Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Insights into Metabolic Engineering of Bioactive Molecules in Tetrastigma Hemsleyanum Diels & Gilg: A Traditional Medicinal Herb

Author(s): T.P. Ajeesh Krishna, T. Maharajan, T.P. Adarsh Krishna and S. Antony Ceasar*

Volume 24, Issue 2, 2023

Published on: 26 September, 2023

Page: [72 - 83] Pages: 12

DOI: 10.2174/0113892029251472230921053135

Price: $65

Abstract

Plants are a vital source of bioactive molecules for various drug development processes. Tetrastigma hemsleyanum is one of the endangered medicinal plant species well known to the world due to its wide range of therapeutic effects. Many bioactive molecules have been identified from this plant, including many classes of secondary metabolites such as flavonoids, phenols, terpenoids, steroids, alkaloids, etc. Due to its slow growth, it usually takes 3-5 years to meet commercial medicinal materials for this plant. Also, T. hemsleyanum contains low amounts of specific bioactive compounds, which are challenging to isolate easily. Currently, scientists are attempting to increase bioactive molecules' production from medicinal plants in different ways or to synthesize them chemically. The genomic tools helped to understand medicinal plants' genome organization and led to manipulating genes responsible for various biosynthesis pathways. Metabolic engineering has made it possible to enhance the production of secondary metabolites by introducing manipulated biosynthetic pathways to attain high levels of desirable bioactive molecules. Metabolic engineering is a promising approach for improving the production of secondary metabolites over a short time period. In this review, we have highlighted the scope of various biotechnological approaches for metabolic engineering to enhance the production of secondary metabolites for pharmaceutical applications in T. hemsleyanum. Also, we summarized the progress made in metabolic engineering for bioactive molecule enhancement in T. hemsleyanum. It may lead to reducing the destruction of the natural habitat of T. hemsleyanum and conserving them through the cost-effective production of bioactive molecules in the future.

Graphical Abstract

[1]
Ajeesh Krishna, T.P.; Krishna, T.P.A.; Kumuthakallavalli, R.; Raj, V.N.S.; Juliet, S.; Rani, T.S. Physico-chemical evaluation and biochemical quantification of crude drug powder (stem) of Chassalia curviflora (Wall. ex Kurz.) Thwaites; A folk medicinal plant. J. Pharmacogn. Phytochem., 2014, 3(4), 121-124.
[2]
Adarsh Krishna, T.; Ajeesh Krishna, T.; Sanyo Raj, V.; Juliet, S.; Nair, S.; Ravindran, R. Evaluation of phytochemical constituents and proximate contents of the ethanolic leaf extract of Tetrastigmaleucostaphylum (Dennst.) Alstone (Vitaceae) found in Western Ghats of Kerala, India. Res. J. Pharmac. Sci., 2013, 2319, 555X.
[3]
Du, S.; Xiang, T.; Song, Y.; Huang, L.; Sun, Y.; Han, Y. Transgenic hairy roots of Tetrastigma hemsleyanum: Induction, propagation, genetic characteristics and medicinal components. Plant Cell Tissue Organ Cult., 2015, 122(2), 373-382.
[http://dx.doi.org/10.1007/s11240-015-0775-6]
[4]
Ji, T.; Ji, W.W.; Wang, J.; Chen, H.J.; Peng, X.; Cheng, K.J.; Qiu, D.; Yang, W.J. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum. J. Ethnopharmacol., 2021, 264, 11347.
[http://dx.doi.org/10.1016/j.jep.2020.113247] [PMID: 32800929]
[5]
Hu, W.; Zheng, Y.; Xia, P.; Liang, Z. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: Avaluable Chinese herbal medicine. J. Ethnopharmacol., 2021, 271, 113836.
[http://dx.doi.org/10.1016/j.jep.2021.113836] [PMID: 33465440]
[6]
Zhu, R.; Xu, X.; Ying, J.; Cao, G.; Wu, X. The phytochemistry, pharmacology, and quality control of Tetrastigma hemsleyanum diels & gilg in China: A review. Front. Pharmacol., 2020, 11, 550497.
[http://dx.doi.org/10.3389/fphar.2020.550497] [PMID: 33101019]
[7]
Vanisree, M.; Lee, C-Y.; Lo, S-F.; Nalawade, S.M.; Lin, C.Y.; Tsay, H-S. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sin., 2004, 45(1), 1-22.
[8]
Mulabagal, V Tsay, H-S Plant cell cultures :An alternative and fficient source for the production of biologically important secondary metabolites. nt. J. appl. sci. eng., 2004, 2(1), 29-48.
[9]
Rai, A.; Saito, K.; Yamazaki, M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant Sci., 2017, 90(4), 764-787.
[http://dx.doi.org/10.1111/tpj.13485]
[10]
Khatri, S.; Saini, R.V.; Chhillar, A.K. Molecular farming approach towards bioactive compounds.Metabolic engineering for bioactive compounds; Springer, 2017, pp. 49-72.
[http://dx.doi.org/10.1007/978-981-10-5511-9_3]
[11]
Dey, A. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Pharmacol. Res., 2021, 164, 105359.
[http://dx.doi.org/10.1016/j.phrs.2020.105359] [PMID: 33285226]
[12]
Adarsh Krishna, T.P.; Edachery, B.; Athalathil, S. Bakuchiol: A natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv., 2022, 12(14), 8815-8832.
[http://dx.doi.org/10.1039/D1RA08771A] [PMID: 35424800]
[13]
Beghyn, T.; Deprez-Poulain, R.; Willand, N.; Folleas, B.; Deprez, B. Natural compounds: Leads or ideas? Bioinspired molecules for drug discovery Chem. Biol. Drug Des., 2008, 72(1), 3-15.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00673.x] [PMID: 18554253]
[14]
Wang, S.; Dong, G.; Sheng, C. Structural simplification of natural products. Chem. Rev., 2019, 119(6), 4180-4220.
[http://dx.doi.org/10.1021/acs.chemrev.8b00504] [PMID: 30730700]
[15]
Sun, Y.; Li, H.; Hu, J.; Li, J.; Fan, Y.; Liu, X.; Deng, Z. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities. J. Agric. Food Chem., 2013, 61(44), 10507-10515.
[http://dx.doi.org/10.1021/jf4037547] [PMID: 24151872]
[16]
Chen, L.Y.; Guo, S.H. Progress in studies of chemical composition and pharmacological effects of Tetrastigmatis Hems Leyani. Zhejiang Zhong Yi Xue Yuan Xue Bao., 2012, 12, 1368-1370.
[17]
Sun, Y.; Qin, Y.; Li, H.; Peng, H.; Chen, H.; Xie, H.; Deng, Z. Rapid characterization of chemical constituents in radix tetrastigma, a functional herbal mixture, before and after metabolism and their antioxidant/antiproliferative activities. J. Funct. Foods, 2015, 18, 300-318.
[http://dx.doi.org/10.1016/j.jff.2015.07.009]
[18]
Lou, T.; Ji, T.; Peng, X.; Ji, W.; Yuan, L.; Wang, J.; Li, S.; Zhang, S.; Shi, Q. Extract from tetrastigma hemsleyanum leaf alleviates Pseudomonas aeruginosa lung infection: network pharmacology analysis and experimental evidence., Front. Pharmacol., 2021, 12, 587850.
[http://dx.doi.org/10.3389/fphar.2021.587850] [PMID: 34349638]
[19]
Zhai, Y.; Sun, J.; Sun, C.; Zhao, H.; Li, X.; Yao, J.; Su, J.; Xu, X.; Xu, X.; Hu, J.; Daglia, M.; Han, B.; Kai, G. Total flavonoids from the dried root of Tetrastigma hemsleyanum Diels et Gilg inhibit colorectal cancer growth through PI3K / AKT / MTOR signaling pathway. Phytother. Res., 2022, 36(11), 4263-4277.
[http://dx.doi.org/10.1002/ptr.7561] [PMID: 35831026]
[20]
Luo, Y.; Yang, Y.; Yang, X.; Sun, C.; Chen, H. Quality evaluation of Tetrastigma hemsleyanum different parts based on quantitative analysis of 42 bioactive constituents combined with multivariate statistical analysis. Phytochem. Anal., 2022, 33(5), 754-765.
[http://dx.doi.org/10.1002/pca.3127] [PMID: 35383426]
[21]
Feng, Z.; Hao, W.; Lin, X.; Fan, D.; Zhou, J. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice. OncoTargets Ther., 2014, 7, 947-956.
[PMID: 24959081]
[22]
Han, B.; Zhai, Y.; Li, X.; Zhao, H.; Sun, C.; Zeng, Y.; Zhang, W.; Lu, J.; Kai, G. Total flavonoids of Tetrastigma hemsleyanum diels et gilg inhibits colorectal tumor growth by modulating gut microbiota and metabolites., Food Chem, 2023, 410, 135361.
[http://dx.doi.org/10.1016/j.foodchem.2022.135361] [PMID: 36610085]
[23]
Feng, Z. LIN, X.; HAO, W. Effect of Tetrastigma hemsleyanum diels et gilg flavone on the immunosuppressive associated cytokines in lewis lung cancer mice. Chin. J. Clin. Pharmacol. Therap., 2014, 19(3), 275.
[24]
Wu, X.W.; Yang, M.F.; Yu, N.; Ye, Y.N.; Wang, F.Y. Radix Tetrastigma hemsleyanum flavone inhibits proliferation and induces apoptosis of human colon cancer SW620 cells. Chin. J. Integr. Trad. West Med. Dig., 2016, 24, 903-905.
[25]
Wu, X.; Yu, N.; Zhang, Y.; Ye, Y.; Sun, W.; Ye, L.; Wu, H.; Yang, Z.; Wu, L.; Wang, F. Radix Tetrastigma hemsleyani flavone exhibits antitumor activity in colorectal cancer via Wnt/β-catenin signaling pathway. OncoTargets Ther, 2018, 11, 6437-6446.
[http://dx.doi.org/10.2147/OTT.S172048] [PMID: 30323621]
[26]
Lin, J. Chemical constituents of whole plants of Tetrastigma hemsleyanum and their antitumor activities. Chin. Pharmac. J., 2015, 658-663.
[27]
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors., Molecules, 2018, 23(4), 762.
[http://dx.doi.org/10.3390/molecules23040762] [PMID: 29584636]
[28]
Shi, Y.; Yang, L.; Yu, M.; Li, Z.; Ke, Z.; Qian, X.; Ruan, X.; He, L.; Wei, F.; Zhao, Y.; Wang, Q. Seasonal variation influences flavonoid biosynthesis path and content, and antioxidant activity of metabolites in Tetrastigma hemsleyanum Diels & Gilg. PLoS One,, 2022, 174(4), e0265954.
[http://dx.doi.org/10.1371/journal.pone.0265954] [PMID: 35482747]
[29]
Isah, T.; Umar, S.; Mujib, A.; Sharma, M.P.; Rajasekharan, P.E.; Zafar, N.; Frukh, A. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult., 2018, 132(2), 239-265.
[http://dx.doi.org/10.1007/s11240-017-1332-2]
[30]
Murthy, H.N.; Lee, E.J.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult., 2014, 118(1), 1-16.
[http://dx.doi.org/10.1007/s11240-014-0467-7]
[31]
Fazili, M.A.; Bashir, I.; Ahmad, M.; Yaqoob, U.; Geelani, S.N. In vitro strategies for the enhancement of secondary metabolite production in plants: a review., Bull. Natl. Res. Cent, 2022, 46(1), 35.
[http://dx.doi.org/10.1186/s42269-022-00717-z] [PMID: 35221660]
[32]
Amoo, S.O.; Van Staden, J. Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tissue Organ Cult., 2013, 112(2), 249-256. [PCTOC].
[http://dx.doi.org/10.1007/s11240-012-0230-x]
[33]
Amoo, S.O.; Aremu, A.O.; Van Staden, J. In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult., 2012, 111(3), 345-358.
[http://dx.doi.org/10.1007/s11240-012-0200-3]
[34]
Kapoor, S.; Raghuvanshi, R.; Bhardwaj, P.; Sood, H.; Saxena, S.; Chaurasia, O.P. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. J. Photochem. Photobiol. B, 2018, 183, 258-265.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.018] [PMID: 29747145]
[35]
Ahmad, N.; Rab, A.; Ahmad, N. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J. Photochem. Photobiol.B,, 2016, 154, 51-56.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.11.015] [PMID: 26688290]
[36]
Pan, Y.; Li, L.; Xiao, S.; Chen, Z.; Sarsaiya, S.; Zhang, S.; ShangGuan,, Y.; Liu,, H.; Xu, D. Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb.f. using a callus suspension culture PLoS One, 2020, 15(2), e0220084.
[http://dx.doi.org/10.1371/journal.pone.0220084] [PMID: 32074105]
[37]
Yazdanian, E.; Golkar, P.; Vahabi, M.R.; Taghizadeh, M. Elicitation effects on some secondary metabolites and antioxidant activity in callus cultures of Allium jesdianum Boiss. & Buhse.: Methyl Jasmonate and putrescine. Appl. Biochem. Biotechnol, 2022, 194(2), 601-619.
[http://dx.doi.org/10.1007/s12010-021-03643-4] [PMID: 34410612]
[38]
Lalaleo, L.; Testillano, P.; Risueño, M.C.; Cusidó, R.M.; Palazon, J.; Alcazar, R.; Bonfill, M. Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linumalbum. J. Plant Physiol., 2018, 228, 47-58.
[http://dx.doi.org/10.1016/j.jplph.2018.05.007] [PMID: 29852334]
[39]
Deepthi, S.; Satheeshkumar, K. Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult., 2016, 124(3), 483-493.
[http://dx.doi.org/10.1007/s11240-015-0908-y]
[40]
Sharafi, E.; Khayam Nekoei, S.M.; Fotokian, M.H.; Davoodi, D.; Mirzaei, H.H.; Hasanloo, T. Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of st john’s wort (Hypericum perforatum L.). J. Med. Plants By-Prod., 2013, 2(2), 177-184.
[41]
Kim, B.J.; Gibson, D.M.; Shuler, M.L. Effect of subculture and elicitation on instability of taxol production in Taxus sp. suspension cultures. Biotechnol. Prog., 2004, 20(6), 1666-1673.
[http://dx.doi.org/10.1021/bp034274c] [PMID: 15575697]
[42]
Hassanpour, H.; Niknam, V. Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tissue Organ Cult., 2020, 142(3), 583-593.
[http://dx.doi.org/10.1007/s11240-020-01885-4]
[43]
Hanano, A.; Perez-Matas, E.; Shaban, M.; Cusido, R.M.; Murphy, D.J. Characterization of lipid droplets from a taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel., Plant Cell Rep, 2022, 41(4), 853-871.
[http://dx.doi.org/10.1007/s00299-021-02823-0] [PMID: 34984531]
[44]
Li, Y.C. Enhanced cephalotaxine production in Cephalotaxus mannii suspension cultures by combining glycometabolic regulation and elicitation. Process Biochem., 2014, 49(12), 2279-2284.
[http://dx.doi.org/10.1016/j.procbio.2014.10.005]
[45]
Tiwari, G.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Uikey, D.S.; Patel, R.P. In vitro production of secondary metabolites reserpine and ajmalicine in Rauvolfia serpentina (L.). Benth. Curr. Asp. Pharmac. Res. Develop., 2021, 4, 132-152.
[http://dx.doi.org/10.9734/bpi/caprd/v4/2136C]
[46]
Uikey, D.S.; Tiwari, G.; Tripathi, M.K.; Patel, R.P. Secondary metabolite production of reserpine and ajmalicine in Rauvolfia serpentina (L.) Benth. through callus and cell suspension culture. Int. J. Indig. Med. Plant., 2014, 47(2), 1633-1646.
[47]
Abdelazeez, W.M.A.; Anatolievna, K.Y.; Zavdetovna, K.L.; Damirovna, A.G.; Abou El-Dis, G.R.; Arnoldovna, T.O. Enhanced productivity of atropine in cell suspension culture of Hyoscyamus muticus L. In Vitro Cell. Dev. Biol. Plant, 2022, 58(4), 593-605.
[48]
Peng, X.; Lin, Y.N.; He, J.Y.; Lin, Q.Z. Influence of culture conditions on the growth of callus and content of total flavonoids in Tetrastigma Hemsleyanum. Pharm. Biotechnol., 2012, 19, 138-141.
[49]
Peng, X.; Zhang, J.; He, J.Y.; Fan, S.W.; Ling, Q.Z. Comparison on accumulation of flavonoids in loose and compact callus suspension cell culture of Tetrastigma hemsleyanum. Chin. Tradit. Herbal Drugs, 2012, 43, 577-580.
[50]
Peng, X.; Zhang, T.; Zhang, J. Effect of subculture times on genetic fidelity, endogenous hormone level and pharmaceutical potential of Tetrastigma hemsleyanum callus. Plant Cell Tissue Organ Cult., 2015, 122(1), 67-77. [PCTOC].
[http://dx.doi.org/10.1007/s11240-015-0750-2]
[51]
Peng, X.; He, J.Y. The inhibitory effect of Ca2+ on the flavonoid production of Tetrastigma hemsleyanum suspension cells induced by metal elicitors. In Vitro Cell. Dev. Biol. Plant, 2013, 49(5), 550-559.
[http://dx.doi.org/10.1007/s11627-013-9516-x]
[52]
Xin, P.; Shuang-Lin, Z.; Jun-Yao, H.; Li, D. Influence of rare earth elements on metabolism and related enzyme activity and isozyme expression in Tetrastigma hemsleyanum cell suspension cultures., Biol. Trace Elem. Res., 2013, 152(1), 82-90.
[http://dx.doi.org/10.1007/s12011-013-9600-4] [PMID: 23300000]
[53]
Head, G.; Tzotzos, G.T. New genetic modification techniques: Challenges and prospects. Pres. Knowl. Food. Saf, 2023, 918-937.
[http://dx.doi.org/10.1016/B978-0-12-819470-6.00017-2]
[54]
Jhansi Rani, S.; Usha, R. Transgenic plants: Types, benefits, public concerns and future. J. Pharm. Res., 2013, 6(8), 879-883.
[http://dx.doi.org/10.1016/j.jopr.2013.08.008]
[55]
Wu, Y.Q.; Wang, T.L.; Xin, Y.; Huang, S.J.; Wang, G.B.; Xu, L.A. Exogenous GbHMGS1 overexpression improves the contents of three terpenoids in transgenic populus. Forests, 2021, 12(5), 595.
[http://dx.doi.org/10.3390/f12050595]
[56]
Qian, L. In vitro propagation of Tetrastigma hemsleyanum diels et gilg. Plant Physiol.Commun., 2008, 44(1), 121.
[57]
Jiang, W.; Fu, Y.; Zhou, X.; Fu, C. High-frequency shoot regeneration of nodal explants from Tetrastigma hemsleyanum Diels et Gilg: A valuable medicinal plant. Afr. J. Biotechnol., 2011, 10(57), 12177-12181.
[58]
Lu, A-F.; Qi, M-J.; Li, Z-L.; Lv, H-F. Callus cultivation and determination of flavonoids from Tetrastigma hemsleyanum. J. Chin. med. mat, 2010, 33(7), 1042-1045.
[PMID: 21137358]
[59]
Lu, M.; An, H.; Li, L. Genome survey sequencing for the characterization of the genetic background of Rosa roxburghii Tratt and leaf ascorbate metabolism genes. PLoS One,, 2016, 11(2), e0147530.
[http://dx.doi.org/10.1371/journal.pone.0147530] [PMID: 26849133]
[60]
Ma, Q.; Sun, T.; Li, S.; Wen, J.; Zhu, L.; Yin, T.; Yan, K.; Xu, X.; Li, S.; Mao, J.; Wang, Y.; Jin, S.; Zhao, X.; Li, Q. The Acer truncatum genome provides insights into nervonic acid biosynthesis. Plant J., 2020, 104(3), 662-678.
[http://dx.doi.org/10.1111/tpj.14954] [PMID: 32772482]
[61]
Zhou, W.; Wang, Y.; Li, B.; Petijová, L.; Hu, S.; Zhang, Q.; Niu, J.; Wang, D.; Wang, S.; Dong, Y.; Čellárová, E.; Wang, Z. Wholegenome sequence data of Hypericum perforatum and functional characterization of melatonin biosynthesis by N-acetylserotonin O-methyltransferase J. Pineal Res, 2021, 70(2), e12709.
[http://dx.doi.org/10.1111/jpi.12709] [PMID: 33315239]
[62]
Kang, S.H.; Pandey, R.P.; Lee, C.M.; Sim, J.S.; Jeong, J.T.; Choi, B.S.; Jung, M.; Ginzburg, D.; Zhao, K.; Won, S.Y.; Oh, T.J.; Yu, Y.; Kim, N.H.; Lee, O.R.; Lee, T.H.; Bashyal, P.; Kim, T.S.; Lee, W.H.; Hawkins, C.; Kim, C.K.; Kim, J.S.; Ahn, B.O.; Rhee, S.Y.; Sohng, J.K. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora., Nat. Commun, 2020, 11(1), 5875.
[http://dx.doi.org/10.1038/s41467-020-19681-1] [PMID: 33208749]
[63]
Cui, P.; Lin, Q.; Fang, D.; Zhang, L.; Li, R.; Cheng, J.; Gao, F.; Shockey, J.; Hu, S.; Lü, S. Tung Tree (Vernicia fordii, Hemsl.) genome and transcriptome sequencing reveals co-ordinate upregulation of fatty acid β-oxidation and triacylglycerol biosynthesis pathways during eleostearic acid accumulation in seeds. Plant Cell Physiol., 2018, 59(10), 1990-2003.
[http://dx.doi.org/10.1093/pcp/pcy117] [PMID: 30137600]
[64]
Kim, J.; Kang, S.H.; Park, S.G.; Yang, T.J.; Lee, Y.; Kim, O.T.; Chung, O.; Lee, J.; Choi, J.P.; Kwon, S.J.; Lee, K.; Ahn, B.O.; Lee, D.J.; Yoo, S.; Shin, I.G.; Um, Y.; Lee, D.Y.; Kim, G.S.; Hong, C.P.; Bhak, J.; Kim, C.K. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Hortic. Res, 2020, 7(1), 112.
[http://dx.doi.org/10.1038/s41438-020-0329-x] [PMID: 32637140]
[65]
Upadhyay, A.K.; Chacko, A.R.; Gandhimathi, A.; Ghosh, P.; Harini, K.; Joseph, A.P.; Joshi, A.G.; Karpe, S.D.; Kaushik, S.; Kuravadi, N.; Lingu, C.S.; Mahita, J.; Malarini, R.; Malhotra, S.; Malini, M.; Mathew, O.K.; Mutt, E.; Naika, M.; Nitish, S.; Pasha, S.N.; Raghavender, U.S.; Rajamani, A.; Shilpa, S.; Shingate, P.N.; Singh, H.R.; Sukhwal, A.; Sunitha, M.S.; Sumathi, M.; Ramaswamy, S.; Gowda, M.; Sowdhamini, R. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol, 2015, 15(1), 212.
[http://dx.doi.org/10.1186/s12870-015-0562-x] [PMID: 26315624]
[66]
Zhao, D.; Hamilton, J.P.; Pham, G.M.; Crisovan, E.; Wiegert-Rininger, K.; Vaillancourt, B.; DellaPenna, D.; Buell, C.R. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascienc, 2017, 6(9), 1-7.
[http://dx.doi.org/10.1093/gigascience/gix065] [PMID: 28922823]
[67]
Dong, S.; Liu, M.; Liu, Y.; Chen, F.; Yang, T.; Chen, L.; Zhang, X.; Guo, X.; Fang, D.; Li, L.; Deng, T.; Yao, Z.; Lang, X.; Gong, Y.; Wu, E.; Wang, Y.; Shen, Y.; Gong, X.; Liu, H.; Zhang, S. The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids Hortic. Res., 2021, 8(1), 38.
[http://dx.doi.org/10.1038/s41438-021-00471-9] [PMID: 33642574]
[68]
Bai, Y.; Jiang, L.; Li, Z.; Liu, S.; Hu, X.; Gao, F. Flavonoid metabolism in Tetrastigma hemsleyanum diels et gilg based on metabolome analysis and transcriptome sequencing. Molecules, 2022, 28(1), 83.
[http://dx.doi.org/10.3390/molecules28010083] [PMID: 36615276]
[69]
Peng, X.; Wu, H.; Chen, H.; Zhang, Y.; Qiu, D.; Zhang, Z. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress., BMC Genomics,, 2019, 20(1), 687.
[http://dx.doi.org/10.1186/s12864-019-6045-y] [PMID: 31472675]
[70]
Liu, Y.; Pan, J.; Ni, S.; Xing, B.; Cheng, K.; Peng, X. Transcriptome and metabonomics combined analysis revealed the defense mechanism involved in hydrogen-rich water-regulated cold stress response of Tetrastigma hemsleyanum. Front. Plant Sci., 2022, 13, 889726.
[http://dx.doi.org/10.3389/fpls.2022.889726] [PMID: 35812920]
[71]
Yue, E.; Huang, Y.; Qian, L.; Lu, Q.; Wang, X.; Qian, H.; Yan, J.; Ruan, S. Comparative analysis of proanthocyanidin metabolism and genes regulatory network in fresh leaves of two different ecotypes of Tetrastigma hemsleyanum., Plants, 2022, 11(2), 211.
[http://dx.doi.org/10.3390/plants11020211] [PMID: 35050099]
[72]
Yin, S.; Cui, H.; Zhang, L.; Yan, J.; Qian, L.; Ruan, S. Transcriptome and metabolome integrated analysis of two ecotypes of Tetrastigma hemsleyanum reveals candidate genes involved in chlorogenic acid accumulation. Plants, 2021, 10(7), 1288.
[http://dx.doi.org/10.3390/plants10071288] [PMID: 34202839]
[73]
Yan, J.; Qian, L.; Zhu, W.; Qiu, J.; Lu, Q.; Wang, X.; Wu, Q.; Ruan, S.; Huang, Y. Integrated analysis of the transcriptome and metabolome of purple and green leaves of Tetrastigma hemsleyanum reveals gene expression patterns involved in anthocyanin biosynthesis. PLoSOne, 2020, 15(3), e0230154.
[http://dx.doi.org/10.1371/journal.pone.0230154] [PMID: 32150567]
[74]
Jasin, M.; Haber, J.E. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair, 2016, 44, 6-16.
[http://dx.doi.org/10.1016/j.dnarep.2016.05.001] [PMID: 27261202]
[75]
Sukegawa, S.; Saika, H.; Toki, S. Plant genome editing: Ever more precise and wide reaching. Plant J., 2021, 106(5), 1208-1218.
[http://dx.doi.org/10.1111/tpj.15233] [PMID: 33730414]
[76]
Uniyal, AP; Mansotra, K; Yadav, SK; Kumar, V An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants 3 Biotech, 2019, 9(6), 223.
[77]
Demirci, Y.; Zhang, B.; Unver, T. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing J. Cell.Physiol., 2018, 233(3), 1844-1859.
[http://dx.doi.org/10.1002/jcp.25970] [PMID: 28430356]
[78]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering Trends Biotechnol.,, 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[79]
Mushtaq, M.; Ahmad Dar, A.; Skalicky, M.; Tyagi, A.; Bhagat, N.; Basu, U.; Bhat, B.A.; Zaid, A.; Ali, S.; Dar, T.U.H.; Rai, G.K.; Wani, S.H.; Habib-Ur-Rahman, M.; Hejnak, V.; Vachova, P.; Brestic, M. Çığ, A.; Çığ, F.; Erman, M.; EL Sabagh, A. CRISPRbased genome editing tools: Insights into technological breakthroughs and future challenges. Genes, 2021, 12(6), 797.
[http://dx.doi.org/10.3390/genes12060797] [PMID: 34073848]
[80]
Hillary, V.E.; Ceasar, S.A. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects. BioEssays, 2022, 44(9), 220032.
[http://dx.doi.org/10.1002/bies.202200032] [PMID: 35750651]
[81]
Hillary, V.E.; Ceasar, S.A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biotechnol., 2023, 65(3), 311-325.
[http://dx.doi.org/10.1007/s12033-022-00567-0] [PMID: 36163606]
[82]
Zhou, Z.; Li, Q.; Xiao, L.; Wang, Y.; Feng, J.; Bu, Q.; Xiao, Y.; Hao, K.; Guo, M.; Chen, W.; Zhang, L. Multiplexed CRISPR/Cas9-mediated knockout of laccase genes in Salvia miltiorrhiza revealed their roles in growth, development, and metabolism. Front. Plant Sci, 2021, 12(647768)
[http://dx.doi.org/10.3389/fpls.2021.647768] [PMID: 33815454]
[83]
Zhou, Z.; Tan, H.; Li, Q.; Chen, J.; Gao, S.; Wang, Y.; Chen, W.; Zhang, L. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza Phytochemistry, 2018, 148, 63-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.015] [PMID: 29421512]
[84]
Li, B.; Cui, G.; Shen, G.; Zhan, Z.; Huang, L.; Chen, J.; Qi, X. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci. Rep., 2017, 7(1), 43320.
[http://dx.doi.org/10.1038/srep43320] [PMID: 28256553]
[85]
Hasebe, F.; Yuba, H.; Hashimoto, T.; Saito, K.; Funa, N.; Shoji, T. CRISPR/Cas9-mediated disruption of the PYRROLIDINE KETIDE SYNTHASE gene reduces the accumulation of tropane alkaloids in Atropa belladonna hairy roots. Biosci Biotechnol. Biochem., 2021, 85(12), 2404-2409.
[http://dx.doi.org/10.1093/bbb/zbab165] [PMID: 34562094]
[86]
Zeng, L.; Zhang, Q.; Jiang, C.; Zheng, Y.; Zuo, Y.; Qin, J.; Liao, Z.; Deng, H. Development of Atropa belladonna L. plants with high-yield hyoscyamine and without its derivatives using the CRISPR/Cas9 system. Int. J. Mol. Sci, 2021, 22(4), 1731.
[http://dx.doi.org/10.3390/ijms22041731] [PMID: 33572199]
[87]
Feng, S.; Song, W.; Fu, R.; Zhang, H.; Xu, A.; Li, J. Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell Tissue Organ Cult., 2018, 135(1), 133-141.
[http://dx.doi.org/10.1007/s11240-018-1450-5]
[88]
Cankar, K.; Bundock, P.; Sevenier, R.; Häkkinen, S.T.; Hakkert, J.C.; Beekwilder, J.; van der Meer, I.M.; de Both, M.; Bosch, D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. Plant Biotechnol. J, 2021, 19(12), 2442-2453.
[http://dx.doi.org/10.1111/pbi.13670] [PMID: 34270859]
[89]
Confalonieri, M.; Carelli, M.; Gianoglio, S.; Moglia, A.; Biazzi, E.; Tava, A. CRISPR/Cas9-mediated targeted mutagenesis of CYP93E2 modulates the triterpene saponin biosynthesis in Medicago truncatula Front. Plant Sci, 2021, 12, 690231.
[http://dx.doi.org/10.3389/fpls.2021.690231] [PMID: 34381478]
[90]
Alagoz, Y.; Gurkok, T.; Zhang, B.; Unver, T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology Sci. Rep, 2016, 6(1), 30910.
[http://dx.doi.org/10.1038/srep30910] [PMID: 27483984]
[91]
Zakaria, M.M.; Schemmerling, B.; Ober, D. CRISPR/Cas9-mediated genome editing in comfrey (Symphytum officinale) hairy roots results in the complete eradication of pyrrolizidine alkaloids Molecules, 2021, 26(6), 1498.
[http://dx.doi.org/10.3390/molecules26061498] [PMID: 33801907]
[92]
Anke, S.; Niemüller, D.; Moll, S.; Hänsch, R.; Ober, D. Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase Plant Physiol, 2004, 136(4), 4037-4047.
[http://dx.doi.org/10.1104/pp.104.052357] [PMID: 15557091]
[93]
Gill, G.P.; Bryant, C.J.; Fokin, M.; Huege, J.; Fraser, K.; Jones, C.; Cao, M.; Faville, M.J. Low pyrrolizidine alkaloid levels in perennial ryegrass is associated with the absence of a homospermidine synthase gene. BMC Plant Biol, 2018, 18(1), 56.
[http://dx.doi.org/10.1186/s12870-018-1269-6] [PMID: 29625552]
[94]
Wang, Z.; Han, H.; Wang, C.; Zheng, Q.; Chen, H.; Zhang, X.; Hou, R. Hepatotoxicity of pyrrolizidine alkaloid compound intermedine: Comparison with other pyrrolizidine alkaloids and its toxicological mechanism. Toxins, 2021, 13(12), 849.
[http://dx.doi.org/10.3390/toxins13120849] [PMID: 34941687]
[95]
Chen, Z.; Huo, J-R. Hepatic veno-occlusive disease associated with toxicity of pyrrolizidine alkaloids in herbal preparations. Neth. J. Med., 2010, 68(6), 252-260.
[PMID: 20558855]
[96]
Arseculeratne, S.N.; Gunatilaka, A.A.L.; Panabokke, R.G. Studies on medicinal plants of Sri Lanka: Occurrence of pyrrolizidine alkaloids and hepatotoxic properties in some traditional medicinal herbs. J. Ethnopharmacol., 1981, 4(2), 159-177.
[http://dx.doi.org/10.1016/0378-8741(81)90033-7] [PMID: 7311596]
[97]
Watanabe, K.; Oda-Yamamizo, C.; Sage-Ono, K.; Ohmiya, A.; Ono, M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res, 2018, 27(1), 25-38.
[http://dx.doi.org/10.1007/s11248-017-0051-0] [PMID: 29247330]
[98]
Kaur, N.; Alok, A.; Shivani, N.; Kumar, P.; Kaur, N.; Awasthi, P.; Chaturvedi, S.; Pandey, P. Pandey, A.; Pandey, A.K.; Tiwari, S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclasemodulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab. Eng., 2020, 59, 76-86.
[http://dx.doi.org/10.1016/j.ymben.2020.01.008] [PMID: 32006663]
[99]
Ma, W.; Kang, X.; Liu, P.; Zhang, Y.; Lin, X.; Li, B.; Chen, Z. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing. Process Biochem., 2021, 101, 304-311.
[http://dx.doi.org/10.1016/j.procbio.2021.01.001]
[100]
Wen, D.; Wu, L.; Wang, M.; Yang, W.; Wang, X.; Ma, W.; Sun, W.; Chen, S.; Xiang, L.; Shi, Y. CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 promotes flavonoid biosynthesis in tartary buckwheat (Fagopyrum tataricum). Front. Plant Sci, 2022, 13, 879390.
[http://dx.doi.org/10.3389/fpls.2022.879390] [PMID: 35646007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy