Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis of Carboxylic Acid by Electrochemical Fixation of Carbon Dioxide: A Review of Electrochemical Carboxylation from Past to Latest

Author(s): Hisanori Senboku*

Volume 28, Issue 2, 2024

Published on: 04 October, 2023

Page: [76 - 88] Pages: 13

DOI: 10.2174/1385272827666230915162055

Price: $65

Abstract

Electrochemical reduction of organic compounds in the presence of carbon dioxide results in the fixation of carbon dioxide into the substrates with carbon-carbon bond forming reaction to yield the corresponding carboxylic acids. The reaction is called “electrochemical carboxylation” or “electrocarboxylation”. Various kinds of carboxylic acids have been synthesized using carbon dioxide as a carboxyl group source by electrochemical carboxylation. In this mini-review, several representative kinds of carboxylic acids synthesized from carbon dioxide by electrochemical carboxylation are briefly summarized/introduced, comparing past and latest.

« Previous
Graphical Abstract

[1]
Tyssee, D.A.; Wagenknecht, J.H.; Baizer, M.M.; Chruma, J.L. Some cathodic organic syntheses involving carbon dioxide. Tetrahedron Lett., 1972, 13(47), 4809-4812.
[http://dx.doi.org/10.1016/S0040-4039(01)94435-1]
[2]
Baizer, M.M.; Chruma, J.L. Electrolytic reductive coupling. XXI. Reduction of organic halides in the presence of electrophiles. J. Org. Chem., 1972, 37(12), 1951-1960.
[http://dx.doi.org/10.1021/jo00977a020]
[3]
Tyssee, D.A.; Baizer, M.M.; Electrocarboxylation, I. Mono- and decarboxylation of activated olefins. J. Org. Chem., 1974, 39, 2819-2823.
[http://dx.doi.org/10.1021/jo00933a001]
[4]
Tyssee, D.A.; Baizer, M.M.; Electrocarboxylation, I.I. Eletrocarboxylative dimerization and cyclization. J. Org. Chem., 1974, 39, 2823-2828.
[http://dx.doi.org/10.1021/jo00933a002]
[5]
Silvestri, G.; Gambino, S.; Filardo, G.; Gulotta, A. Sacrificial anodes in the electrocarboxylation of organic chlorides. Angew. Chem. Int. Ed. Engl., 1984, 23(12), 979-980.
[http://dx.doi.org/10.1002/anie.198409791]
[6]
Sock, O.; Troupel, M.; Périchon, J. Electrosynthesis of carboxylic acids from organic halides and carbon dioxide. Tetrahedron Lett., 1985, 26(12), 1509-1512.
[http://dx.doi.org/10.1016/S0040-4039(00)98538-1]
[7]
Silvestri, G.; Gambino, S.; Filardo, G.; Tiitta, M.; Sjöström, M.; Wold, S.; Berglind, R.; Karlsson, B. Use of sacrificial anode in synthetic electrochemistry. Processes involving carbon dioxide. Acta Chem. Scand., 1991, 45, 987-992.
[http://dx.doi.org/10.3891/acta.chem.scand.45-0987]
[8]
Chaussard, J.; Folest, J.C.; Nédélec, J.Y.; Périchon, J.; Sibille, S.; Troupel, M. Use of sacrificial anodes in electrochemical functionarization of organic halides. Synthesis, 1990, 1990(5), 369-381.
[http://dx.doi.org/10.1055/s-1990-26880]
[9]
Tokuda, M. Efficient fixation of carbon dioxide by electrolysis – Facile synthesis of useful carboxylic acid –. J. Nat. Gas Chem., 2006, 15(4), 275-281.
[http://dx.doi.org/10.1016/S1003-9953(07)60006-1]
[10]
Senboku, H.; Katayama, A. Electrochemical carboxylation with carbon dioxide. Curr. Opin. Green Sustain. Chem., 2017, 3, 50-54.
[http://dx.doi.org/10.1016/j.cogsc.2016.10.003]
[11]
Senboku, H. Electrochemical fixation of carbon dioxide: Synthesis of carboxylic acids. Chem. Rec., 2021, 21(9), 2354-2374.
[http://dx.doi.org/10.1002/tcr.202100081] [PMID: 33955143]
[12]
Cai, X.; Xie, B. Direct carboxylative reactions for the transformation of carbon dioxide into carboxylic acids and derivatives. Synthesis, 2013, 45(24), 3305-3324.
[http://dx.doi.org/10.1055/s-0033-1340061]
[13]
Matthessen, R.; Fransaer, J.; Binnemans, K.; De Vos, D.E. Electrocarboxylation: Towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J. Org. Chem., 2014, 10, 2484-2500.
[http://dx.doi.org/10.3762/bjoc.10.260] [PMID: 25383120]
[14]
Cherubini-Celli, A.; Mateos, J.; Bonchio, M.; Dell’Amico, L.; Companyó, X. Transition metal-free CO2 fixation into new carbon–carbon bonds. ChemSusChem, 2018, 11(18), 3056-3070.
[http://dx.doi.org/10.1002/cssc.201801063] [PMID: 29882632]
[15]
Cao, Y.; He, X.; Wang, N.; Li, H.R.; He, L.N. Photochemical and electrochemical carbon dioxide utilization with organic compounds. Chin. J. Chem., 2018, 36(7), 644-659.
[http://dx.doi.org/10.1002/cjoc.201700742]
[16]
Lu, Y.; Zou, Y.; Zhao, W.; Wang, M.; Li, C.; Liu, S.; Wang, S. Nanostructured electrocatalysts for electrochemical carboxylation with CO2. Nano Select, 2020, 1(2), 135-151.
[http://dx.doi.org/10.1002/nano.202000001]
[17]
Medvedeva, X.V.; Medvedev, J.J.; Klinkova, A. Translating tactics from direct CO2 electroreduction to electroorganic coupling reactions with CO2. Adv. Energy Sustain. Res., 2021, 2(6), 2100001.
[http://dx.doi.org/10.1002/aesr.202100001]
[18]
Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.E. Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. Green Synth. Catal., 2021, 2(1), 19-26.
[http://dx.doi.org/10.1016/j.gresc.2021.01.009]
[19]
Long Ngo, H.; Kumar Mishra, D.; Mishra, V.; Chien Truong, C. Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem. Eng. Sci., 2021, 229, 116142.
[http://dx.doi.org/10.1016/j.ces.2020.116142]
[20]
Ran, C.K.; Liao, L.L.; Gao, T.Y.; Gui, Y.Y.; Yu, D.G. Recent progress and challenges in carboxylation with CO2. Curr. Opin. Green Sustain. Chem., 2021, 32, 100525.
[http://dx.doi.org/10.1016/j.cogsc.2021.100525]
[21]
Salehia, N.; Azizi, B. Electrochemical double carboxylation of unsaturated C-C bonds with carbon dioxide: An overview. J. Chem. Lett., 2021, 2, 2-8.
[http://dx.doi.org/10.22034/jchemlett.2021.275293.1023]
[22]
Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Recent advances in electrocarboxylation with CO2. Chem. Asian J., 2022, 17(17), e202200543.
[http://dx.doi.org/10.1002/asia.202200543] [PMID: 35792032]
[23]
Murtaza, A.; Qamar, M.A.; Saleem, K.; Hardwick, T.; Shirinfar, B.; Ahmed, N. Renewable electricity enables green routes to fine chemicals and pharmaceuticals. Chem. Rec., 2022, 22(5), e202100296.
[http://dx.doi.org/10.1002/tcr.202100296] [PMID: 35103382]
[24]
Chantarojsiri, T.; Soisuwan, T.; Kongkiatkrai, P. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes. Chin. J. Catal., 2022, 43(12), 3046-3061.
[http://dx.doi.org/10.1016/S1872-2067(22)64180-9]
[25]
Liu, X.F.; Zhang, K.; Tao, L.; Lu, X.B.; Zhang, W.Z. Recent advances in electrochemical carboxylation reactions using carbon dioxide. Green Chem. Eng., 2022, 3(2), 125-137.
[http://dx.doi.org/10.1016/j.gce.2021.12.001]
[26]
Yu, Z.; Shi, M. Recent advances in the electrochemically mediated chemical transformation of carbon dioxide. Chem. Commun., 2022, 58(98), 13539-13555.
[http://dx.doi.org/10.1039/D2CC05242C] [PMID: 36426711]
[27]
Zhang, K.; Liu, X.F.; Ren, W.M.; Lu, X.B.; Zhang, W.Z. Electrocarboxylation reactions using CO2 both as promoter and carboxylative reagent. Chemistry, 2023, 29(32), e202204073.
[http://dx.doi.org/10.1002/chem.202204073] [PMID: 36912894]
[28]
Heintz, M.; Sock, O.; Saboureau, C.; Périchon, J.; Troupel, M. Electrosynthesis of aryl-carboxylic acids from chlorobenzene derivatives and carbon dioxide. Tetrahedron, 1988, 44(6), 1631-1636.
[http://dx.doi.org/10.1016/S0040-4020(01)86724-7]
[29]
Troupel, M.; Rollin, Y.; Périchon, J.; Fauvarque, J.F. Electrosynthesis of aryl carboxylates from aryl halides and carbon dioxide catalyzed by organonickel complexes. Nouv. J. Chim., 1981, 5, 621-625.
[30]
Amatore, C.; Jutand, A. Activation of carbon dioxide by electron transfer and transition metals. Mechanism of nickel-catalyzed electrocarboxylation of aromatic halides. J. Am. Chem. Soc., 1991, 113(8), 2819-2825.
[http://dx.doi.org/10.1021/ja00008a003]
[31]
Amatore, C.; Jutand, A.; Khalil, F.; Nielsen, M.F. Carbon dioxide as a C1 building block. Mechanism of palladium-catalyzed carboxylation of aromatic halides. J. Am. Chem. Soc., 1992, 114(18), 7076-7085.
[http://dx.doi.org/10.1021/ja00044a018]
[32]
Jutand, A.; Négri, S.; Mosleh, A. Palladium catalysed electrosynthesis using aryl trifluoromethanesulfonates (triflates). Synthesis of biaryls and aromatic carboxylic acids. J. Chem. Soc. Chem. Commun., 1992, (23), 1729-1730.
[http://dx.doi.org/10.1039/C39920001729]
[33]
Jutand, A.; Négri, S. Activation of aryl and vinyl triflates by palladium and electron transfer – Electrosynthesis of aromatic and α,β-unsaturated carboxylic acids from carbon dioxide. Eur. J. Org. Chem., 1998, 1998(9), 1811-1821.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199809)1998:9<1811:AID-EJOC1811>3.0.CO;2-V]
[34]
Bazzi, S.; Le Duc, G.; Schulz, E.; Gosmini, C.; Mellah, M. CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation. Org. Biomol. Chem., 2019, 17(37), 8546-8550.
[http://dx.doi.org/10.1039/C9OB01752F] [PMID: 31528934]
[35]
Senboku, H.; Yoneda, K.; Hara, S. Regioselective electrochemical carboxylation of polyfluoroarenes. Electrochemistry, 2013, 81(5), 380-382.
[http://dx.doi.org/10.5796/electrochemistry.81.380]
[36]
Wang, Y.; Zhao, Z.; Pan, D.; Wang, S.; Jia, K.; Ma, D.; Yang, G.; Xue, X.S.; Qiu, Y. Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amount of an organomediator. Angew. Chem. Int. Ed., 2022, 61(41), e202210201.
[http://dx.doi.org/10.1002/anie.202210201] [PMID: 36018273]
[37]
Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qui, Y. Site-selectice electrochemical C-H carboxylation of arenes with CO2. Angew. Chem. Int. Ed., 2022, 61, e202214710.
[http://dx.doi.org/10.1002/anie.202214710]
[38]
Sun, G-Q.; Yu, P.; Yu, P.; Zhang, W.; Wang, Y.; Liao, L.; Lin, S. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylation. Nature, 2023, 615, 67-72.
[http://dx.doi.org/10.1038/s41586-022-05667-0] [PMID: 36603811]
[39]
Yuan, G.; Li, L.; Jiang, H.; Qi, C.; Xie, F. Electrocarboxylation of carbon dioxide with polycyclic aromatic hydrocarbons using Ni as the cathode. Chin. J. Chem., 2010, 28(10), 1983-1988.
[http://dx.doi.org/10.1002/cjoc.201090331]
[40]
You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.; Mita, T. Electrochemical dearomative dicarboxylation of heterocycles with highly negative reduction potentials. J. Am. Chem. Soc., 2022, 144(8), 3685-3695.
[http://dx.doi.org/10.1021/jacs.1c13032] [PMID: 35189683]
[41]
Gal, J.; Folest, J.C.; Troupel, M.; Moingeon, M.O.; Chaussard, J. Synthesis of arylacetic and 2-arylpropionic acids by electrocarboxylation of benzylic compounds bearing a leaving group other than a halogen. New J. Chem., 1995, 19, 401-407.
[42]
Ohkoshi, M.; Michinishi, J.; Hara, S.; Senboku, H. Electrochemical carboxylation of benzylic carbonates: Alternative method for efficient synthesis of arylacetic acids. Tetrahedron, 2010, 66(39), 7732-7737.
[http://dx.doi.org/10.1016/j.tet.2010.07.067]
[43]
Zhong, J.S.; Yang, Z.X.; Ding, C.L.; Huang, Y.F.; Zhao, Y.; Yan, H.; Ye, K.Y. Desulfonylative electrocarboxylation with carbon dioxide. J. Org. Chem., 2021, 86(22), 16162-16170.
[http://dx.doi.org/10.1021/acs.joc.1c01261] [PMID: 34355896]
[44]
Yang, D.T.; Zhu, M.; Schiffer, Z.J.; Williams, K.; Song, X.; Liu, X.; Manthiram, K. Direct electrochemical carboxylation of benzylic C-N bonds with carbon dioxide. ACS Catal., 2019, 9(5), 4699-4705.
[http://dx.doi.org/10.1021/acscatal.9b00818]
[45]
Senboku, H.; Yoneda, K.; Hara, S. Electrochemical direct carboxylation of benzyl alcohols having an electron-withdrawing group on the phenyl ring: One-step formation of phenylacetic acids from benzyl alcohols under mild conditions. Tetrahedron Lett., 2015, 56(48), 6772-6776.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.068]
[46]
Senboku, H.; Nagakura, K.; Fukuhara, T.; Hara, S. Three-component coupling reaction of benzylic halides, carbon dioxide, and N,N-dimethylformamide by using paired electrolysis: Sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. Tetrahedron, 2015, 71(23), 3850-3856.
[http://dx.doi.org/10.1016/j.tet.2015.04.020]
[47]
Corbin, N.; Yang, D.T.; Lazouski, N.; Steinberg, K.; Manthiram, K. Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes. Chem. Sci., 2021, 12(37), 12365-12376.
[http://dx.doi.org/10.1039/D1SC02413B] [PMID: 34603666]
[48]
Fauvarque, J.F.; Jutand, A.; Francois, M. Nickel catalysed electrosynthesis of anti-inflammatory agents. Part I? Synthesis of aryl-2 propionic acids, under galvanostatic conditions. J. Appl. Electrochem., 1988, 18(1), 109-115.
[http://dx.doi.org/10.1007/BF01016213]
[49]
Yamauchi, Y.; Fukuhara, T.; Hara, S.; Senboku, H. Electrochemical carboxylation of α,α-difluorotoluene derivatives and its application to the synthesis of α-fluorinated nonsteroidal anti-inflammatory drugs. Synlett, 2008, 438-442
[http://dx.doi.org/10.1055/s-2008-1032069]
[50]
Yamauchi, Y.; Sakai, K.; Fukuhara, T.; Hara, S.; Senboku, H. Synthesis of 2-aryl-2,3,3,3-tetrafluoropropanoic acids, tetrafluorinated fenoprofen and ketoprofen by elec-trochemical carboxylation of pentafluoroethylarenes. Synthesis, 2009, 3375-3377
[http://dx.doi.org/10.1055/s-0029-1216993]
[51]
Yamauchi, Y.; Hara, S.; Senboku, H. Synthesis of 2-aryl-3,3,3-trifluoropropanoic acids using electrochemical carboxylation of (1-bromo-2,2,2-trifluoroethyl)arenes and its application to the synthesis of β,β,β-trifluorinated non-steroidal anti-inflammatory drugs. Tetrahedron, 2010, 66(2), 473-479.
[http://dx.doi.org/10.1016/j.tet.2009.11.053]
[52]
Zhang, K.; Ren, B.H.; Liu, X.F.; Wang, L.L.; Zhang, M.; Ren, W.M.; Lu, X.B.; Zhang, W.Z. Direct and selective electrocarboxylation of styrene oxides with CO2 for accessing β-hydroxy acids. Angew. Chem. Int. Ed., 2022, 61(38), e202207660.
[http://dx.doi.org/10.1002/anie.202207660] [PMID: 35862121]
[53]
Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Electrocarboxylation of aryl epoxides with CO2 for facile and selective synthesis of β-hydroxy acids. Angew. Chem. Int. Ed., 2022, 61(38), e202207746.
[http://dx.doi.org/10.1002/anie.202207746] [PMID: 35906182]
[54]
Liao, L.L.; Wang, Z.H.; Cao, K.G.; Sun, G.Q.; Zhang, W.; Ran, C.K.; Li, Y.; Chen, L.; Cao, G.M.; Yu, D.G. Electrochemical ring-opening decarboxylation of strained carbon–carbon single bonds with CO2: Facile synthesis of diacids and derivatization into polyesters. J. Am. Chem. Soc., 2022, 144(5), 2062-2068.
[http://dx.doi.org/10.1021/jacs.1c12071] [PMID: 35084189]
[55]
Liu, X.F.; Zhang, K.; Wang, L.L.; Wang, H.; Huang, J.; Zhang, X.T.; Lu, X.B.; Zhang, W.Z. Electroreductive ring-opening carboxylation of cycloketone oxime esters with carbon dioxide. J. Org. Chem., 2023, 88(8), 5212-5219.
[http://dx.doi.org/10.1021/acs.joc.2c01816] [PMID: 36273332]
[56]
Filardo, G.; Gambino, S.; Silvestri, G.; Gennaro, A.; Vianello, E. Electrocarboxylation of styrene through homogeneous redox catalysis. J. Electroanal. Chem. Interfacial Electrochem., 1984, 177(1-2), 303-309.
[http://dx.doi.org/10.1016/0022-0728(84)80232-6]
[57]
Gambino, S.; Gennaro, A.; Filardo, G.; Silvestri, G.; Vianello, E. Electrochemical carboxylation of styrene. J. Electrochem. Soc., 1987, 134(9), 2172-2175.
[http://dx.doi.org/10.1149/1.2100846]
[58]
Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M. Efficient electrochemical dicarboxylation of phenyl-substituted alkenes: Synthesis of 1-phenylalkane-1,2-dicarboxylic acids. Synlett,, 2001, 2001(3), 0418-0420.
[http://dx.doi.org/10.1055/s-2001-11417]
[59]
Zhang, W.; Liao, L-L.; Li, L.; Liu, Y.; Dai, L-F.; Sun, G-Q.; Ran, C-K.; Ye, J-H.; Lan, Y.; Yu, D-G. Electroreductive dicarboxylation of unactivated skipped dienes with CO2. Angew. Chem. Int. Ed., 2023, 62(23), e202301892.
[http://dx.doi.org/10.1002/anie.202301892]
[60]
Zhang, W.; Lin, S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via radical-polar crossover mechanism. J. Am. Chem. Soc., 2020, 142(49), 20661-20670.
[http://dx.doi.org/10.1021/jacs.0c08532] [PMID: 33231074]
[61]
Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I.A.; Malkov, A.V.; Buckley, B.R. Harnessing applied potential: Selective β-hydrocarboxylation of substituted olefins. J. Am. Chem. Soc., 2020, 142(4), 1780-1785.
[http://dx.doi.org/10.1021/jacs.9b13305] [PMID: 31960672]
[62]
Kim, Y.; Park, G.D.; Balamurugan, M.; Seo, J.; Min, B.K.; Nam, K.T. Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water. Adv. Sci., 2020, 7(3), 1900137.
[http://dx.doi.org/10.1002/advs.201900137] [PMID: 32042549]
[63]
Silvestri, G.; Gambino, S.; Filardo, G. Electrochemical carboxylation of aldehydes and ketones with sacrificial aluminum anodes. Tetrahedron Lett., 1986, 27(29), 3429-3430.
[http://dx.doi.org/10.1016/S0040-4039(00)84814-5]
[64]
Mcharek, S.; Heintz, M.; Troupel, M.; Périchon, J. Electrocarboxylation de composes carbonyles aliphatiques, aromatiques et vinyliques: Interet de l’utilisation d’une anode consommable en magnesium. Bull. Soc. Chim. Fr., 1989, 1, 95-97.
[65]
Muchez, L.; De Vos, D.E.; Kim, M. Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols. ACS Sustain. Chem. Eng., 2019, 7(19), 15860-15864.
[http://dx.doi.org/10.1021/acssuschemeng.9b04612]
[66]
Senboku, H.; Sakai, K.; Fukui, A.; Sato, Y.; Yamauchi, Y. Efficient synthesis of mandel acetates by electrochemical carboxylation of benzal diacetates. ChemElectroChem, 2019, 6(16), 4158-4164.
[http://dx.doi.org/10.1002/celc.201900200]
[67]
Tokuda, M.; Kabuki, T.; Katoh, Y.; Suginome, H. Regioselective synthesis of β,γ-unsaturated acids by the electrochemical carboxylation of allylic bromides using a reactive-metal anode. Tetrahedron Lett., 1995, 36(19), 3345-3348.
[http://dx.doi.org/10.1016/0040-4039(95)00537-M]
[68]
Wu, L.X.; Deng, F.J.; Wu, L.; Wang, H.; Chen, T.; Guan, Y.B.; Lu, J.X. Nickel-catalyzed electrocarboxylation of allylic halides with CO2. New J. Chem., 2021, 45(29), 13137-13141.
[http://dx.doi.org/10.1039/D1NJ02006D]
[69]
Torii, S.; Tanaka, H.; Hamatani, T.; Morisaki, K.; Jutand, A.; Peluger, F.; Fauvarque, J.F. Pd(O)-catalyzed electroreductive carboxylation of aryl halides, β-bromostyrene, and allyl acetates with CO2. Chem. Lett., 1986, 15(2), 169-172.
[http://dx.doi.org/10.1246/cl.1986.169]
[70]
Jiao, K.J.; Li, Z.M.; Xu, X.T.; Zhang, L.P.; Li, Y.Q.; Zhang, K.; Mei, T.S. Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide. Org. Chem. Front., 2018, 5(14), 2244-2248.
[http://dx.doi.org/10.1039/C8QO00507A]
[71]
Tummanapalli, S.; Gulipalli, K.C.; Endoori, S.; Bodige, S.; Kumar Pommidi, A.; Medaboina, S.; Rejinthala, S.; Choppadandi, S.; Boya, R.; Kanuka, A.; Valluri, M. A highly regio- and stereoselective Pd-catalyzed electrocarboxylation of Baylis-Hillman acetates: An interesting switchable regioselectivity based on electrode material. Tetrahedron Lett., 2022, 104, 154022.
[http://dx.doi.org/10.1016/j.tetlet.2022.154022]
[72]
Ang, N.W.J.; Oliveira, J.C.A.; Ackermann, L. Electroreductive cobalt-catalyzed carboxylation: Cross-electrophile electrocoupling with atmospheric CO2. Angew. Chem. Int. Ed., 2020, 59(31), 12842-12847.
[http://dx.doi.org/10.1002/anie.202003218] [PMID: 32329560]
[73]
Weinberg, N.L.; Kentaro Hoffmann, A.; Reddy, T.B. The electrochemical reductive carboxylation of benzalaniline in molten tetraethyl ammonium p-toluenesulfonate. Tetrahedron Lett., 1971, 12(25), 2271-2274.
[http://dx.doi.org/10.1016/S0040-4039(01)96837-6]
[74]
Root, D.K.; Smith, W.H. Electrochemical behavior of selected imine derivatives, reductive carboxylation, α-amino acid synthesis. J. Electrochem. Soc., 1982, 129(6), 1231-1236.
[http://dx.doi.org/10.1149/1.2124092]
[75]
Silvestri, G.; Gambino, S.; Filardo, G. Synthesis of N-substituted α-amino acids by electrocarboxylation of imines with sacrificial metallic anodes. Gazz. Chim. Ital., 1988, 118, 643-648.
[76]
Koshechko, V.G.; Titov, V.E.; Bondarenko, V.N.; Pokhodenko, V.D. Electrochemical carboxylation of fluorocontaining imines with preparation of fluorinated N-phenylphenylglycines. J. Fluor. Chem., 2008, 129(8), 701-706.
[http://dx.doi.org/10.1016/j.jfluchem.2008.06.010]
[77]
Li, C.H.; Song, X.Z.; Tao, L.M.; Li, Q.G.; Xie, J.Q.; Peng, M.N.; Pan, L.; Jiang, C.; Peng, Z.Y.; Xu, M.F. Electrogenerated-bases promoted electrochemical synthesis of N-bromoamino acids from imines and carbon dioxide. Tetrahedron, 2014, 70(10), 1855-1860.
[http://dx.doi.org/10.1016/j.tet.2014.01.054]
[78]
Qu, Y.; Tsuneishi, C.; Tateno, H.; Matsumura, Y.; Atobe, M. Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor. React. Chem. Eng., 2017, 2(6), 871-875.
[http://dx.doi.org/10.1039/C7RE00149E]
[79]
Naito, Y.; Nakamura, Y.; Shida, N.; Senboku, H.; Tanaka, K.; Atobe, M. Integrated flow synthesis of α-amino acids by in situ generation of aldimines and subsequent electrochemical carboxylation. J. Org. Chem., 2021, 86(22), 15953-15960.
[http://dx.doi.org/10.1021/acs.joc.1c00821] [PMID: 34152747]
[80]
Zhang, K.; Liu, X.F.; Zhang, W.Z.; Ren, W.M.; Lu, X.B. Electrocarboxylation of N-acylimines with carbon dioxide: Access to substituted α-amino acids. Org. Lett., 2022, 24(19), 3565-3569.
[http://dx.doi.org/10.1021/acs.orglett.2c01267] [PMID: 35532347]
[81]
Senboku, H.; Minemura, Y.; Suzuki, Y.; Matsuno, H.; Takakuwa, M. Synthesis of N-Boc-α-amino acids from carbon dioxide by electrochemical carboxylation of N-Boc-α-aminosulfones. J. Org. Chem., 2021, 86(22), 16077-16083.
[http://dx.doi.org/10.1021/acs.joc.1c01516] [PMID: 34550701]
[82]
Saboureau, C.; Troupel, M.; Sibille, S.; Périchon, J. Electroreductive coupling of trifluoromethylarenes with electrophiles: Synthetic applications. J. Chem. Soc. Chem. Commun., 1989, (16), 1138-1139.
[http://dx.doi.org/10.1039/C39890001138]
[83]
Chiozza, E.; Desigaud, M.; Greiner, J.; Duñach, E. First example of double bond migration in the electrochemical CO2 incorporation into (perfluoroalkyl)alkenes. Tetrahedron Lett., 1998, 39(27), 4831-4834.
[http://dx.doi.org/10.1016/S0040-4039(98)00948-4]
[84]
Gao, X.T.; Zhang, Z.; Wang, X.; Tian, J.S.; Xie, S.L.; Zhou, F.; Zhou, J. Direct electrochemical defluorinative carboxylation of α-CF3 alkenes with carbon dioxide. Chem. Sci. (Camb.), 2020, 11(38), 10414-10420.
[http://dx.doi.org/10.1039/D0SC04091F] [PMID: 34123181]
[85]
Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Regiodivergent electroreductive defluorinative carboxylation of gem-difluorocyclopropanes. Green Chem., 2023, 25(8), 3095-3102.
[http://dx.doi.org/10.1039/D2GC04636A]
[86]
Xie, S.L.; Gao, X.T.; Wu, H.H.; Zhou, F.; Zhou, J. Direct electrochemical defluorinative carboxylation of gem-difluoroalkenes with carbon dioxide. Org. Lett., 2020, 22(21), 8424-8429.
[http://dx.doi.org/10.1021/acs.orglett.0c03051] [PMID: 33044834]
[87]
Chaussard, J.; Troupel, M.; Robin, Y.; Jacob, G.; Juhasz, J.P. Scale-up of electrocarboxylation reactions with a consumable anode. J. Appl. Electrochem., 1989, 19(3), 345-348.
[http://dx.doi.org/10.1007/BF01015234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy