Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Biochar, Clay, Zeolites, and Microorganism-based Methods for Remediation of Heavy Metals

Author(s): Yukti Monga, Shivangi Sharma, Shivendra Singh* and Ashu Gupta*

Volume 11, Issue 1, 2024

Published on: 22 September, 2023

Page: [2 - 11] Pages: 10

DOI: 10.2174/2213346110666230915140448

Price: $65

Abstract

The modern world of chemistry needs to find a sustainable solution for the remediation of heavy metals. The method of solving heavy metal problems using abundant and easily available ways is an integral part of green chemistry. This approach stimulates innovation among scientists. These procedures increase performance and decrease the consumption of non-renewable resources, minimizing negative impacts on the environment and less use of harmful chemicals. In this review, we have included some natural ways for the remediation of heavy metals such as Biochar, Clay, Zeolites, and Microorganismbased methods. We have also incorporated the mechanism of action of each of these procedures for the betterment of the reader.

Graphical Abstract

[1]
Robinson, J.M.; Brindley, P.; Cameron, R.; MacCarthy, D.; Jorgensen, A. Nature’s role in supporting health during the COVID-19 pandemic: A geospatial and socioecological study. Int. J. Environ. Res. Public Health, 2021, 18(5), 2227.
[http://dx.doi.org/10.3390/ijerph18052227] [PMID: 33668228]
[2]
Kumar, A.; Malla, M.A.; Dubey, A. With corona outbreak: Nature started hitting the reset button globally. Front. Public Health, 2020, 8, 569353.
[http://dx.doi.org/10.3389/fpubh.2020.569353] [PMID: 33072704]
[3]
Shende, V.; Janbandhu, K.; Patil, K. Impact of human beings on environment. Int. J. Res. Biosci. Agric. Technol, 2015, 3, 23-28.
[4]
Gimah, B.; Bodo, T. Curbing human activities that degrade the environment: The relevance of environmental adult education. Earth Environ. Sci. Res. Rev., 2019, 2(5), 1-7.
[5]
Monga, Y.; Kumar, P.; Sharma, R.K.; Filip, J.; Varma, R.S. Zbořil, R.; Gawande, M.B. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation. ChemSusChem, 2020, 13(13), 3288-3305.
[http://dx.doi.org/10.1002/cssc.202000290] [PMID: 32357282]
[6]
Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem., 2011, 4(4), 361-377.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.019]
[7]
Gawande, M.B.; Monga, Y.; Zboril, R.; Sharma, R.K. Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev., 2015, 288, 118-143.
[http://dx.doi.org/10.1016/j.ccr.2015.01.001]
[8]
Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review npj Clean Water, 2021, 4(1), 36.
[http://dx.doi.org/10.1038/s41545-021-00127-0]
[9]
Pohl, A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut., 2020, 231(10), 503.
[http://dx.doi.org/10.1007/s11270-020-04863-w]
[10]
Mahmood, M.; Barbooti, M.; Balasim, A.; Altameemi, A.; Al-Terehi, M.; Al-Shuwaiki, N. Removal of heavy metals using chemicals precipitation. Eng. Technol. J., 2011, 29(3), 595-612.
[11]
Benalia, M.C.; Youcef, L.; Bouaziz, M.G.; Achour, S.; Menasra, H. Removal of heavy metals from industrial wastewater by chemical precipitation: Mechanisms and sludge characterization. Arab. J. Sci. Eng., 2022, 47(5), 5587-5599.
[http://dx.doi.org/10.1007/s13369-021-05525-7]
[12]
Pietrucci, F.; Boero, M.; Andreoni, W. How natural materials remove heavy metals from water: Mechanistic insights from molecular dynamics simulations. Chem. Sci., 2021, 12(8), 2979-2985.
[http://dx.doi.org/10.1039/D0SC06204A] [PMID: 34164066]
[13]
Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin., 2016, 7(4), 387-419.
[14]
Yadav, M.; Singh, G.; Jadeja, R.N. Physical and chemical methods for heavy metal removal. In: Pollutants and Water Management: Resources, Strategies and Scarcity; John Wiley and Sons, 2021; pp. 377-397.
[http://dx.doi.org/10.1002/9781119693635.ch15]
[15]
Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals, 2019, 9(8), 487.
[http://dx.doi.org/10.3390/min9080487]
[16]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[17]
Hamdan, A.M.; Abd-El-Mageed, H.; Ghanem, N. Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Sci. Rep., 2021, 11(1), 9314.
[http://dx.doi.org/10.1038/s41598-021-88843-y] [PMID: 33927316]
[18]
Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol., 2018, 6, 157.
[19]
Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv., 2022, 7, 100168.
[http://dx.doi.org/10.1016/j.envadv.2022.100168]
[20]
Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P.K.S.M. Integrated remediation processes toward heavy metal removal/recovery from various environments - A review. Front. Environ. Sci., 2019, 7, 66.
[21]
Eman, N.A. Removal of heavy metals from water and wastewater using Moringa oleifera. In: Trace Elements in the Environment - New Approaches and Recent Advances; , 2020; 23, p. (6)64.
[22]
Mehrandish, R.; Rahimian, A.; Shahriary, A. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J. HerbMed Pharmacol, 2019, 8(2), 69-77.
[http://dx.doi.org/10.15171/jhp.2019.12]
[23]
Tangahu, B.V.; Sheikh, A.; S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., 2011, 2011, 1-31.
[http://dx.doi.org/10.1155/2011/939161]
[24]
Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Research, 2022, 1(1), 8.
[http://dx.doi.org/10.1007/s44246-022-00007-3]
[25]
Martins, D.D.; Serra, J.C.V.; Zukowski J, J.C.; Pedroza, M.M. Efficiency of biochars in the removal of heavy metals. Acta Brasiliensis, 2019, 3(3), 131.
[http://dx.doi.org/10.22571/2526-4338242]
[26]
Godwin, P.M.; Pan, Y.; Xiao, H.; Afzal, M.T. Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J. Bioresour. Bioprod., 2019, 4(1), 31-42.
[http://dx.doi.org/10.21967/jbb.v4i1.180]
[27]
Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep., 2020, 28, e00570.
[http://dx.doi.org/10.1016/j.btre.2020.e00570] [PMID: 33304842]
[28]
Xu, R.; Zhao, A. Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Environ. Sci. Pollut. Res. Int., 2013, 20(12), 8491-8501.
[http://dx.doi.org/10.1007/s11356-013-1769-8] [PMID: 23649601]
[29]
Zhao, M.; Dai, Y.; Zhang, M.; Feng, C.; Qin, B.; Zhang, W.; Zhao, N.; Li, Y.; Ni, Z.; Xu, Z.; Tsang, D.C.W.; Qiu, R. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ., 2020, 717, 136894.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136894] [PMID: 32084677]
[30]
Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol., 2021, 18(10), 3273-3294.
[http://dx.doi.org/10.1007/s13762-020-03060-w]
[31]
Vithanage, M.; Rajapaksha, A.U.; Tang, X.; Thiele-Bruhn, S.; Kim, K.H.; Lee, S.E.; Ok, Y.S. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manage., 2014, 141, 95-103.
[http://dx.doi.org/10.1016/j.jenvman.2014.02.030] [PMID: 24768839]
[32]
Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125, 70-85.
[http://dx.doi.org/10.1016/j.chemosphere.2014.12.058] [PMID: 25618190]
[33]
Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere, 2017, 167, 367-373.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.151] [PMID: 27743533]
[34]
Otunola, B.O.; Ololade, O.O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ Technol Inno, 2020, 18, 100692.
[http://dx.doi.org/10.1016/j.eti.2020.100692]
[35]
Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett., 2019, 17(2), 629-654.
[http://dx.doi.org/10.1007/s10311-018-0813-9]
[36]
Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere, 2017, 27(2), 193-204.
[http://dx.doi.org/10.1016/S1002-0160(17)60310-2]
[37]
Ullah, R.; Iftikhar, F.; Ajmal, M.; Shah, A.; Akhter, M.; Ullah, H.; Waseem, A. Modified clays as an efficient adsorbent for brilliant green, ethyl violet and allura red dyes: Kinetic and thermodynamic studies. Pol. J. Environ. Stud., 2020, 29(5), 3831-3839.
[http://dx.doi.org/10.15244/pjoes/112363]
[38]
Wang, L.; Li, X.; Tsang, D.C.W.; Jin, F.; Hou, D. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. J. Hazard. Mater., 2020, 387, 122005.
[http://dx.doi.org/10.1016/j.jhazmat.2019.122005] [PMID: 31918052]
[39]
Wang, J.; Shaheen, S.M.; Swertz, A.C.; Rennert, T.; Feng, X.; Rinklebe, J. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. J. Hazard. Mater., 2019, 371, 687-693.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.010] [PMID: 30889465]
[40]
Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere, 2020, 245, 125620.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125620] [PMID: 31869671]
[41]
Yuna, Z. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ. Eng. Sci., 2016, 33(7), 443-454.
[http://dx.doi.org/10.1089/ees.2015.0166]
[42]
Shi, W.; Shao, H.; Li, H.; Shao, M.; Du, S. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater., 2009, 170(1), 1-6.
[http://dx.doi.org/10.1016/j.jhazmat.2009.04.097] [PMID: 19464110]
[43]
Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater., 2011, 144(1-3), 15-18.
[http://dx.doi.org/10.1016/j.micromeso.2011.03.024]
[44]
Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci., 2004, 280(2), 309-314.
[http://dx.doi.org/10.1016/j.jcis.2004.08.028] [PMID: 15533402]
[45]
Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. Removal of heavy metals from mine waters by natural zeolites. Environ. Sci. Technol., 2005, 39(12), 4606-4613.
[http://dx.doi.org/10.1021/es048482s] [PMID: 16047799]
[46]
Belviso, C. Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes, 2020, 8(7), 820.
[http://dx.doi.org/10.3390/pr8070820]
[47]
Medunić, G.; Singh, P.K.; Singh, A.L.; Rai, A.; Rai, S.; Jaiswal, M.K.; Obrenović, Z.; Petković, Z.; Janeš, M. Use of bacteria and synthetic zeolites in remediation of soil and water polluted with superhigh-organic-sulfur raša coal (Raša Bay, North Adriatic, Croatia). Water, 2019, 11(7), 1419.
[http://dx.doi.org/10.3390/w11071419]
[48]
Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. Ecotoxicol. Environ. Saf., 2019, 174, 129-136.
[http://dx.doi.org/10.1016/j.ecoenv.2019.01.124] [PMID: 30825735]
[49]
Jiménez-Castañeda, M.; Medina, D. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 2017, 9(4), 235.
[http://dx.doi.org/10.3390/w9040235]
[50]
Bowman, R.S. Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater., 2003, 61(1-3), 43-56.
[http://dx.doi.org/10.1016/S1387-1811(03)00354-8]
[51]
Kapahi, M.; Sachdeva, S. Bioremediation options for heavy metal pollution. J. Health Pollut., 2019, 9(24), 191203.
[http://dx.doi.org/10.5696/2156-9614-9.24.191203] [PMID: 31893164]
[52]
Sayqal, A.; Ahmed, O.B. Advances in heavy metal bioremediation: An overview. Appl. Bionics Biomech., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/1609149] [PMID: 34804199]
[53]
Medfu T, M.; Zewdu S, F.; Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric., 2020, 6(1), 1783174.
[http://dx.doi.org/10.1080/23311932.2020.1783174]
[54]
Massoud, R.; Hadiani, M.R.; Hamzehlou, P.; Khosravi-Darani, K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electron. J. Biotechnol., 2019, 37, 56-60.
[http://dx.doi.org/10.1016/j.ejbt.2018.11.003]
[55]
Dutt, S.; Kumar, A.; Singh, S. Synthesis of metal organic frameworks (MOFs) and their derived materials for energy storage applications. Cleanroom Technol., 2023, 5(1), 140-166.
[http://dx.doi.org/10.3390/cleantechnol5010009]
[56]
Muhyaddin, M.; Turki Al-Musawi, A.; Al-Musawi, A. Use of Saccharomyces cerevisiae in bioremediation of some heavy metals. Magallat Markaz Buhut al-Tiqniyyat al-Ahya’iyyat, 2015, 9, 46-56.
[http://dx.doi.org/10.24126/jobrc.2015.9.2.435]
[57]
Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H.; Younesi, H. The biosorption capacity of Saccharomyces cerevisiae for cadmium in milk. Dairy, 2020, 1(2), 169-176.
[http://dx.doi.org/10.3390/dairy1020011]
[58]
de Lima, M.; Franco, L.; de Souza, P.; do Nascimento, A.; da Silva, C.; Maia, R.; Rolim, H.; Takaki, G. Cadmium tolerance and removal from Cunninghamella elegans related to the polyphosphate metabolism. Int. J. Mol. Sci., 2013, 14(4), 7180-7192.
[http://dx.doi.org/10.3390/ijms14047180] [PMID: 23538844]
[59]
Tarfeen, N.; Nisa, K.U.; Hamid, B.; Bashir, Z.; Yatoo, A.M.; Dar, M.A.; Mohiddin, F.A.; Amin, Z.; Ahmad, R.A.; Sayyed, R.Z. Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes , 2022, 10(7), 1358.
[http://dx.doi.org/10.3390/pr10071358]
[60]
Xie, Y.; He, N.; Wei, M.; Wen, T.; Wang, X.; Liu, H.; Zhong, S.; Xu, H. Cadmium biosorption and mechanism investigation using a novel Bacillus subtilis KC6 isolated from pyrite mine. J. Clean. Prod., 2021, 312, 127749.
[http://dx.doi.org/10.1016/j.jclepro.2021.127749]
[61]
Gupta, S.; Surendran, A.; Joseph, T,A. Biosorption of lead using the bacterial strain, Bacillus subtilis (MTCC 2423). J. Biotechnol. Biomed. Sci, 2020, 2(3), 1401.
[http://dx.doi.org/10.14302/issn.2576-6694.jbbs-20-3419]
[62]
Syed, S.; Chinthala, P. Heavy metal detoxification by different bacillus species isolated from solar salterns. Scientifica, 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/319760] [PMID: 26525498]
[63]
Iram, S.; Rukh, S.; Ara, T. Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int. Res. J. Biol. Sci., 2013, 2, 1-8.
[64]
Taştan, B.E.; Ertuğrul, S.; Dönmez, G. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour. Technol., 2010, 101(3), 870-876.
[http://dx.doi.org/10.1016/j.biortech.2009.08.099] [PMID: 19773159]
[65]
Dusengemungu, L.; Kasali, G.; Gwanama, C.; Ouma, K.O. Recent advances in biosorption of copper and cobalt by filamentous fungi. Front. Microbiol., 2020, 11, 582016.
[http://dx.doi.org/10.3389/fmicb.2020.582016] [PMID: 33408701]
[66]
Ghosh, S.; Rusyn, I.; Dmytruk, O.V.; Dmytruk, K.V.; Onyeaka, H.; Gryzenhout, M.; Gafforov, Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front. Bioeng. Biotechnol., 2023, 11, 1106973.
[http://dx.doi.org/10.3389/fbioe.2023.1106973] [PMID: 36865030]
[67]
Jeyakumar, P.; Debnath, C.; Vijayaraghavan, R.; Muthuraj, M. Trends in bioremediation of heavy metal contaminations. Environ. Eng. Res., 2023, 28(4), 220631-0.
[http://dx.doi.org/10.4491/eer.2021.631]
[68]
Tufail, M.A.; Iltaf, J.; Zaheer, T.; Tariq, L.; Amir, M.B.; Fatima, R.; Asbat, A.; Kabeer, T.; Fahad, M.; Naeem, H.; Shoukat, U.; Noor, H.; Awais, M.; Umar, W.; Ayyub, M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci. Total Environ., 2022, 850, 157961.
[http://dx.doi.org/10.1016/j.scitotenv.2022.157961] [PMID: 35963399]
[69]
Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci., 2022, 23(9), 5031.
[http://dx.doi.org/10.3390/ijms23095031] [PMID: 35563429]
[70]
Emenike, C.U.; Agamuthu, P.; Fauziah, S.H. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environ. Earth Sci., 2016, 75(1), 26.
[http://dx.doi.org/10.1007/s12665-015-4805-9]
[71]
Gao, R.; Wang, Y.; Zhang, Y.; Tong, J.; Dai, W. Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol. Biotechnol. Equip., 2017, 31(3), 527-534.
[http://dx.doi.org/10.1080/13102818.2017.1292148]
[72]
Nguyen, K.Q.; Kantachote, D.; Onthong, J.; Sukhoom, A. Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions. Ann. Microbiol., 2018, 68(4), 217-228.
[http://dx.doi.org/10.1007/s13213-018-1332-4]
[73]
Li, M.; Ning, P.; Sun, Y.; Luo, J.; Yang, J. Characteristics and application of Rhodopseudomonas palustris as a microbial cell factory. Front. Bioeng. Biotechnol., 2022, 10, 897003.
[http://dx.doi.org/10.3389/fbioe.2022.897003] [PMID: 35646843]
[74]
Xiao, X.; Zhu, Y.; Gao, Y.; Fu, J.; Zhao, Y.; Zhao, L.J.P. Inoculation of paddy soils with Rhodopseudomonas palustris enhanced heavy metal immobilisation. Plant Soil Environ., 2021, 67(1), 55-60.
[75]
Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol., 2018, 2018, 1-16.
[http://dx.doi.org/10.1155/2018/2568038] [PMID: 30363677]
[76]
Saldarriaga-Noreña, H.; Murillo-Tovar, M.A.; Farooq, R.; Dongre, R.; Riaz, S. Eds.; Environmental Chemistry and Recent Pollution Control Approaches; BoD-Books on Demand, 2019.
[http://dx.doi.org/10.5772/intechopen.80247]
[77]
Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.; Sahu, A.; Shukla, R.; Singh, B.; Rai, J.; Sharma, P.; Lade, H.; Paul, D. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 2015, 7(2), 2189-2212.
[http://dx.doi.org/10.3390/su7022189]
[78]
Sharma, S.; Singh, S. Synthetic routes to quinoline-based derivatives having potential anti-bacterial and anti-fungal properties. Curr. Org. Chem., 2022, 26(15), 1453-1469.
[http://dx.doi.org/10.2174/1385272827666221021140934]
[79]
Sharma, S.; Singh, S.; Yadav, D. Quinoline-Based Anti-Oncogenic Molecules: Synthesis and Biological Evaluation; Medicinal Chemistry: Shariqah, United Arab Emirates, 2023.
[80]
Singh, K.; Singh, S.; Kathal, R.; Sharma, S. Simplified procedure for application of DBE, the rule of 13 & nitrogen rule in structure elucidation of organic compounds. Lett. Org. Chem., 2023, 20(3), 276-285.
[http://dx.doi.org/10.2174/1570178619666220902120311]
[81]
Singh, S.; Sharma, S.; Das, S.; Kumar D, A. Spider Silk: Biosynthesis, properties & bioengineering. Curr. Nanomater., 2023, 8(4), 83-91.
[82]
Sharma, S.; Singh, S. Molecular docking study for binding affinity of 2H-thiopyrano[2,3-b]quinoline derivatives against CB1a. Interdiscip. Perspect. Infect. Dis., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/1618082] [PMID: 36655217]
[83]
Sharma, S.; Singh, K.; Singh, S. Synthetic strategies for quinoline based derivatives as potential bioactive heterocycles. Curr. Org. Synth., 2023, 20(6), 606-629.
[http://dx.doi.org/10.2174/1570179420666221004143910] [PMID: 36200204]
[84]
Sharma, S.; Monga, Y.; Gupta, A.; Singh, S. 2-Oxindole and related heterocycles: Synthetic methodologies for their natural products and related derivatives. RSC Adv., 2023, 13(21), 14249-14267.
[http://dx.doi.org/10.1039/D3RA02217J] [PMID: 37179999]
[85]
Sharma, S.; Mishra, A.K.; Singh, S. Molecular docking study of 2, 3, 4-trisubstituted-2, 3, 4, 9-tetrahydrothiopyrano [2, 3-b] indole derivatives with TRPV channels: Possible new analgesics. J. Eng. Technol. Res, 2023, V(I), 11-22.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy