Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer

Author(s): Toktam Sahranavard, Shima Mehrabadi, Ghazaleh Pourali, Mina Maftooh, Hamed Akbarzade, Seyed Mahdi Hassanian, Majid Ghayour Mobarhan, Gordon A. Ferns, Majid Khazaei* and Amir Avan*

Volume 31, Issue 35, 2024

Published on: 26 September, 2023

Page: [5768 - 5778] Pages: 11

DOI: 10.2174/0929867331666230915103707

Price: $65

Abstract

The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.

[1]
Kim, B.G.; Malek, E.; Choi, S.H.; Ignatz-Hoover, J.J.; Driscoll, J.J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol., 2021, 14(1), 55-55.
[http://dx.doi.org/10.1186/s13045-021-01053-x] [PMID: 33823905]
[2]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[3]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[4]
Zafari, N.; Velayati, M.; Damavandi, S.; Pourali, G.; Mobarhan, M.G.; Nassiri, M.; Hassanian, S.M.; Khazaei, M.; Ferns, G.A.; Avan, A. Metabolic pathways regulating colorectal cancer: A potential therapeutic approach. Curr. Pharm. Des., 2022, 28(36), 2995-3009.
[http://dx.doi.org/10.2174/1381612828666220922111342] [PMID: 36154599]
[5]
Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjörd, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinski, M.; Jäger, N.; Jones, D.T.W.; Jones, D.; Knappskog, S.; Kool, M.; Lakhani, S.R.; López-Otín, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.J.; Valdés-Mas, R.; van Buuren, M.M.; van ’t Veer, L.; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Andrew Futreal, P.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463), 415-421.
[http://dx.doi.org/10.1038/nature12477] [PMID: 23945592]
[6]
Palmer, D.H.; Chen, M.J.; Kerr, D.J. Gene therapy for colorectal cancer. Br. Med. Bull., 2002, 64(1), 201-225.
[http://dx.doi.org/10.1093/bmb/64.1.201] [PMID: 12421734]
[7]
Jiang, C.; Meng, L.; Yang, B.; Luo, X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin. Genet., 2020, 97(1), 73-88.
[http://dx.doi.org/10.1111/cge.13589] [PMID: 31231788]
[8]
Ceasar, S.A.; Rajan, V.; Prykhozhij, S.V.; Berman, J.N.; Ignacimuthu, S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(9), 2333-2344.
[http://dx.doi.org/10.1016/j.bbamcr.2016.06.009] [PMID: 27350235]
[9]
a) Marraffini, L.A. CRISPR-Cas immunity against phages: Its effects on the evolution and survival of bacterial pathogens. PLoS pathogens., 2013, 9(12), e1003765.;
b) Deveau, H.; Garneau, J.E.; Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 2010, 64, 475-493.
[10]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 2012, 337(6096), 816-821.
[11]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[12]
Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc., 2013, 8(11), 2281-2308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[13]
Estêvão, D.; Rios Costa, N.; da Costa, R.G.; Medeiros, R. CRISPR-Cas9 therapies in experimental mouse models of cancer. Future Oncol., 2018, 14(20), 2083-2095.
[http://dx.doi.org/10.2217/fon-2018-0028] [PMID: 30027767]
[14]
Koo, T.; Yoon, A.R.; Cho, H.Y.; Bae, S.; Yun, C.O.; Kim, J.S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res., 2017, 45(13), 7897-7908.
[http://dx.doi.org/10.1093/nar/gkx490] [PMID: 28575452]
[15]
Meng, H.; Nan, M.; Li, Y.; Ding, Y.; Yin, Y.; Zhang, M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front. Endocrinol., 2023, 14, 1148412.
[http://dx.doi.org/10.3389/fendo.2023.1148412] [PMID: 37020597]
[16]
Zhang, H.; Qin, C.; An, C.; Zheng, X.; Wen, S.; Chen, W.; Liu, X.; Lv, Z.; Yang, P.; Xu, W.; Gao, W.; Wu, Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer, 2021, 20(1), 126.
[http://dx.doi.org/10.1186/s12943-021-01431-6] [PMID: 34598686]
[17]
Jiang, C.; Lin, X.; Zhao, Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol. Med., 2019, 25(11), 1039-1049.
[http://dx.doi.org/10.1016/j.molmed.2019.07.007] [PMID: 31422862]
[18]
Lan, B.; Zeng, S.; Zhang, S.; Ren, X.; Xing, Y.; Kutschick, I.; Pfeffer, S.; Frey, B.; Britzen-Laurent, N.; Grützmann, R.; Cordes, N.; Pilarsky, C. CRISPR-Cas9 screen identifies DYRK1A as a target for radiotherapy sensitization in pancreatic cancer. Cancers., 2022, 14(2), 326.
[http://dx.doi.org/10.3390/cancers14020326] [PMID: 35053488]
[19]
Lee, S.; Kim, Y.Y.; Ahn, H.J. Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector. Biomaterials, 2021, 272, 120793.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120793] [PMID: 33836291]
[20]
Dong, Y.; Zhang, S.; Gao, X.; Yin, D.; Wang, T.; Li, Z.; Wan, Z.; Wei, M.; Luo, Y.; Yang, G.; Liu, L. HIF1α epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy. Bioact. Mater., 2021, 6(9), 2870-2880.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.008] [PMID: 33718668]
[21]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[22]
White, M.K.; Khalili, K. CRISPR/Cas9 and cancer targets: Future possibilities and present challenges. Oncotarget, 2016, 7(11), 12305-12317.
[http://dx.doi.org/10.18632/oncotarget.7104] [PMID: 26840090]
[23]
Yan, F.; Ying, L.; Li, X.; Qiao, B.; Meng, Q.; Yu, L.; Yuan, X.; Ren, S.T.; Chan, D.W.; Shi, L.; Ni, P.; Wang, X.; Xu, D.; Hu, Y. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer. Oncotarget, 2017, 8(29), 47020-47036.
[http://dx.doi.org/10.18632/oncotarget.16638] [PMID: 28402947]
[24]
Joo, J.H.; Oh, H.; Kim, M.; An, E.J.; Kim, R.K.; Lee, S.Y.; Kang, D.H.; Kang, S.W.; Keun Park, C.; Kim, H.; Lee, S.J.; Lee, D.; Seol, J.H.; Bae, Y.S. NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res., 2016, 76(4), 855-865.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1512] [PMID: 26781991]
[25]
Xia, D.; Ji, W.; Xu, C.; Lin, X.; Wang, X.; Xia, Y.; Lv, P.; Song, Q.; Ma, D.; Chen, Y. Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress. Cell Death Dis., 2017, 8(7), e2957-e2957.
[http://dx.doi.org/10.1038/cddis.2017.347] [PMID: 28749466]
[26]
Oh, S.; You, E.; Ko, P.; Jeong, J.; Keum, S.; Rhee, S. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling. Biochem. Biophys. Res. Commun., 2017, 482(1), 8-14.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.039] [PMID: 27836544]
[27]
Wan, C.; Mahara, S.; Sun, C.; Doan, A.; Chua, H.K.; Xu, D.; Bian, J.; Li, Y.; Zhu, D.; Sooraj, D.; Cierpicki, T.; Grembecka, J.; Firestein, R. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci. Adv., 2021, 7(21), eabf2567.
[http://dx.doi.org/10.1126/sciadv.abf2567] [PMID: 34138730]
[28]
Lautz, Z. A. The Significance of CRISPR/Cas9-Directed CUL3 Knockout on Human Colorectal Cancer Cells; Spring, 2015.
[29]
Takei, N.; Yoneda, A.; Sakai-Sawada, K.; Kosaka, M.; Minomi, K.; Tamura, Y. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Sci. Rep., 2017, 7(1), 9389.
[http://dx.doi.org/10.1038/s41598-017-09976-7] [PMID: 28127051]
[30]
Dai, C.; Zhang, X.; Xie, D.; Tang, P.; Li, C.; Zuo, Y.; Jiang, B.; Xue, C. Targeting PP2A activates AMPK signaling to inhibit colorectal cancer cells. Oncotarget, 2017, 8(56), 95810-95823.
[http://dx.doi.org/10.18632/oncotarget.21336] [PMID: 29221169]
[31]
Zhao, L.h.; Li, Q.; Huang, Z.J.; Sun, M.X.; Lu, J.j.; Zhang, X.h.; Li, G.; Wu, F.J.C.D. Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer. Cell Death Dis, 2021, 12(11), 1-10.
[32]
Zhang, J.; Lee, Y.-R.; Dang, F.; Gan, W.; Menon, A. V.; Katon, J. M.; Hsu, C.-H.; Asara, J. M.; Tibarewal, P.; Leslie, N. R. J. C. d. PTEN Methylation by NSD2 controls cellular sensitivity to DNA DamagePTEN methylation governs DNA damage response. Cancer Discov., 2019, 9(9), 1306-1323.
[33]
Yoshida, K.; Toden, S.; Weng, W.; Shigeyasu, K.; Miyoshi, J.; Turner, J.; Nagasaka, T.; Ma, Y.; Takayama, T.; Fujiwara, T. J. E. SNORA21–an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. 2017, 22, 68.77)
[34]
Yu, C.; Luo, D.; Yu, J.; Zhang, M.; Zheng, X.; Xu, G.; Wang, J.; Wang, H.; Xu, Y.; Jiang, K. J. O. Genome-wide CRISPR-cas9 knockout screening identifies GRB7 as a driver for MEK inhibitor resistance in KRAS mutant colon cancer. Oncogene., 2022, 41(2), 191-203.
[http://dx.doi.org/10.1038/s41388-021-02077-w]
[35]
Biagioni, A.; Chillà, A.; Del Rosso, M.; Fibbi, G.; Scavone, F.; Andreucci, E.; Peppicelli, S.; Bianchini, F.; Calorini, L.; Li, Santi CRISPR/Cas9 uPAR gene knockout results in tumor growth inhibition, EGFR downregulation and induction of stemness markers in melanoma and colon carcinoma cell lines. Front Oncol., 2021, 11, 663225.
[http://dx.doi.org/10.3389/fonc.2021.663225]
[36]
Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; Ntounis, T.; Fasoulakis, Z. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res., 2020, 40(11), 6009-6015.
[http://dx.doi.org/10.21873/anticanres.14622] [PMID: 33109539]
[37]
Xu, K.; Chen, G.; Li, X.; Wu, X.; Chang, Z.; Xu, J.; Zhu, Y.; Yin, P.; Liang, X.; Dong, L. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci. Rep., 2017, 7(1), 41718.
[http://dx.doi.org/10.1038/srep41718] [PMID: 28176801]
[38]
Kline, C.L.B.; Ralff, M.D.; Lulla, A.R.; Wagner, J.M.; Abbosh, P.H.; Dicker, D.T.; Allen, J.E.; El-Deiry, W.S. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia, 2018, 20(1), 80-91.
[http://dx.doi.org/10.1016/j.neo.2017.10.002] [PMID: 29216597]
[39]
Novellasdemunt, L.; Foglizzo, V.; Cuadrado, L.; Antas, P.; Kucharska, A.; Encheva, V.; Snijders, A.P.; Li, V.S.W. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep., 2017, 21(3), 612-627.
[http://dx.doi.org/10.1016/j.celrep.2017.09.072] [PMID: 29045831]
[40]
Takeda, H.; Kataoka, S.; Nakayama, M.; Ali, M.A.E.; Oshima, H.; Yamamoto, D.; Park, J.W.; Takegami, Y.; An, T.; Jenkins, N.A.; Copeland, N.G.; Oshima, M. CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci., 2019, 116(31), 15635-15644.
[http://dx.doi.org/10.1073/pnas.1904714116] [PMID: 31300537]
[41]
Blatner, P. Genetic Editing out the Tumor Growth Supressor Gene TRM9L in Colorectal Cancer Models Using CRISPR-Cas9. University at Albany, State University of New York 2017.
[42]
Matano, M.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. J. N. m. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med., 2015, 21(3), 256-262.
[http://dx.doi.org/10.1038/nm.3802]
[43]
Michels, B. E.; Mosa, M. H.; Streibl, B. I.; Zhan, T.; Menche, C.; Abou-El-Ardat, K.; Darvishi, T.; Członka, E.; Wagner, S.; Winter, J. J. C. S. C. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell, 2020, 26(5), 782-792.e7.
[http://dx.doi.org/10.1016/j.stem.2020.04.003]
[44]
Chen, Y.; Zhang, Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv. Sci., 2018, 5(6), 1700964.
[http://dx.doi.org/10.1002/advs.201700964] [PMID: 29938175]
[45]
Lei, Z.N.; Teng, Q.X.; Wu, Z.X.; Ping, F.F.; Song, P.; Wurpel, J.N.D.; Chen, Z.S. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm, 2021, 2(4), 765-777.
[http://dx.doi.org/10.1002/mco2.106] [PMID: 34977876]
[46]
Yang, Y.; Qiu, J-G.; Li, Y.; Di, J-M.; Zhang, W-J.; Jiang, Q-W.; Zheng, D-W.; Chen, Y.; Wei, M-N.; Huang, J-R.; Wang, K.; Shi, Z. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am. J. Transl. Res., 2016, 8(9), 3986-3994.
[PMID: 27725879]
[47]
Hu, T.; Yang, J.; Yan, Y.; Chen, Y.; Xue, H.; Xiang, Y.; Ye, L. Detection of genes responsible for cetuximab sensitization in colorectal cancer cells using CRISPR-Cas9. Biosci. Rep., 2020, 40(10), BSR20201125.
[http://dx.doi.org/10.1042/BSR20201125] [PMID: 33048115]
[48]
Sun, X.; Hou, W.; Liu, X.; Chai, J.; Guo, H.; Yu, J. Targeting REV7 effectively reverses 5-FU and oxaliplatin resistance in colorectal cancer. Cancer Cell Int., 2020, 20(1), 580.
[http://dx.doi.org/10.1186/s12935-020-01668-z] [PMID: 33292253]
[49]
Satapathy, S.R.; Sjölander, A. Cysteinyl leukotriene receptor 1 promotes 5-fluorouracil resistance and resistance-derived stemness in colon cancer cells. Cancer Lett., 2020, 488, 50-62.
[http://dx.doi.org/10.1016/j.canlet.2020.05.023] [PMID: 32474153]
[50]
Izumi, D.; Toden, S.; Ureta, E.; Ishimoto, T.; Baba, H.; Goel, A. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis., 2019, 10(4), 267.
[http://dx.doi.org/10.1038/s41419-019-1493-5] [PMID: 30890693]
[51]
Xie, C.; Li, K.; Li, Y.; Peng, X.; Teng, B.; He, K.; Jin, A.; Wang, W.; Wei, Z. CRISPR-based knockout screening identifies the loss of MIEF2 to enhance oxaliplatin resistance in colorectal cancer through inhibiting the mitochondrial apoptosis pathway. Front. Oncol., 2022, 12, 881487.
[http://dx.doi.org/10.3389/fonc.2022.881487] [PMID: 36106106]
[52]
Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Hashemi, F.; Hashemi, F.; Samarghandian, S.; Najafi, M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci., 2020, 256, 117973.
[http://dx.doi.org/10.1016/j.lfs.2020.117973] [PMID: 32569779]
[53]
Qiu, X.Y.; Zhu, L.Y.; Zhu, C.S.; Ma, J.X.; Hou, T.; Wu, X.M.; Xie, S.S.; Min, L.; Tan, D.A.; Zhang, D.Y.; Zhu, L. Highly effective and low-cost microRNA detection with CRISPR-Cas9. ACS Synth. Biol., 2018, 7(3), 807-813.
[http://dx.doi.org/10.1021/acssynbio.7b00446] [PMID: 29486117]
[54]
Chang, H.; Yi, B.; Ma, R.; Zhang, X.; Zhao, H.; Xi, Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep., 2016, 6(1), 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382]
[55]
Ou, X.; Ma, Q.; Yin, W.; Ma, X.; He, Z. CRISPR/Cas9 gene-editing in cancer immunotherapy: promoting the present revolution in cancer therapy and exploring more. Front. Cell Dev. Biol., 2021, 9, 674467.
[http://dx.doi.org/10.3389/fcell.2021.674467] [PMID: 34095145]
[56]
Feng, M.; Zhao, Z.; Yang, M.; Ji, J.; Zhu, D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett., 2021, 498, 201-209.
[http://dx.doi.org/10.1016/j.canlet.2020.10.040] [PMID: 33129958]
[57]
Fathi, M.; Pustokhina, I.; Kuznetsov, S.V.; Khayrullin, M.; Hojjat-Farsangi, M.; Karpisheh, V.; Jalili, A.; Jadidi-Niaragh, F. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life, 2021, 73(5), 726-738.
[http://dx.doi.org/10.1002/iub.2461] [PMID: 33686787]
[58]
Potenza, A.; Balestrieri, C.; Albarello, L.; Pedica, F.; Stasi, L.; Manfredi, F.; Spiga, M.; Tassi, E.; Cianciotti, B. C.; Abbati, D. Abstract ND08: NXP800: A first-in-class orally active, small-molecule HSF1 pathway inhibitor. Cancer Res, 2022, 82(S12), ND08.
[http://dx.doi.org/10.1158/1538-7445.AM2022-567]
[59]
Gao, L.; Yang, L.; Zhang, S.; Ge, Z.; Su, M.; Shi, Y.; Wang, X.; Huang, C. Engineering NK-92 cell by upregulating CXCR2 and IL-2 Via CRISPR-Cas9 improves its antitumor effects as cellular immunotherapy for human colon cancer. J. Interferon Cytokine Res., 2021, 41(12), 450-460.
[http://dx.doi.org/10.1089/jir.2021.0078] [PMID: 34935484]
[60]
Wan, T.; Chen, Y.; Pan, Q.; Xu, X.; Kang, Y.; Gao, X.; Huang, F.; Wu, C.; Ping, Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J. Control. Release, 2020, 322, 236-247.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.015] [PMID: 32169537]
[61]
Cornelissen, L.A.M.; Blanas, A.; Zaal, A.; van der Horst, J.C.; Kruijssen, L.J.W.; O’Toole, T.; van Kooyk, Y.; van Vliet, S.J. Tn antigen expression contributes to an immune suppressive microenvironment and drives tumor growth in colorectal cancer. Front. Oncol., 2020, 10, 1622.
[http://dx.doi.org/10.3389/fonc.2020.01622] [PMID: 33014816]
[62]
Drost, J.; van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; Korving, J.; van de Wetering, M.; Schwank, G.; Logtenberg, M.; Cuppen, E.; Snippert, H.J.; Medema, J.P.; Kops, G.J.P.L.; Clevers, H. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521(7550), 43-47.
[http://dx.doi.org/10.1038/nature14415] [PMID: 25924068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy