim S, Al-Qahtani M. Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. International journal of molecular sciences 2018; 19(11)
[106]
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F. et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2)
[107]
Beretta GL, Corno C, Zaffaroni N, Perego P. Role of FoxO Proteins in Cellular Response to Antitumor Agents. Cancers 2019; 11(1): 90.
[108]
Cheema PS, Nandi D, Nag A. Exploring the therapeutic potential of forkhead box O for outfoxing COVID-19. Open biology 2021; 11(6): 210069.
[109]
Guan X, Yao Y, Bao G, Wang Y, Zhang A, Zhong X. Diagnostic model of combined ceRNA and DNA methylation related genes in esophageal carcinoma. PeerJ 2020; 8: e8831.
[110]
Hassanein EHM, Saleh FM, Ali FEM, Rashwan EK, Atwa AM, Abd El-Ghafar OAM. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol Immunotoxicol 2022; 1-31.
[111]
Jiang SL, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiollogical genomics 2020.
[112]
Kostić M, Korićanac G, Tepavčević S, Stanišić J, Romić S, Ćulafić T. et al. Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats. Metab Syndr Relat Disord 2023.
[113]
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant Huntingtin Impairs Pancreatic β-cells by Recruiting IRS-2 and Disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington’s Disease. J Mol Neurosci 2021.
[114]
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16(2): 122-9.
[115]
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer’s disease. Experimental and therapeutic medicine 2022; 23(3): 241.
[116]
Maiese K. FoxO Proteins in the Nervous System. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[117]
Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023; 55(7): 869-80.
[118]
Zhang L, Shi Q, Sun Y. FoxO1 Regulates Neuropeptide Y and Pro-opiomelanocortin in the Hypothalamus of Rat Offspring Small for Gestational Age. Reprod Sci 2021.
[119]
Zhang N, Meng X, Jiang H, Ge H, Qian K, Zheng Y. et al. Restoration of energy homeostasis under oxidative stress: Duo synergistic AMPK pathways regulating arginine kinases. PLoS Genet 2023; 19(8): e1010843.
[120]
Zhao C, Sun G, Li Y, Kong K, Li X, Kan T. et al. Forkhead box O3 attenuates osteoarthritis by suppressing ferroptosis through inactivation of NF-κB/MAPK signaling. J Orthop Translat 2023; 39: 147-62.
[121]
Zhao T, Miao H, Song Z, Li Y, Xia N, Zhang Z. et al. Metformin alleviates the cognitive impairment induced by benzo[a]pyrene via glucolipid metabolism regulated by FTO/FoxO6 pathway in mice. Environmental science and pollution research international 2023.
[122]
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y. et al. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Fronters in pharmacology 2021; 12: 653940.
[123]
Maiese K. Pyroptosis, Apoptosis, and Autophagy: Critical Players of Inflammation and Cell Demise in the Nervous System. Curr Neurovasc Res 2022; 19: 241-4.
[124]
Malhotra S, Hurtado-Navarro L, Pappolla A, Villar LMM, Río J, Montalban X. et al. Increased NLRP3 Inflammasome Activation and Pyroptosis in Patients With Multiple Sclerosis With Fingolimod Treatment Failure. Neurol Neuroimmunol Neuroinflamm 2023; 10(3)
[125]
Yang L, Cheng CF, Li ZF, Huang XJ, Cai SQ, Ye SY. et al. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway. Int J Mol Med 2023; 51(6)
[126]
Ye M, Zhao Y, Wang Y, Xie R, Tong Y, Sauer JD. et al. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat Nanotechnol 2022.
[127]
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N. et al. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46(11): 2761-75.
[128]
Mao Z, Liu L, Zhang R, Li X. Lithium Reduces FoxO3a Transcriptional Activity by Decreasing Its Intracellular Content. Biol Psychiatry 2007.
[129]
Duarte-Silva E, Meuth SG, Peixoto CA. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Frontiers in immunology 2023; 14: 1137635.
[130]
He L, Yang Y, Chen J, Zou P, Li J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mollecular medicine reports 2021; 24(3)
[131]
Maiese K. Ferroptosis, Iron Metabolism, and Forkhead Transcription Factors (FoxOs). Curr Neurovasc Res 2023; 20(3)
[132]
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy