Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Medicinal Plant-rich Diet: A Potential Therapeutic Role in Colorectal Cancer

Author(s): Pankaj Kumar Tripathi and Chakresh Kumar Jain*

Volume 22, Issue 3, 2024

Published on: 22 September, 2023

Page: [308 - 318] Pages: 11

DOI: 10.2174/1871525722666230915103747

Price: $65

Abstract

Background: Colorectal cancer is estimated to become the leading cause of cancer death worldwide. Since most of the available therapies affect vital organs such as heart and liver, herbal remedies as a substitute therapy have been reported in several evidence-based studies.

Objective: Medicinal plants exhibit a diverse range of bioactive elements known for their medicinal properties, such as anti-inflammatory, anticancer, antioxidant, and antimicrobial effects. Phytochemicals present in medicinal plants significantly trigger different signaling pathways, contributing to their therapeutic activities. This review covers a comprehensive summary of the therapeutic potential of an herbal diet in treating colorectal cancer and other ailments. Special attention will be given to exploring the interactions of medicinal plants with the microbiota and their associations with cancer pathways.

Conclusion: A medicinal plant rich in bioactive compounds is a therapeutic option for colorectal cancer and potent cardioprotective and hepatoprotective agents. These bioactive compounds have demonstrated the ability to impede the growth of cancerous cells and trigger apoptosis. Our findings suggest that pomegranate, garlic, soybean, olive, green tea, papaya, and grapes are potential medicinal plants for combating cancer and related side effects. Bioactive compounds can modulate the gut microbiota's metabolism, and short-chain fatty acid production shows cardioprotective effects and reduces the risk of colorectal cancer. Hence, it can be stated that the interaction between a medicinal plant-rich diet and the gut microbiota plays a crucial role in preventing colorectal cancer and cardiac arrest.

[1]
Watson, A.J.M.; Collins, P.D. Colon cancer: A civilization disorder. Dig. Dis., 2011, 29(2), 222-228.
[http://dx.doi.org/10.1159/000323926] [PMID: 21734388]
[2]
Schultz, D.J.; Wickramasinghe, N.S.; Ivanova, M.M.; Isaacs, S.M.; Dougherty, S.M.; Imbert-Fernandez, Y.; Cunningham, A.R.; Chen, C.; Klinge, C.M. Anacardic acid inhibits estrogen receptor α-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol. Cancer Ther., 2010, 9(3), 594-605.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0978] [PMID: 20197399]
[3]
Huxley, R.R.; Ansary-Moghaddam, A.; Clifton, P.; Czernichow, S.; Parr, C.L.; Woodward, M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int. J. Cancer, 2009, 125(1), 171-180.
[http://dx.doi.org/10.1002/ijc.24343] [PMID: 19350627]
[4]
Meyerhardt, J.A.; Catalano, P.J.; Haller, D.G.; Mayer, R.J.; Macdonald, J.S.; Benson, A.B., III; Fuchs, C.S. Impact of diabetes mellitus on outcomes in patients with colon cancer. J. Clin. Oncol., 2003, 21(3), 433-440.
[http://dx.doi.org/10.1200/JCO.2003.07.125] [PMID: 12560431]
[5]
Johns, L.E.; Houlston, R.S. A systematic review and meta-analysis of familial colorectal cancer risk. Am. J. Gastroenterol., 2001, 96(10), 2992-3003.
[http://dx.doi.org/10.1111/j.1572-0241.2001.04677.x] [PMID: 11693338]
[6]
Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology, 2010, 138(6), 2101-2114.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.01.058] [PMID: 20420949]
[7]
Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; Nagtegaal, I.D.; Beets-Tan, R.G.; Arnold, D.; Ciardiello, F.; Hoff, P.; Kerr, D.; Köhne, C.H.; Labianca, R.; Price, T.; Scheithauer, W.; Sobrero, A.; Tabernero, J.; Aderka, D.; Barroso, S.; Bodoky, G.; Douillard, J.Y.; El Ghazaly, H.; Gallardo, J.; Garin, A.; Glynne-Jones, R.; Jordan, K.; Meshcheryakov, A.; Papamichail, D.; Pfeiffer, P.; Souglakos, I.; Turhal, S.; Cervantes, A. ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol., 2012, 23(10), 2479-2516.
[http://dx.doi.org/10.1093/annonc/mds236] [PMID: 23012255]
[8]
O’Reilly, M.S.; Boehm, T.; Shing, Y.; Fukai, N.; Vasios, G.; Lane, W.S.; Flynn, E.; Birkhead, J.R.; Olsen, B.R.; Folkman, J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88(2), 277-285.
[http://dx.doi.org/10.1016/S0092-8674(00)81848-6] [PMID: 9008168]
[9]
Board, P.D.Q.A.T.E. Colon Cancer Treatment (PDQ(R)): Health professional version. PDQ cancer information summaries; National Cancer Institute: Bethesda, MD, USA, 2002.
[10]
Holaday, J.W.; Berkowitz, B.A. Antiangiogenic drugs: Insights into drug development from endostatin, avastin and thalidomide. Mol. Interv., 2009, 9(4), 157-166.
[http://dx.doi.org/10.1124/mi.9.4.2] [PMID: 19720747]
[11]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[12]
Marzouni, H.Z.; Daraei, N.; Sharafi-Ahvazi, N.; Kalani, N.; Kooti, W. The effect of aqueous extract of celery leaves (Apiumgraveolens) on fertility in female rats. World J. Pharm. Pharm. Sci., 2016, 5(5), 1710-1714.
[13]
Sharma, R.; Jain, S. Cancer treatment: An overview of herbal medicines. World J. Pharm. Pharm. Sci., 2014, 3(8), 222-230.
[14]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[15]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm., 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[16]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int., 2019, 19(1), 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[17]
Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem., 2011, 53, 155-177.
[18]
Coutinho, L.L.; Junior, T.C.T.; Rangel, M.C. Sulforaphane: An emergent anti-cancer stem cell agent. Front. Oncol., 2023, 131089115
[http://dx.doi.org/10.3389/fonc.2023.1089115] [PMID: 36776295]
[19]
Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; Soofiyani, S.R.; Kozhamzharova, L.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int., 2022, 22(1), 257.
[http://dx.doi.org/10.1186/s12935-022-02677-w] [PMID: 35971151]
[20]
Yücel, Ç.; Karatoprak, G.Ş.; Açıkara, Ö.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.; Aschner, M.; Shirooie, S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front. Pharmacol., 2022, 13902551
[http://dx.doi.org/10.3389/fphar.2022.902551] [PMID: 36133811]
[21]
Hafez Ghoran, S.; Calcaterra, A.; Abbasi, M.; Taktaz, F.; Nieselt, K.; Babaei, E. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment. Molecules, 2022, 27(16), 5236.
[http://dx.doi.org/10.3390/molecules27165236] [PMID: 36014474]
[22]
Tin, M.M.Y.; Cho, C.H.; Chan, K.; James, A.E.; Ko, J.K.S. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis, 2007, 28(6), 1347-1355.
[http://dx.doi.org/10.1093/carcin/bgl238] [PMID: 17148504]
[23]
Huang, Y.W.; Lin, C.W.; Pan, P.; Shan, T.; Echeveste, C.E.; Mo, Y.Y.; Wang, H.T.; Aldakkak, M.; Tsai, S.; Oshima, K.; Yearsley, M.; Xiao, J.; Cao, H.; Sun, C.; Du, M.; Bai, W.; Yu, J.; Wang, L.S. Black raspberries suppress colorectal cancer by enhancing smad4 expression in colonic epithelium and natural killer cells. Front. Immunol., 2020, 11570683
[http://dx.doi.org/10.3389/fimmu.2020.570683] [PMID: 33424832]
[24]
Fu, Y.; Xie, D.; Zhu, Y.; Zhang, X.; Yue, H.; Zhu, K.; Pi, Z.; Dai, Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front. Med. (Lausanne), 2022, 9988507
[http://dx.doi.org/10.3389/fmed.2022.988507] [PMID: 36059851]
[25]
Alzate-Yepes, T.; Pérez-Palacio, L.; Martínez, E.; Osorio, M. Mechanisms of action of fruit and vegetable phytochemicals in colorectal cancer prevention. Molecules, 2023, 28(11), 4322.
[http://dx.doi.org/10.3390/molecules28114322] [PMID: 37298797]
[26]
Kim, J.; Boushey, C.J.; Wilkens, L.R.; Haiman, C.A.; Le Marchand, L.; Park, S.Y. Plant-based dietary patterns defined by a priori indices and colorectal cancer risk by sex and race/ethnicity: the Multiethnic Cohort Study. BMC Med., 2022, 20(1), 430.
[http://dx.doi.org/10.1186/s12916-022-02623-7] [PMID: 36443779]
[27]
Kim, H.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Protective effect of green tea consumption on colorectal cancer varies by lifestyle factors. Nutrients, 2019, 11(11), 2612.
[http://dx.doi.org/10.3390/nu11112612] [PMID: 31683767]
[28]
Wu, Q.J.; Yang, Y.; Vogtmann, E.; Wang, J.; Han, L.H.; Li, H.L.; Xiang, Y.B. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies. Ann. Oncol., 2013, 24(4), 1079-1087.
[http://dx.doi.org/10.1093/annonc/mds601] [PMID: 23211939]
[29]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12] [PMID: 26594645]
[30]
Desai, A.; Qazi, G.; Ganju, R.; El-Tamer, M.; Singh, J.; Saxena, A.; Bedi, Y.; Taneja, S.; Bhat, H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[31]
Pem, D.; Jeewon, R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions- narrative review article. Iran. J. Public Health, 2015, 44(10), 1309-1321.
[PMID: 26576343]
[32]
Muyumba, N.W.; Mutombo, S.C.; Sheridan, H.; Nachtergael, A.; Duez, P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open, 2021, 4(100070)100070
[http://dx.doi.org/10.1016/j.talo.2021.100070]
[33]
Vaou, N.; Stavropoulou, E.; Voidarou, C.C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics, 2022, 11(8), 1014.
[http://dx.doi.org/10.3390/antibiotics11081014] [PMID: 36009883]
[34]
McCulloch, M.; Broffman, M.; van der Laan, M.; Hubbard, A.; Kushi, L.; Abrams, D.I.; Gao, J.; Colford, J.M., Jr Colon cancer survival with herbal medicine and vitamins combined with standard therapy in a whole-systems approach: ten-year follow-up data analyzed with marginal structural models and propensity score methods. Integr. Cancer Ther., 2011, 10(3), 240-259.
[http://dx.doi.org/10.1177/1534735411406539] [PMID: 21964510]
[35]
Heinrich, M. Quality and safety of herbal medical products: regulation and the need for quality assurance along the value chains. Br. J. Clin. Pharmacol., 2015, 80(1), 62-66.
[http://dx.doi.org/10.1111/bcp.12586] [PMID: 25581270]
[36]
Suroowan, S.; Abdallah, H.H.; Mahomoodally, M.F. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem. Toxicol., 2021, 156(112432)112432
[http://dx.doi.org/10.1016/j.fct.2021.112432] [PMID: 34293424]
[37]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[PMID: 25949949]
[38]
Almeida, C.V.D.; Camargo, M.R.; Russo, E.; Amedei, A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J. Gastroenterol., 2018, 25(2), 151-162.
[http://dx.doi.org/10.3748/wjg.v25.i2.151] [PMID: 30670906]
[39]
Akin, H.; Tözün, N. Diet, microbiota, and colorectal cancer. J. Clin. Gastroenterol., 2014, 48(Suppl. 1), S67-S69.
[http://dx.doi.org/10.1097/MCG.0000000000000252] [PMID: 25291132]
[40]
Song, M.; Chan, A.T.; Sun, J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology, 2020, 158(2), 322-340.
[http://dx.doi.org/10.1053/j.gastro.2019.06.048] [PMID: 31586566]
[41]
Feng, W.; Liu, J.; Cheng, H.; Zhang, D.; Tan, Y.; Peng, C. Dietary compounds in modulation of gut microbiota-derived metabolites. Front. Nutr., 2022, 9939571
[http://dx.doi.org/10.3389/fnut.2022.939571] [PMID: 35928846]
[42]
Chen, X.; Pan, S.; Li, F.; Xu, X.; Xing, H. Plant-derived bioactive compounds and potential health benefits: Involvement of the gut microbiota and its metabolic activity. Biomolecules, 2022, 12(12), 1871.
[http://dx.doi.org/10.3390/biom12121871] [PMID: 36551299]
[43]
Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol., 2012, 4(5)a008052
[http://dx.doi.org/10.1101/cshperspect.a008052] [PMID: 22438566]
[44]
Peignon, G.; Durand, A.; Cacheux, W. Complex interplay between β-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut, 2021, 70(2), 390-401.
[http://dx.doi.org/10.1136/gutjnl-2020-320415] [PMID: 21205878]
[45]
Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[46]
Akinleye, A.; Furqan, M.; Mukhi, N.; Ravella, P.; Liu, D. MEK and the inhibitors: From bench to bedside. J. Hematol. Oncol., 2013, 6(1), 27.
[http://dx.doi.org/10.1186/1756-8722-6-27] [PMID: 23587417]
[47]
Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.I.; Nica, R.I.; Greabu, M.; Totan, A.R.; Jinga, M. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int. J. Mol. Sci., 2021, 22(19), 10260.
[http://dx.doi.org/10.3390/ijms221910260] [PMID: 34638601]
[48]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.T.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[49]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[50]
Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2010, 2(1)a001008
[http://dx.doi.org/10.1101/cshperspect.a001008] [PMID: 20182602]
[51]
Joerger, A.C.; Fersht, A.R. The p53 pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem., 2016, 85(1), 375-404.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014710] [PMID: 27145840]
[52]
Yang, H.; Higgins, B.; Kolinsky, K.; Packman, K.; Go, Z.; Iyer, R.; Sennello, R. Preclinical characterization of AMG 510, a potent and selective KRAS(G12C) inhibitor. Mol. Cancer Ther., 2021, 20(6), 1091-1101.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0784] [PMID: 33722855]
[53]
Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci., 2018, 14(2), 111-123.
[http://dx.doi.org/10.7150/ijbs.23230] [PMID: 29483830]
[54]
Matallanas, D.; Romano, D.; Al-Mulla, F.; O’Neill, E.; Al-Ali, W.; Crespo, P.; Doyle, B.; Nixon, C.; Sansom, O.; Drosten, M.; Barbacid, M.; Kolch, W. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol. Cell, 2011, 44(6), 893-906.
[http://dx.doi.org/10.1016/j.molcel.2011.10.016] [PMID: 22195963]
[55]
Liao, X.; Morikawa, T. Notch signaling in colorectal cancer: New challenges and opportunities. Curr. Colorectal Cancer Rep., 2019, 15(3), 107-116.
[http://dx.doi.org/10.1007/s11888-019-00418-1]
[56]
Dong, Y.; Wang, J. PTEN as a tumor suppressor in colorectal cancer. J. Cancer Res. Clin. Oncol., 2021, 147(5), 1381-1393.
[http://dx.doi.org/10.1007/s00432-021-03523-w]
[57]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; Peluso, I.; Ghorat, F.; Bishayee, A.; Kooti, W. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-51.
[http://dx.doi.org/10.1155/2019/2075614] [PMID: 32377288]
[58]
Cheah, K.Y.; Howarth, G.S.; Bastian, S.E.P. Grape seed extract dose-responsively decreases disease severity in a rat model of mucositis; concomitantly enhancing chemotherapeutic effectiveness in colon cancer cells. PLoS One, 2014, 9(1)e85184
[http://dx.doi.org/10.1371/journal.pone.0085184] [PMID: 24465501]
[59]
Kim, H.Y.; Yu, R.; Kim, J.S.; Kim, Y.K.; Sung, M.K. Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett., 2004, 210(1), 1-6.
[http://dx.doi.org/10.1016/j.canlet.2004.01.009] [PMID: 15172114]
[60]
Zhu, Q.; Meisinger, J.; Thiel, D.H.V.; Zhang, Y.; Mobarhan, S. Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells. Nutr. Cancer, 2002, 42(1), 131-140.
[http://dx.doi.org/10.1207/S15327914NC421_18] [PMID: 12235645]
[61]
Roomi, M.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human colon cancer cell HCT 116 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry. Oncol. Rep., 2005, 13(3), 421-425.
[http://dx.doi.org/10.3892/or.13.3.421] [PMID: 15706410]
[62]
Dong, M.; Yang, G.; Liu, H.; Liu, X.; Lin, S.; Sun, D.; Wang, Y. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway. Biomed. Rep., 2014, 2(2), 250-254.
[http://dx.doi.org/10.3892/br.2014.226] [PMID: 24649105]
[63]
Tanaka, S.; Haruma, K.; Yoshihara, M.; Kajiyama, G.; Kira, K.; Amagase, H.; Chayama, K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J. Nutr., 2006, 136(3)(Suppl.), 821S-826S.
[http://dx.doi.org/10.1093/jn/136.3.821S] [PMID: 16484573]
[64]
Adams, L.S.; Seeram, N.P.; Aggarwal, B.B.; Takada, Y.; Sand, D.; Heber, D. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J. Agric. Food Chem., 2006, 54(3), 980-985.
[http://dx.doi.org/10.1021/jf052005r] [PMID: 16448212]
[65]
Gupta, S.C.; Sung, B.; Kim, J.H.; Prasad, S.; Li, S.; Aggarwal, B.B. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol. Nutr. Food Res., 2013, 57(9), 1510-1528.
[http://dx.doi.org/10.1002/mnfr.201100741] [PMID: 22887802]
[66]
Farzaei, M.H.; Bahramsoltani, R.; Rahimi, R.; Abdollahi, M. The role of dietary polyphenols in the prevention and treatment of colorectal cancer. J. Cell. Physiol., 2018, 233(9), 6879-6888.
[67]
Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Balasubramanian, M.P.; Nishigaki, I. Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients, 2018, 10(7), 927.
[PMID: 30036954]
[68]
Zhang, X.; Sang, L.; Sun, Q. Green tea compound EGCG suppresses gut microbiota-dependent progression of colorectal cancer. Adv. Nutr., 2018, 9(5), 622-631. Epigallocatechin-3-gallate EGCG
[69]
Li, J.; Liang, S.; Jin, S.; Zhang, Q.; Zhang, Y.; Xu, Y. Selenium inhibits oxidative stress and inflammation in colorectal cancer by activating the Nrf2 pathway and suppressing the NF-κB signaling pathway. Food Funct., 2020, 11(7), 6051-6064.
[70]
Dou, R.; Ng, K.; Giovannucci, E.L.; Manson, J.E. Vitamin D and colorectal cancer: Molecular, epidemiological, and clinical evidence. Br. J. Cancer, 2019, 122(2), 168-184.
[PMID: 31819197]
[71]
Chiang, J.Y.; Hsu, W.F.; Chen, C.Y.; Chiang, P.F.; Chien, Y.C. Omega-3 fatty acids improve antioxidant enzyme activity and mitochondrial dysfunction in 3Y1 cells: implications for colorectal cancer prevention. Nutr. Cancer, 2019, 71(2), 305-313.
[72]
Li, Y.; Yang, F.; Zheng, W.; Hu, M.; Wang, J.; Ma, S.; Wei, X. Lycopene promotes the apoptosis of colorectal cancer cells by inducing mitochondrial dysfunction. J. Agric. Food Chem., 2019, 67(11), 3174-3181.
[73]
Kim, E.; Kim, J.S.; Park, J.H.; Lee, K.T. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol. Appl. Pharmacol., 2016, 311, 30.
[74]
Zhang, Y.; Kensler, T.W.; Cho, C.G. Positively regulating NRF2 for cancer prevention. Science, 2014, 344(6180), 1446-1447. Sulforaphane:
[75]
Palozza, P.; Serini, S.; Torsello, A. beta-Carotene and lung cancer: A lesson from intervention trials. Biochimica et BiophysicaActa (BBA)-. Biochim, 2014, 1841(2), 114-125.
[76]
Birlouez-Aragon, I.; Delcourt, C.; Tessier, F.; Papoz, L.; Group, P.R.I.O.R. Associations of age, smoking habits and diabetes with plasma vitamin C of elderly of the POLA study. Int. J. Vitam. Nutr. Res., 2001, 71(1), 53-59.
[http://dx.doi.org/10.1024/0300-9831.71.1.53] [PMID: 11276923]
[77]
Peh, H.Y.; Tan, W.S.D.; Liao, W. Wong WSF. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther., 2018, 188, 79-87.
[78]
Zeng, T.; Zhang, C.L.; Song, F.Y. Garlic consumption and risk of colorectal cancer: An updated meta-analysis. J. Nutr., 2017, 147(2), 187-196.
[PMID: 27903832]
[79]
Chang, W. Zhang, M.; Meng, Z.; Yu, Y.; Yao, F.; Hatch, G. M.; & Wang, Y. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur. J. Pharmacol., 2017, 794, 106-118.
[80]
Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer, 2009, 9(6), 429-439.
[http://dx.doi.org/10.1038/nrc2641] [PMID: 19472429]
[81]
Bishayee, A.; Mandal, A. Tumoricidal activity of ellagic acid in human breast cancer cells: effect on mitochondrial destabilization. Chem. Res. Toxicol., 2016, 29(8), 1267-1278.
[82]
Yan, L.; Spitznagel, E.L.; Bosland, M.C.; Soybean, G. Genistein-induced G2-M arrest, p21WAF1 upregulation, and apoptosis in a non-small-cell lung cancer cell line. Nutr. Cancer, 2017, 59(1), 89-99.
[83]
Zhang, Q.; Zhao, X.H.; Wang, Z.J.; He, X.J. Pterostilbene and its potential for metabolic and neurological applications. J. Agric. Food Chem., 2017, 65(29), 5731-5741.
[84]
Golinski, L.; Kozłowska, M. Rutin as a versatile regulator of colon cancer pathogenesis: A concise review. J. Funct. Foods, 2021, 79104402
[85]
Raimondi, L.; De Luca, C.; Amodio, N. The anti-cancer effects of quercetin: Synergism with chemotherapeutics and radiotherapy. Int. J. Mol. Sci., 2021, 22(6), 2723.
[86]
Salim, E.I.; Fukushima, S.; Wanibuchi, H. Evaluation of oxidative stress and chronic inflammation in N-methyl-N-nitrosourea-induced colon carcinogenesis in rats. Oncol. Lett., 2013, 6(1), 109-116.
[87]
Das, S.; Dey, K.K.; Dey, G.; Pal, I. Role of thymoquinone as a potential adjuvant therapy for cancer treatment: Molecular mechanisms and clinical trials. Cancer Chemother. Pharmacol., 2021, 87(4), 563-582.
[88]
Wang, Y.; Guo, S. Dietary polyphenols and colorectal cancer prevention: The role of gut microbiota. Crit. Rev. Food Sci. Nutr., 2016, 56(7), 1270-1283.
[89]
Zhou, L.; Huang, Y.; Wang, J. The protective effect of ursolic acid on colorectal cancer. J. Cancer Res. Ther., 2018, 14(Suppl.), S490-S493.
[90]
Liao, X.; Zhang, R.; Lu, Y. Dietary flavonoids and colorectal cancer risk: Evidence from epidemiological studies. Front. Oncol., 2021, 10614906
[91]
Yao, H.T.; Chang, C.H.; Yang, H.L. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on cancer cells. J. Agric. Food Chem., 2014, 62(8), 1681-1690.
[92]
Plaza-Díaz, J.; Ruiz-Ojeda, F.; Vilchez-Padial, L.; Gil, A. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients, 2017, 9(6), 555.
[http://dx.doi.org/10.3390/nu9060555] [PMID: 28555037]
[93]
Singh, N.; Thangaraju, M. Gut microbiota-mediated regulation of cancer immunity: Role of tryptophan metabolism. Front. Cell Dev. Biol., 2019, 7, 1-13.
[94]
Kim, H.J.; Kim, S.Y.; Kim, M.J.; Jeong, Y.J.; Kwon, O.; Lee, K.W. Anticancer effects of phytochemicals and their clinical implications. Int. J. Mol. Sci., 2020, 21(5), 1833.
[PMID: 32155897]
[95]
Sarrias, G.; Tomas-Barberán, A. Nutrigenetics and modulation of cardiovascular and cancer risk: A systematic review of human intervention studies. Mol. Nutr. Food Res., 2020, 64(7)1901099
[96]
Shankar, S.; Singh, G.; Srivastava, R.K.; Chemometchery, S.M. Nutraceuticals and cancer prevention: A review of human clinical trials. NHMDF, 2021, 213-233.
[97]
Golovinskaia, O.; Wang, C.K. Review of functional and pharmacological activities of berries. Molecules, 2021, 26(13), 3904.
[http://dx.doi.org/10.3390/molecules26133904] [PMID: 34202412]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy