Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Clinical Trial

An 18F-MD-PSMA (Multi-dentate PMSA Imaging Agent) PET/CT in Prostate Cancer Relapse: Results of a Retrospective Trial

Author(s): Hongliang Fu, Sheng Liang, Miaomiao Xu, Jun Guo, Qiang Liu, Jian Kang, Linlin Zhang, Zihao Liu, Lin Ding, Yufei Ma, Bin Yang, Xudong Yao, Jun Qi*, Hui Wang* and Yongquan Cai*

Volume 17, Issue 4, 2024

Published on: 19 September, 2023

Page: [382 - 397] Pages: 16

DOI: 10.2174/1874471016666230915103157

Price: $65

Abstract

Purpose: This study aimed to evaluate the performance of 18F-MD-PSMA PET/CT in patients previously treated for prostate cancer by either surgery or therapy, but later relapsed biochemically.

Methods: This retrospective study enrolled 213 patients in sequence previously treated for prostate cancer by either surgery or therapy, but later PSA relapsed. A total of 191 of these 213 patients were included in this analysis. All patients were biochemically relapsed after radical prostatectomy or therapy, had 18F-MD-PSMA PET/CT scan within 1 week, and were off hormonal therapy at the time of the scans. The new tracer was compared directly with 11C-choline in sensitivity.

Results: In 3 patients, a side-by-side comparison between 18F-MD-PSMA and 11C-choline was performed, and it was found that the former was about 3 times more sensitive than the latter. The analysis of PET imaging using 18F-MD-PSMA in 191 relapsed patients showed that less than 10% of patients showed the disease limited in the prostate. Among the remote lesions, the number in decreasing order was bone, followed by lymph nodes and other organs. The maximal SUV in lesions in each patient followed an exponential decay, with SUV inclined to the lower end. The Gleason score measured at the diagnosis showed no correlation with the average number of lesions in each patient, the average maximal SUV values among this cohort of patients, and the PSA values measured at the time of PET imaging. The number of lesions observed in each patient has no correlation with the PSA value measured at the time of PET imaging. When PSA value was measured as an independent biomarker at the time of PET imaging, the positivity of PET imaging using 18F-MD-PSMA increased along with an increase in PSA value, but with exceptions where PSMA expression was low or negative. From the PET imaging of this radioligand, the majority of patients showed oligo-metastasis, favoring using local therapy to manage the disease.

Conclusion: An 18F-MD-PSMA as a radioligand was found to be superior to 11C-choline in the setting of patients with biochemical relapse after previous treatment. Its PET imaging results matched those of established PSMA radioligands, but its chemical structure was found to have added features to conjugate with other functional molecules, such as those with therapeutic properties. This radioligand lays the foundation for our further work.

Trial Registration Number: XH-17-020.

[1]
Amling, C.L.; Blute, M.L.; Bergstralh, E.J.; Seay, T.M.; Slezak, J.; Zincke, H. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: Continued risk of biochemical failure after 5 years. J. Urol., 2000, 164(1), 101-105.
[http://dx.doi.org/10.1016/S0022-5347(05)67457-5] [PMID: 10840432]
[2]
Han, M.; Partin, A.W.; Zahurak, M.; Piantadosi, S.; Epstein, J.; Walsh, P.C. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol., 2003, 169(2), 517-523.
[http://dx.doi.org/10.1016/S0022-5347(05)63946-8] [PMID: 12544300]
[3]
Freedland, S.J.; Humphreys, E.B.; Mangold, L.A.; Eisenberger, M.; Dorey, F.J.; Walsh, P.C.; Partin, A.W. Risk of prostate cancerspecific mortality following biochemical recurrence after radical prostatectomy. JAMA, 2005, 294(4), 433-439.
[http://dx.doi.org/10.1001/jama.294.4.433] [PMID: 16046649]
[4]
Kestin, L.L.; Vicini, F.A.; Ziaja, E.L.; Stromberg, J.S.; Frazier, R.C.; Martinez, A.A. Defining biochemical cure for prostate carcinoma patients treated with external beam radiation therapy. Cancer, 1999, 86(8), 1557-1566.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1557:AID-CNCR24>3.0.CO;2-2] [PMID: 10526285]
[5]
Paller, C.J.; Antonarakis, E.S. Management of biochemically recurrent prostate cancer after local therapy: Evolving standards of care and new directions. Clin. Adv. Hematol. Oncol., 2013, 11(1), 14-23.
[PMID: 23416859]
[6]
Pfitzenmaier, J.; Pahernik, S.; Tremmel, T.; Haferkamp, A.; Buse, S.; Hohenfellner, M. Positive surgical margins after radical prostatectomy: Do they have an impact on biochemical or clinical progression? BJU Int., 2008, 0(0), 080604043604044.
[http://dx.doi.org/10.1111/j.1464-410X.2008.07791.x] [PMID: 18537951]
[7]
Rouvière, O. Imaging techniques for local recurrence of prostate cancer: For whom, why and how? Diagn. Interv. Imaging, 2012, 93(4), 279-290.
[http://dx.doi.org/10.1016/j.diii.2012.01.012] [PMID: 22464995]
[8]
Shinohara, K.; Wheeler, T.M.; Scardino, P.T. The appearance of prostate cancer on transrectal ultrasonography: Correlation of imaging and pathological examinations. J. Urol., 1989, 142(1), 76-82.
[http://dx.doi.org/10.1016/S0022-5347(17)38666-4] [PMID: 2659828]
[9]
Beresford, M.J.; Gillatt, D.; Benson, R.J.; Ajithkumar, T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin. Oncol., 2010, 22(1), 46-55.
[http://dx.doi.org/10.1016/j.clon.2009.10.015] [PMID: 19948393]
[10]
De Visschere, P.J.L.; Standaert, C.; Fütterer, J.J.; Villeirs, G.M.; Panebianco, V.; Walz, J.; Maurer, T.; Hadaschik, B.A.; Lecouvet, F.E.; Giannarini, G.; Fanti, S. A systematic review on the role of imaging in early recurrent prostate cancer. Eur. Urol. Oncol., 2019, 2(1), 47-76.
[http://dx.doi.org/10.1016/j.euo.2018.09.010] [PMID: 30929846]
[11]
Schuster, D.M.; Nieh, P.T.; Jani, A.B.; Amzat, R.; Bowman, F.D.; Halkar, R.K.; Master, V.A.; Nye, J.A.; Odewole, O.A.; Osunkoya, A.O.; Savir-Baruch, B.; Alaei-Taleghani, P.; Goodman, M.M. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J. Urol., 2014, 191(5), 1446-1453.
[http://dx.doi.org/10.1016/j.juro.2013.10.065] [PMID: 24144687]
[12]
Calais, J.; Ceci, F.; Eiber, M.; Hope, T.A.; Hofman, M.S.; Rischpler, C.; Bach-Gansmo, T.; Fendler, W.P.; Czernin, J. What is the best PET target for early biochemical recurrence of prostate cancer?–Authors’ reply. Lancet Oncol., 2019, 20(11), e609-e610.
[http://dx.doi.org/10.1016/S1470-2045(19)30654-0] [PMID: 31674314]
[13]
Nanni, C.; Zanoni, L.; Pultrone, C.; Schiavina, R.; Brunocilla, E.; Lodi, F.; Malizia, C.; Ferrari, M.; Rigatti, P.; Fonti, C.; Martorana, G.; Fanti, S. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: Results of a prospective trial. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(9), 1601-1610.
[http://dx.doi.org/10.1007/s00259-016-3329-1] [PMID: 26960562]
[14]
Afshar-Oromieh, A.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H.G.; Hadaschik, B.A.; Holland-Letz, T.; Giesel, F.L.; Kratochwil, C.; Haufe, S.; Haberkorn, U.; Zechmann, C.M. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(4), 486-495.
[http://dx.doi.org/10.1007/s00259-012-2298-2] [PMID: 23179945]
[15]
Rowe, S.P.; Macura, K.J.; Mena, E.; Blackford, A.L.; Nadal, R.; Antonarakis, E.S.; Eisenberger, M.; Carducci, M.; Fan, H.; Dannals, R.F.; Chen, Y.; Mease, R.C.; Szabo, Z.; Pomper, M.G.; Cho, S.Y. PSMA-based [18F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol. Imaging Biol., 2016, 18(3), 411-419.
[http://dx.doi.org/10.1007/s11307-016-0957-6] [PMID: 27080322]
[16]
Herrmann, K.; Bluemel, C.; Weineisen, M.; Schottelius, M.; Wester, H.J.; Czernin, J.; Eberlein, U.; Beykan, S.; Lapa, C.; Riedmiller, H.; Krebs, M.; Kropf, S.; Schirbel, A.; Buck, A.K.; Lassmann, M. Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J. Nucl. Med., 2015, 56(6), 855-861.
[http://dx.doi.org/10.2967/jnumed.115.156133] [PMID: 25883128]
[17]
Afshar-Oromieh, A.; Hetzheim, H.; Kratochwil, C.; Benesova, M.; Eder, M.; Neels, O.C.; Eisenhut, M.; Kübler, W.; Holland-Letz, T.; Giesel, F.L.; Mier, W.; Kopka, K.; Haberkorn, U. The theranostic PSMA ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J. Nucl. Med., 2015, 56(11), 1697-1705.
[http://dx.doi.org/10.2967/jnumed.115.161299] [PMID: 26294298]
[18]
Morris, M.J.; Rowe, S.P.; Gorin, M.A.; Saperstein, L.; Pouliot, F.; Josephson, D.; Wong, J.Y.C.; Pantel, A.R.; Cho, S.Y.; Gage, K.L.; Piert, M.; Iagaru, A.; Pollard, J.H.; Wong, V.; Jensen, J.; Lin, T.; Stambler, N.; Carroll, P.R.; Siegel, B.A. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: Results from the CONDOR phase III, multicenter study. Clin. Cancer Res., 2021, 27(13), 3674-3682.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4573] [PMID: 33622706]
[19]
Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; Durack, J.C.; Stambler, N.; Lin, T.; Jensen, J.; Wong, V.; Siegel, B.A.; Morris, M.J. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18 F-DCFPyL in prostate cancer patients (OSPREY). J. Urol., 2021, 206(1), 52-61.
[http://dx.doi.org/10.1097/JU.0000000000001698] [PMID: 33634707]
[20]
Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res., 2011, 17(24), 7645-7653.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1357] [PMID: 22042970]
[21]
Szabo, Z.; Mena, E.; Rowe, S.P.; Plyku, D.; Nidal, R.; Eisenberger, M.A.; Antonarakis, E.S.; Fan, H.; Dannals, R.F.; Chen, Y.; Mease, R.C.; Vranesic, M.; Bhatnagar, A.; Sgouros, G.; Cho, S.Y.; Pomper, M.G. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol., 2015, 17(4), 565-574.
[http://dx.doi.org/10.1007/s11307-015-0850-8] [PMID: 25896814]
[22]
Gorin, M.A.; Rowe, S.P.; Patel, H.D.; Vidal, I.; Mana-ay, M.; Javadi, M.S.; Solnes, L.B.; Ross, A.E.; Schaeffer, E.M.; Bivalacqua, T.J.; Partin, A.W.; Pienta, K.J.; Szabo, Z.; De Marzo, A.M.; Pomper, M.G.; Allaf, M.E. Prostate specific membrane antigen targeted 18 F-DCFPyL positron emission tomography/computerized tomography for the preoperative staging of high risk prostate cancer: Results of a prospective, phase II, single center study. J. Urol., 2018, 199(1), 126-132.
[http://dx.doi.org/10.1016/j.juro.2017.07.070] [PMID: 28736318]
[23]
Jones, W.; Griffiths, K.; Barata, P.C.; Paller, C.J. PSMA theranostics: Review of the current status of PSMA-targeted imaging and radioligand therapy. Cancers, 2020, 12(6), 1367.
[http://dx.doi.org/10.3390/cancers12061367] [PMID: 32466595]
[24]
Sadaghiani, M.S.; Sheikhbahaei, S.; Werner, R.A.; Pienta, K.J.; Pomper, M.G.; Gorin, M.A.; Solnes, L.B.; Rowe, S.P. 177 Lu‐PSMA radioligand therapy effectiveness in metastatic castration‐resistant prostate cancer: An updated systematic review and meta‐analysis. Prostate, 2022, 82(7), 826-835.
[http://dx.doi.org/10.1002/pros.24325] [PMID: 35286735]
[25]
Tătaru, O.S.; Vartolomei, M.D.; Rassweiler, J.J.; Virgil, O.; Lucarelli, G.; Porpiglia, F.; Amparore, D.; Manfredi, M.; Carrieri, G.; Falagario, U.; Terracciano, D.; de Cobelli, O.; Busetto, G.M.; Giudice, F.D.; Ferro, M. Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives. Diagnostics, 2021, 11(2), 354.
[http://dx.doi.org/10.3390/diagnostics11020354] [PMID: 33672608]
[26]
Ferro, M.; de Cobelli, O.; Vartolomei, M.D.; Lucarelli, G.; Crocetto, F.; Barone, B.; Sciarra, A.; Del Giudice, F.; Muto, M.; Maggi, M.; Carrieri, G.; Busetto, G.M.; Falagario, U.; Terracciano, D.; Cormio, L.; Musi, G.; Tataru, O.S. Prostate cancer radiogenomics-from imaging to molecular characterization. Int. J. Mol. Sci., 2021, 22(18), 9971.
[http://dx.doi.org/10.3390/ijms22189971] [PMID: 34576134]
[27]
Olberg, D.E.; Arukwe, J.M.; Grace, D.; Hjelstuen, O.K.; Solbakken, M.; Kindberg, G.M.; Cuthbertson, A. One step radiosynthesis of 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([(18)F]F-Py-TFP): A new prosthetic group for efficient labeling of biomolecules with fluorine-18. J. Med. Chem., 2010, 53(4), 1732-1740.
[http://dx.doi.org/10.1021/jm9015813] [PMID: 20088512]
[28]
Pascali, C.; Bogni, A.; Iwata, R.; Cambie, M.; Bombardieri, E. [C-11]Methylation on a C-18 Sep-Pak cartridge: a convenient way to produce [N-methyl-C-11]choline. J. Labelled Comp. Radiopharm., 2000, 43, 195-203.
[http://dx.doi.org/10.1002/(SICI)1099-1344(200002)43:2<195:AID-JLCR316>3.0.CO;2-P]
[29]
Sörensen, J.; Owenius, R.; Lax, M.; Johansson, S. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(3), 394-402.
[http://dx.doi.org/10.1007/s00259-012-2291-9] [PMID: 23208700]
[30]
Iatrou, M.; Ross, S.G.; Manjeshwar, R.M.; Stearns, C.W. A fully 3D iterative image reconstruction algorithm incorporatin data corrections.IEEE Symposium Conference Record Nuclear Science 2004, 16-22 October 2004 Rome, Italy; , 2004, pp. 2493-2497.
[http://dx.doi.org/10.1109/NSSMIC.2004.1462761]
[31]
Choueiri, T.K.; Dreicer, R.; Paciorek, A.; Carroll, P.R.; Konety, B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J. Urol., 2008, 179(3), 906-910.
[http://dx.doi.org/10.1016/j.juro.2007.10.059] [PMID: 18207194]
[32]
Schuster, D.M.; Nanni, C.; Fanti, S.; Oka, S.; Okudaira, H.; Inoue, Y.; Sörensen, J.; Owenius, R.; Choyke, P.; Turkbey, B.; Bogsrud, T.V.; Bach-Gansmo, T.; Halkar, R.K.; Nye, J.A.; Odewole, O.A.; Savir-Baruch, B.; Goodman, M.M. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J. Nucl. Med., 2014, 55(12), 1986-1992.
[http://dx.doi.org/10.2967/jnumed.114.143628] [PMID: 25453047]
[33]
Logothetis, C.J.; Lin, S.H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer, 2005, 5(1), 21-28.
[http://dx.doi.org/10.1038/nrc1528] [PMID: 15630412]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy