Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Investigation of LncRNAs Expression as a Potential Biomarker in the Diagnosis and Treatment of Human Brucellosis

Author(s): Mansoor Kodori, Mohammad Abavisani, Hadis Fathizadeh, Mansoor Khaledi, Mohammad Hossein Haddadi, Shahrbanoo Keshavarz Aziziraftar, Foroogh Neamati* and Amirhossein Sahebkar*

Volume 19, Issue 2, 2024

Published on: 05 October, 2023

Page: [103 - 118] Pages: 16

DOI: 10.2174/1574893618666230914160213

Price: $65

Abstract

Long non-coding RNAs (LncRNAs) are significant contributors to bacterial infections and host defense responses, presenting a novel class of gene regulators beyond conventional protein-coding genes. This narrative review aimed to explore the involvement of LncRNAs as a potential biomarker in the diagnosis and treatment of bacterial infections, with a specific focus on Brucella infections. A comprehensive literature review was conducted to identify relevant studies examining the roles of LncRNAs in immune responses during bacterial infections, with a specific emphasis on Brucella infections. Pub- Med, Scopus and other major scientific databases were searched using relevant keywords. LncRNAs crucially regulate immune responses to bacterial infections, influencing transcription factors, proinflammatory cytokines, and immune cell behavior, with both positive and negative effects. The NF-κB pathway is a key regulator for many LncRNAs in bacterial infections. During Brucella infections, essential LncRNAs activate the innate immune response, increasing proinflammatory cytokine production and immune cell differentiation. LncRNAs are associated with human brucellosis, holding promise for screening, diagnostics, or therapeutics. Further research is needed to fully understand LncRNAs' precise functions in Brucella infection and pathogenesis. Specific LncRNAs, like IFNG-AS1 and NLRP3, are upregulated during brucellosis, while others, such as Gm28309, are downregulated, influencing immunosuppression and bacterial survival. Investigating the prognostic and therapeutic potential of Brucellarelated LncRNAs warrants ongoing investigation, including their roles in other immune cells like macrophages, dendritic cells, and neutrophils responsible for bacterial clearance. Unraveling the intricate relationship between LncRNAs and brucellosis may reveal novel regulatory mechanisms and LncRNAs' roles in infection regulation, expediting diagnostics and enhancing therapeutic strategies against Brucella infections.

Next »
[1]
Jiao H, Zhou Z, Li B, et al. The mechanism of facultative intracellular parasitism of Brucella. Int J Mol Sci 2021; 22(7): 3673.
[http://dx.doi.org/10.3390/ijms22073673] [PMID: 33916050]
[2]
Budak F, Bal SH, Tezcan G, et al. MicroRNA expression patterns of CD8+ T cells in acute and chronic brucellosis. PLoS One 2016; 11(11): e0165138.
[http://dx.doi.org/10.1371/journal.pone.0165138] [PMID: 27824867]
[3]
Huy TXN, Nguyen TT, Kim H, Reyes AWB, Kim S. Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival. Microorganisms 2022; 10(10): 2003.
[http://dx.doi.org/10.3390/microorganisms10102003] [PMID: 36296279]
[4]
Gumaa MM, Cao X, Li Z, et al. Establishment of a recombinase polymerase amplification (RPA) assay for the detection of Brucella spp. Infection. Mol Cell Probes 2019; 47: 101434.
[http://dx.doi.org/10.1016/j.mcp.2019.101434] [PMID: 31401295]
[5]
Khan M, Harms JS, Liu Y, et al. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog 2020; 16(10): e1009020.
[http://dx.doi.org/10.1371/journal.ppat.1009020] [PMID: 33108406]
[6]
Budak F, Bal SH, Tezcan G, et al. The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity. PLoS One 2018; 13(6): e0198659.
[http://dx.doi.org/10.1371/journal.pone.0198659] [PMID: 29897958]
[7]
de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: Review of Brucella-host interactions. Am J Pathol 2015; 185(6): 1505-17.
[http://dx.doi.org/10.1016/j.ajpath.2015.03.003] [PMID: 25892682]
[8]
Oliveira SC, de Oliveira FS, Macedo GC, de Almeida LA, Carvalho NB. The role of innate immune receptors in the control of Brucella abortus infection: Toll-like receptors and beyond. Microbes Infect 2008; 10(9): 1005-9.
[http://dx.doi.org/10.1016/j.micinf.2008.07.005] [PMID: 18664388]
[9]
Bosilkovski M, Keramat F, Arapović J. The current therapeutical strategies in human brucellosis. Infection 2021; 49(5): 823-32.
[http://dx.doi.org/10.1007/s15010-021-01586-w] [PMID: 33650077]
[10]
Di Bonaventura G, Angeletti S, Ianni A, Petitti T, Gherardi G. Microbiological laboratory diagnosis of human brucellosis: An overview. Pathogens 2021; 10(12): 1623.
[http://dx.doi.org/10.3390/pathogens10121623] [PMID: 34959578]
[11]
Tang Y, Ma C, Sun H, et al. Serum levels of seven general cytokines in acute brucellosis before and after treatment. Infect Drug Resist 2021; 14: 5501-10.
[http://dx.doi.org/10.2147/IDR.S341331] [PMID: 34955644]
[12]
Hassan H, Salami A, Ghssein G, El-Hage J, Nehme N, Awada R. Seroprevalence of Brucella abortus in cattle in Southern Lebanon using different diagnostic tests. Vet World 2020; 13(10): 2234-42.
[http://dx.doi.org/10.14202/vetworld.2020.2234-2242] [PMID: 33281362]
[13]
Al Dahouk S, Nöckler K. Implications of laboratory diagnosis on brucellosis therapy. Expert Rev Anti Infect Ther 2011; 9(7): 833-45.
[http://dx.doi.org/10.1586/eri.11.55] [PMID: 21810055]
[14]
Li G, Rong Z, Wang S, et al. Rapid detection of brucellosis using a quantum dot-based immunochromatographic test strip. PLoS Negl Trop Dis 2020; 14(9): e0008557.
[http://dx.doi.org/10.1371/journal.pntd.0008557] [PMID: 32976512]
[15]
Wang Y, Ke Y, Xu J, et al. Identification of a novel small non-coding RNA modulating the intracellular survival of Brucella melitensis. Front Microbiol 2015; 6: 164.
[http://dx.doi.org/10.3389/fmicb.2015.00164] [PMID: 25852653]
[16]
González Plaza JJ. Small RNAs in cell-to-cell communications during bacterial infection. FEMS Microbiol Lett 2018; 365(7): fny024.
[http://dx.doi.org/10.1093/femsle/fny024] [PMID: 29390095]
[17]
Deng X, Guo J, Sun Z, et al. Brucella-induced downregulation of lncRNA Gm28309 triggers macrophages inflammatory response through the miR-3068-5p/NF-κB pathway. Front Immunol 2020; 11: 581517.
[http://dx.doi.org/10.3389/fimmu.2020.581517]
[18]
Xu D, Song J, Li G, et al. A novel small RNA Bmsr1 enhances virulence in Brucella melitensis M28. Vet Microbiol 2018; 223: 1-8.
[http://dx.doi.org/10.1016/j.vetmic.2018.07.007] [PMID: 30173733]
[19]
Dal T, Kara SS, Cikman A, et al. Comparison of multiplex real-time polymerase chain reaction with serological tests and culture for diagnosing human brucellosis. J Infect Public Health 2019; 12(3): 337-42.
[http://dx.doi.org/10.1016/j.jiph.2018.11.008] [PMID: 30553722]
[20]
Yagupsky P, Morata P, Colmenero JD. Laboratory diagnosis of human brucellosis. Clin Microbiol Rev 2019; 33(1): e00073-19.
[http://dx.doi.org/10.1128/CMR.00073-19] [PMID: 31722888]
[21]
Moeini-Zanjani A, Pournajaf A, Ferdosi-Shahandashti E, et al. Comparison of loop-mediated isothermal amplification and conventional PCR tests for diagnosis of common Brucella species. BMC Res Notes 2020; 13(1): 533.
[http://dx.doi.org/10.1186/s13104-020-05377-8] [PMID: 33187548]
[22]
Sabour S, Arzanlou M, Jeddi F, et al. Evaluating the efficiency of TaqMan real-time PCR and serological methods in the detection of Brucella spp. in clinical specimens collected from suspected patients in Ardabil, Iran. J Microbiol Methods 2020; 175: 105982.
[http://dx.doi.org/10.1016/j.mimet.2020.105982] [PMID: 32544484]
[23]
Guzmán-Bracho C, Salgado-Jiménez B, Beltrán-Parra LG, et al. Evaluation of serological diagnostic tests of human brucellosis for prevention and control in Mexico. Eur J Clin Microbiol Infect Dis 2020; 39(3): 575-81.
[http://dx.doi.org/10.1007/s10096-019-03760-3] [PMID: 31960174]
[24]
Hassan H, Salami A, Nehme N, Hakeem RA, El Hage J, Awada R. Prevalence and prevention of brucellosis in cattle in Lebanon. Vet World 2020; 13(2): 364-71.
[http://dx.doi.org/10.14202/vetworld.2020.364-371] [PMID: 32255981]
[25]
Dadar M, Shahali Y, Whatmore AM. Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. Int J Food Microbiol 2019; 292: 39-47.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.12.009] [PMID: 30572264]
[26]
Lu J, Wu Z, Liu B, et al. A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans. J Pharm Biomed Anal 2021; 200: 114071.
[http://dx.doi.org/10.1016/j.jpba.2021.114071] [PMID: 33866295]
[27]
Becker GN, Tuon FF. Comparative study of IS711 and bcsp31-based polymerase chain reaction (PCR) for the diagnosis of human brucellosis in whole blood and serum samples. J Microbiol Methods 2021; 183: 106182.
[http://dx.doi.org/10.1016/j.mimet.2021.106182] [PMID: 33647359]
[28]
Sagi M, Nesher L, Yagupsky P. The Bactec FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine 1-week incubation period. J Clin Microbiol 2017; 55(3): 942-6.
[http://dx.doi.org/10.1128/JCM.02320-16] [PMID: 28053214]
[29]
Araj GF. Update on laboratory diagnosis of human brucellosis. Int J Antimicrob Agents 2010; 36 (Suppl. 1): S12-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.06.014] [PMID: 20692128]
[30]
Głowacka P, Żakowska D, Naylor K, Niemcewicz M, Bielawska-Drózd A. Brucella-virulence factors, pathogenesis and treatment. Pol J Microbiol 2018; 67(2): 151-61.
[http://dx.doi.org/10.21307/pjm-2018-029] [PMID: 30015453]
[31]
Yang XM, Jia YL, Zhang Y, et al. Clinical effect of doxycycline combined with compound sulfamethoxazole and rifampicin in the treatment of brucellosis spondylitis. Drug Des Devel Ther 2021; 15: 4733-40.
[http://dx.doi.org/10.2147/DDDT.S341242] [PMID: 34848945]
[32]
Mirzaei R, Sholeh M, Jalalifar S, et al. Immunometabolism in human brucellosis: An emerging field of investigation. Microb Pathog 2021; 158: 105115.
[http://dx.doi.org/10.1016/j.micpath.2021.105115] [PMID: 34332069]
[33]
López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune response to mucosal brucella infection. Front Immunol 2019; 10: 1759.
[http://dx.doi.org/10.3389/fimmu.2019.01759] [PMID: 31481953]
[34]
Ahmed W, Zheng K, Liu ZF. Establishment of chronic infection: Brucella’s stealth strategy. Front Cell Infect Microbiol 2016; 6: 30.
[http://dx.doi.org/10.3389/fcimb.2016.00030] [PMID: 27014640]
[35]
Casabuono AC, Czibener C, Del Giudice MG, Valguarnera E, Ugalde JE, Couto AS. New features in the lipid A structure of Brucella suis and Brucella abortus lipopolysaccharide. J Am Soc Mass Spectrom 2017; 28(12): 2716-23.
[http://dx.doi.org/10.1007/s13361-017-1805-x] [PMID: 28924631]
[36]
Conde-Álvarez R, Arce-Gorvel V, Iriarte M, et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog 2012; 8(5): e1002675.
[http://dx.doi.org/10.1371/journal.ppat.1002675] [PMID: 22589715]
[37]
Martirosyan A, Gorvel JP. Brucella evasion of adaptive immunity. Future Microbiol 2013; 8(2): 147-54.
[http://dx.doi.org/10.2217/fmb.12.140] [PMID: 23374122]
[38]
Gheitasi R, Keramat F, Khosravi S, Hajilooi M, Pletz MW, Makarewicz O. Evaluation of th2 and th17 immunity-related factors as indicators of brucellosis. Front Cell Infect Microbiol 2022; 11: 786994.
[http://dx.doi.org/10.3389/fcimb.2021.786994] [PMID: 35071039]
[39]
Roop RM II, Caswell CC. Bacterial persistence: Finding the “sweet spot”. Cell Host Microbe 2013; 14(2): 119-20.
[http://dx.doi.org/10.1016/j.chom.2013.07.016] [PMID: 23954150]
[40]
Zhang K, Wang H, Guo F, et al. OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Exp Ther Med 2016; 12(4): 2783-9.
[http://dx.doi.org/10.3892/etm.2016.3655] [PMID: 27698784]
[41]
Wei P, Cui G, Lu Q, et al. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet Microbiol 2015; 175(1): 50-7.
[http://dx.doi.org/10.1016/j.vetmic.2014.11.006] [PMID: 25433453]
[42]
Gao G, Xu J. Important biology events and pathways in Brucella infection and implications for novel antibiotic drug targets. Crit Rev Eukaryot Gene Expr 2013; 23(1): 65-76.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.2013006580] [PMID: 23557338]
[43]
Rolán HG, Tsolis RM. Inactivation of the type IV secretion system reduces the Th1 polarization of the immune response to Brucella abortus infection. Infect Immun 2008; 76(7): 3207-13.
[http://dx.doi.org/10.1128/IAI.00203-08] [PMID: 18458071]
[44]
Ning Gao, Jennings P, Yuhong Guo, Yuan D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus. Innate Immun 2011; 17(2): 152-63.
[http://dx.doi.org/10.1177/1753425910367526] [PMID: 20418255]
[45]
Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect 2011; 13(2): 134-42.
[http://dx.doi.org/10.1016/j.micinf.2010.10.015] [PMID: 21034846]
[46]
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75(1): 14-24.
[http://dx.doi.org/10.1016/j.cyto.2015.05.010] [PMID: 26044597]
[47]
Rahmanpour M, Keramat F, Jourghasemi S, et al. Direct correlation between Th1 and Th17 responses in immunity to Brucella infection. Microbes Infect 2019; 21(10): 441-8.
[http://dx.doi.org/10.1016/j.micinf.2019.05.002] [PMID: 31185302]
[48]
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4⁺T cells: Differentiation and functions. Clin Dev Immunol 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/925135] [PMID: 22474485]
[49]
Mirzaei R, Bouzari B, Hosseini-Fard SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139: 111661.
[http://dx.doi.org/10.1016/j.biopha.2021.111661] [PMID: 34243604]
[50]
Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9(8): 556-67.
[http://dx.doi.org/10.1038/nri2586] [PMID: 19575028]
[51]
Besnard AG, Sabat R, Dumoutier L, et al. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med 2011; 183(9): 1153-63.
[http://dx.doi.org/10.1164/rccm.201008-1383OC] [PMID: 21297073]
[52]
Spurlock CF III, Tossberg JT, Guo Y, Collier SP, Crooke PS III, Aune TM. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun 2015; 6(1): 6932.
[http://dx.doi.org/10.1038/ncomms7932] [PMID: 25903499]
[53]
Wen Y, Chen H, Luo F, Zhou H, Li Z. Roles of long noncoding RNAs in bacterial infection. Life Sci 2020; 263: 118579.
[http://dx.doi.org/10.1016/j.lfs.2020.118579] [PMID: 33058913]
[54]
Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells 2019; 8(9): 1015.
[http://dx.doi.org/10.3390/cells8091015] [PMID: 31480503]
[55]
Latgé G, Poulet C, Bours V, Josse C, Jerusalem G. Natural antisense transcripts: Molecular mechanisms and implications in breast cancers. Int J Mol Sci 2018; 19(1): 123.
[http://dx.doi.org/10.3390/ijms19010123] [PMID: 29301303]
[56]
Kumar L. Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: The emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 2017; 54(9): 7224-34.
[http://dx.doi.org/10.1007/s12035-016-0213-8] [PMID: 27796758]
[57]
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: New wine in an old bottle. RNA Biol 2021; 18(12): 2168-82.
[http://dx.doi.org/10.1080/15476286.2021.1935572] [PMID: 34110970]
[58]
Gao N, Li Y, Li J, et al. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 2020; 10: 598817.
[http://dx.doi.org/10.3389/fonc.2020.598817] [PMID: 33392092]
[59]
Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol 2013; 10(3): 456-61.
[http://dx.doi.org/10.4161/rna.23547] [PMID: 23324609]
[60]
Fathizadeh H, Hayat SMG, Dao S, et al. Long non-coding RNA molecules in tuberculosis. Int J Biol Macromol 2020; 156: 340-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.030] [PMID: 32283111]
[61]
Kashi K, Henderson L, Bonetti A, Carninci P. Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta Gene Regul Mech 2016; 1859(1): 3-15.
[http://dx.doi.org/10.1016/j.bbagrm.2015.10.010] [PMID: 26477492]
[62]
De Santa F, Barozzi I, Mietton F, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 2010; 8(5): e1000384.
[http://dx.doi.org/10.1371/journal.pbio.1000384] [PMID: 20485488]
[63]
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 2018; 60(1): 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[64]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[65]
Dragomir M, Calin GA. Circular RNAs in cancer - Lessons learned From microRNAs. Front Oncol 2018; 8: 179.
[http://dx.doi.org/10.3389/fonc.2018.00179] [PMID: 29911069]
[66]
Hassan Z. Functions and implications of circular RNAs in antiviral immunity. Adv Microbiol 2019; 9(7): 602-15.
[http://dx.doi.org/10.4236/aim.2019.97037]
[67]
Yoon JH, Gorospe M. Cross-linking immunoprecipitation and qPCR (CLIP-qPCR) analysis to map interactions between long noncoding RNAs and RNA-binding proteins. Methods Mol Biol 2016; 1402: 11-7.
[http://dx.doi.org/10.1007/978-1-4939-3378-5_2] [PMID: 26721479]
[68]
Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 2017; 21(12): 3120-40.
[http://dx.doi.org/10.1111/jcmm.13238] [PMID: 28631377]
[69]
Gong Y, Zhu W, Sun M, Shi L. Bioinformatics analysis of long non-coding RNA and related diseases: An overview. Front Genet 2021; 12: 813873.
[http://dx.doi.org/10.3389/fgene.2021.813873] [PMID: 34956340]
[70]
Zhou C, Huang Y, Tian Y, Zhang B, Yang X. LncRNA Linc00173 may be a potential prognostic biomarker in human solid tumors: A meta-analysis and bioinformatics analysis. Mol Cell Biochem 2023.
[http://dx.doi.org/10.1007/s11010-023-04684-5] [PMID: 36894691]
[71]
Zhang H, Zhang G, Zhang F, et al. LINC00958 may be a new prognostic biomarker in various cancers: A meta-analysis and bioinformatics analysis. Front Genet 2022; 13: 998442.
[http://dx.doi.org/10.3389/fgene.2022.998442] [PMID: 36437914]
[72]
Du S, Guo Y, Huang J, Xu J, Chen G. The expressions and functions of lncRNA related to m6a in hepatocellular carcinoma from a bioinformatics analysis. Comput Math Methods Med 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/1395557] [PMID: 36276996]
[73]
Zhou YK, Shen ZA, Yu H, Luo T, Gao Y, Du PF. Predicting lncRNA–protein interactions with miRNAs as mediators in a heterogeneous network model. Front Genet 2020; 10: 1341.
[http://dx.doi.org/10.3389/fgene.2019.01341] [PMID: 32038709]
[74]
Peng L, Liu F, Yang J, et al. Probing lncRNA-protein interactions: Data repositories, models, and algorithms. Front Genet 2020; 10: 1346.
[http://dx.doi.org/10.3389/fgene.2019.01346] [PMID: 32082358]
[75]
Gudenas BL, Wang J, Kuang S, Wei A, Cogill SB, Wang L. Genomic data mining for functional annotation of human long noncoding RNAs. J Zhejiang Univ Sci B 2019; 20(6): 476-87.
[http://dx.doi.org/10.1631/jzus.B1900162] [PMID: 31090273]
[76]
Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 2015; 16(1): 20.
[http://dx.doi.org/10.1186/s13059-015-0586-4] [PMID: 25630241]
[77]
Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, et al. Non-coding RNAs and brain tumors: Insights into their roles in apoptosis. Front Cell Dev Biol 2022; 9: 792185.
[http://dx.doi.org/10.3389/fcell.2021.792185] [PMID: 35111757]
[78]
Arab K, Park YJ, Lindroth AM, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 2014; 55(4): 604-14.
[http://dx.doi.org/10.1016/j.molcel.2014.06.031] [PMID: 25087872]
[79]
Jain AK, Xi Y, McCarthy R, et al. LncPRESS1 is a p53-regulated lncrna that safeguards pluripotency by disrupting sirt6-mediated de-acetylation of histone H3K56. Mol Cell 2016; 64(5): 967-81.
[http://dx.doi.org/10.1016/j.molcel.2016.10.039] [PMID: 27912097]
[80]
Terashima M, Tange S, Ishimura A, Suzuki T. MEG3 long noncoding rna contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. J Biol Chem 2017; 292(1): 82-99.
[http://dx.doi.org/10.1074/jbc.M116.750950] [PMID: 27852821]
[81]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[82]
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: Recent insights and future perspectives. Nat Rev Genet 2016; 17(4): 207-23.
[http://dx.doi.org/10.1038/nrg.2016.4] [PMID: 26948815]
[83]
Zhang CL, Zhu KP, Ma XL. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett 2017; 396: 66-75.
[http://dx.doi.org/10.1016/j.canlet.2017.03.018] [PMID: 28323030]
[84]
Li Y, Egranov SD, Yang L, Lin C. Molecular mechanisms of long noncoding RNAs‐mediated cancer metastasis. Genes Chromosomes Cancer 2019; 58(4): 200-7.
[http://dx.doi.org/10.1002/gcc.22691] [PMID: 30350428]
[85]
Hu G, Niu F, Humburg BA, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018; 9(26): 18648-63.
[http://dx.doi.org/10.18632/oncotarget.24307] [PMID: 29719633]
[86]
Raziq K, Cai M, Dong K, Wang P, Afrifa J, Fu S. Competitive endogenous network of lncRNA, miRNA, and mRNA in the chemoresistance of gastrointestinal tract adenocarcinomas. Biomed Pharmacother 2020; 130: 110570.
[http://dx.doi.org/10.1016/j.biopha.2020.110570] [PMID: 32763816]
[87]
Xiao H, Tang K, Liu P, et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 2015; 6(35): 38005-15.
[http://dx.doi.org/10.18632/oncotarget.5357] [PMID: 26461224]
[88]
Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K. Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res 2017; 37(1): 81-6.
[http://dx.doi.org/10.21873/anticanres.11292] [PMID: 28011477]
[89]
Chen H, Du G, Song X, Li L. Non-coding transcripts from enhancers: New insights into enhancer activity and gene expression regulation. Geno Proteo Bioinform 2017; 15(3): 201-7.
[http://dx.doi.org/10.1016/j.gpb.2017.02.003] [PMID: 28599852]
[90]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[91]
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: A new paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[92]
Lu T, Wang Y, Chen D, Liu J, Jiao W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther 2018; 11: 8045-52.
[http://dx.doi.org/10.2147/OTT.S178431] [PMID: 30519046]
[93]
Huang JL, Liu W, Tian LH, et al. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia. Oncol Rep 2017; 38(3): 1353-62.
[http://dx.doi.org/10.3892/or.2017.5802] [PMID: 28713913]
[94]
Sokhn ES, Salami A, El Roz A, Salloum L, Bahmad HF, Ghssein G. Antimicrobial susceptibilities and laboratory profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates as agents of urinary tract infection in Lebanon: Paving the way for better diagnostics. Med Sci 2020; 8(3): 32.
[http://dx.doi.org/10.3390/medsci8030032] [PMID: 32823619]
[95]
Ilott NE, Heward JA, Roux B, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 2014; 5(1): 3979.
[http://dx.doi.org/10.1038/ncomms4979] [PMID: 24909122]
[96]
Castellanos-Rubio A, Kratchmarov R, Sebastian M, et al. Cytoplasmic form of carlr lncRNA facilitates inflammatory gene expression upon NF-κB activation. J Immunol 2017; 199(2): 581-8.
[http://dx.doi.org/10.4049/jimmunol.1700023] [PMID: 28626066]
[97]
Yang R, Huang F, Fu J, et al. Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci Rep 2016; 6(1): 38903.
[http://dx.doi.org/10.1038/srep38903] [PMID: 27958323]
[98]
Rossi E, La Rosa R, Bartell JA, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19(5): 331-42.
[http://dx.doi.org/10.1038/s41579-020-00477-5] [PMID: 33214718]
[99]
Ghssein G, Ezzeddine Z. A review of Pseudomonas aeruginosa metallophores: Pyoverdine, pyochelin and pseudopaline. Biology 2022; 11(12): 1711.
[http://dx.doi.org/10.3390/biology11121711] [PMID: 36552220]
[100]
Balloy V, Koshy R, Perra L, et al. Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon pseudomonas aeruginosa infection. Front Cell Infect Microbiol 2017; 7: 218.
[http://dx.doi.org/10.3389/fcimb.2017.00218] [PMID: 28611953]
[101]
Li R, Fang L, Pu Q, et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018; 11(536): eaao2387.
[http://dx.doi.org/10.1126/scisignal.aao2387] [PMID: 29945883]
[102]
Khalife H, Khalife H, Khodor H, Ghssein G, El Rashed Z, Abdel-Sater F. Epidemiology of Helicobacter pylori infection among the healthy population in Lebanon. World J Pharm Pharm Sci 2017; 6: 363-72.
[103]
Kibria KMK, Hossain ME, Sultana J, et al. The prevalence of mixed helicobacter pylori infections in symptomatic and asymptomatic subjects in dhaka, bangladesh. Helicobacter 2015; 20(5): 397-404.
[http://dx.doi.org/10.1111/hel.12213] [PMID: 25827337]
[104]
Liu L, Shuai T, Li B, Zhu L, Li X. Long non coding RNA lnc GNAT1 1 inhibits gastric cancer cell proliferation and invasion through the Wnt/β catenin pathway in Helicobacter pylori infection. Mol Med Rep 2018; 18(4): 4009-15.
[http://dx.doi.org/10.3892/mmr.2018.9405] [PMID: 30132541]
[105]
Mao J, Fan S, Ma W, et al. Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis 2014; 5(1): e1039.
[http://dx.doi.org/10.1038/cddis.2013.515] [PMID: 24481453]
[106]
Han T, Jing X, Bao J, et al. H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest 2020; 130(7): 3901-18.
[http://dx.doi.org/10.1172/JCI125581] [PMID: 32538894]
[107]
Zhou X, Chen H, Zhu L, et al. Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget 2016; 7(50): 82770-82.
[http://dx.doi.org/10.18632/oncotarget.13165] [PMID: 27835575]
[108]
Zhu H, Wang Q, Yao Y, et al. Microarray analysis of Long non-coding RNA expression profiles in human gastric cells and tissues with Helicobacter pylori Infection. BMC Med Genomics 2015; 8(1): 84.
[http://dx.doi.org/10.1186/s12920-015-0159-0] [PMID: 26690385]
[109]
Jia W, Zhang J, Ma F, et al. Long noncoding RNA THAP9-AS1 is induced by Helicobacter pylori and promotes cell growth and migration of gastric cancer. OncoTargets Ther 2019; 12: 6653-63.
[http://dx.doi.org/10.2147/OTT.S201832] [PMID: 32021238]
[110]
Rajabi A, Riahi A, Shirabadi-Arani H, Moaddab Y, Haghi M, Safaralizadeh R. Overexpression of HOXA-AS2 LncRNA in patients with gastric cancer and its association with helicobacter pylori infection. J Gastrointest Cancer 2022; 53(1): 72-7.
[http://dx.doi.org/10.1007/s12029-020-00549-y] [PMID: 33174119]
[111]
Wang H, Wang X, Li X, et al. A novel long non‐coding RNA regulates the immune response in MAC ‐T cells and contributes to bovine mastitis. FEBS J 2019; 286(9): 1780-95.
[http://dx.doi.org/10.1111/febs.14783] [PMID: 30771271]
[112]
Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered 2022; 13(3): 5855-67.
[http://dx.doi.org/10.1080/21655979.2022.2037898] [PMID: 35226820]
[113]
Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y. Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein a-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 2016; 39(4): 1347-59.
[http://dx.doi.org/10.1159/000447839] [PMID: 27607236]
[114]
Wu H, Cao F, Zhou W, et al. Long noncoding RNA FAM83H-AS1 modulates spa-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Mol Cell Biol 2020; 40(5): e00362-19.
[http://dx.doi.org/10.1128/MCB.00362-19] [PMID: 31871129]
[115]
Yang L, Zhang X, Liu X. Long non coding RNA GAS5 protects against Mycoplasma pneumoniae pneumonia by regulating the microRNA 222 3p/TIMP3 axis. Mol Med Rep 2021; 23(5): 380.
[http://dx.doi.org/10.3892/mmr.2021.12019] [PMID: 33760178]
[116]
Xu C, Deng H, Liu F, Zhao D, Tang H, Gu H. Long non-coding RNA PACER regulates mycoplasma pneumoniae-induced inflammatory response through interaction with NF-κB. Ann Clin Lab Sci 2022; 52(1): 21-6.
[PMID: 35181614]
[117]
Zhang F, Zhang J, Liu F, et al. Attenuated lncRNA NKILA enhances the secretory function of airway epithelial cells stimulated by mycoplasma pneumoniae via NF-κB. BioMed Res Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/6656298] [PMID: 33855076]
[118]
Rajabi A, Bastani S, Maydanchi M, Tayefeh-Gholami S, Abdolahi S, Saber A, et al. Moderate prognostic value of lncRNA FOXD2-AS1 in gastric cancer with helicobacter pylori infection. J Gastrointest Cancer 2021; 53(3): 687-91.
[PMID: 34478035]
[119]
Jin C, Shi W, Wang F, et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget 2016; 7(32): 51763-72.
[http://dx.doi.org/10.18632/oncotarget.10107] [PMID: 27322075]
[120]
Yang T, Zeng H, Chen W, et al. Helicobacter pylori infection, H19 and LINC00152 expression in serum and risk of gastric cancer in a Chinese population. Cancer Epidemiol 2016; 44: 147-53.
[http://dx.doi.org/10.1016/j.canep.2016.08.015] [PMID: 27592063]
[121]
Luo F, Wen Y, Zhao L, et al. Chlamydia trachomatis induces lncRNA MIAT upregulation to regulate mitochondria‐mediated host cell apoptosis and chlamydial development. J Cell Mol Med 2022; 26(1): 163-77.
[http://dx.doi.org/10.1111/jcmm.17069] [PMID: 34859581]
[122]
Yang X, Yang J, Wang J, et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep 2016; 6(1): 38963.
[http://dx.doi.org/10.1038/srep38963] [PMID: 27966580]
[123]
Huang S, Huang Z, Luo Q, Qing C. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. BioMed Res Int 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/9529072] [PMID: 30534569]
[124]
Chen P, Huang Z, Chen L, et al. The relationships between LncRNA NNT-AS1, CRP, PCT and their interactions and the refractory mycoplasma pneumoniae pneumonia in children. Sci Rep 2021; 11(1): 2059.
[http://dx.doi.org/10.1038/s41598-021-81853-w] [PMID: 33479472]
[125]
Shirahama S, Miki A, Kaburaki T, Akimitsu N. Long non-coding RNAs involved in pathogenic infection. Front Genet 2020; 11: 454.
[http://dx.doi.org/10.3389/fgene.2020.00454] [PMID: 32528521]
[126]
Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 2013; 341(6147): 789-92.
[http://dx.doi.org/10.1126/science.1240925] [PMID: 23907535]
[127]
Zhu Y, Lu Y, Yuan L, et al. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311(5): 151515.
[http://dx.doi.org/10.1016/j.ijmm.2021.151515] [PMID: 34146956]
[128]
Hu G, Gong AY, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 2016; 196(6): 2799-808.
[http://dx.doi.org/10.4049/jimmunol.1502146] [PMID: 26880762]
[129]
Elling R, Robinson EK, Shapleigh B, et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep 2018; 25(6): 1511-1524.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.10.027] [PMID: 30404006]
[130]
Agliano F, Fitzgerald KA, Vella AT, Rathinam VA, Medvedev AE. Long non-coding RNA LincRNA-EPS inhibits host defense against listeria monocytogenes infection. Front Cell Infect Microbiol 2020; 9: 481.
[http://dx.doi.org/10.3389/fcimb.2019.00481] [PMID: 32039056]
[131]
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76(1): 661-80.
[http://dx.doi.org/10.1146/annurev-micro-121321-093031] [PMID: 35709500]
[132]
Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly expressed long non‐coding RNAs In CD8 + T cells response to active tuberculosis. J Cell Biochem 2017; 118(12): 4275-84.
[http://dx.doi.org/10.1002/jcb.26078] [PMID: 28422321]
[133]
Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One 2017; 12(1): e0170712.
[http://dx.doi.org/10.1371/journal.pone.0170712] [PMID: 28125665]
[134]
Yi Z, Li J, Gao K, Fu Y. Identifcation of differentially expressed long non-coding RNAs in CD4+ T cells response to latent tuberculosis infection. J Infect 2014; 69(6): 558-68.
[http://dx.doi.org/10.1016/j.jinf.2014.06.016] [PMID: 24975173]
[135]
Yao Q, Xie Y, Xu D, et al. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19(8): 883-97.
[http://dx.doi.org/10.1038/s41423-022-00878-x] [PMID: 35637281]
[136]
Sharbati S, Ravon F, Einspanier R, zur Bruegge J. Mycobacterium smegmatis but not mycobacterium avium subsp. hominissuis causes increased expression of the long non-coding RNA MEG3 in THP-1-derived human macrophages and associated decrease of TGF-β. Microorganisms 2019; 7(3): 63.
[http://dx.doi.org/10.3390/microorganisms7030063] [PMID: 30818784]
[137]
Gupta P, Peter S, Jung M, et al. Analysis of long non-coding RNA and mRNA expression in bovine macrophages brings up novel aspects of Mycobacterium avium subspecies paratuberculosis infections. Sci Rep 2019; 9(1): 1571.
[http://dx.doi.org/10.1038/s41598-018-38141-x] [PMID: 30733564]
[138]
Liu Y, Xiang J, Hu X, Wang H, Sun Y. Expression profile screening and bioinformatics analysis of CircRNA, LncRNA, and mRNA in HeLa cells infected with Chlamydia muridarum. Arch Microbiol 2022; 204(6): 352.
[http://dx.doi.org/10.1007/s00203-022-02941-7] [PMID: 35622163]
[139]
Wen Y, Chen H, Luo F, et al. Chlamydia trachomatis plasmid protein pORF5 up-regulates ZFAS1 to promote host cell survival via MAPK/p38 pathway. Front Microbiol 2020; 11: 593295.
[http://dx.doi.org/10.3389/fmicb.2020.593295] [PMID: 33391210]
[140]
Luo F, Wen Y, Zhao L, et al. LncRNA ZEB1-AS1/miR-1224-5p/MAP4K4 axis regulates mitochondria-mediated HeLa cell apoptosis in persistent Chlamydia trachomatis infection. Virulence 2022; 13(1): 444-57.
[http://dx.doi.org/10.1080/21505594.2022.2044666] [PMID: 35266440]
[141]
Wen Y, Luo F, Zhao L, et al. Long non-coding RNA FGD5-AS1 induced by chlamydia trachomatis infection inhibits apoptosis via Wnt/β-catenin signaling pathway. Front Cell Infect Microbiol 2021; 11: 701352.
[http://dx.doi.org/10.3389/fcimb.2021.701352] [PMID: 34568091]
[142]
Ferrero MC, Alonso Paiva IM, Muñoz González F, Baldi PC. Pathogenesis and immune response in Brucella infection acquired by the respiratory route. Microbes Infect 2020; 22(9): 407-15.
[http://dx.doi.org/10.1016/j.micinf.2020.06.001] [PMID: 32535086]
[143]
Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198(4): 545-56.
[http://dx.doi.org/10.1084/jem.20030088] [PMID: 12925673]
[144]
Gheitasi R, Jourghasemi S, Pakzad I, et al. A potential marker in brucellosis, long non coding RNA IFNG-AS1. Mol Biol Rep 2019; 46(6): 6495-500.
[http://dx.doi.org/10.1007/s11033-019-05095-w] [PMID: 31595441]
[145]
Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152(4): 743-54.
[http://dx.doi.org/10.1016/j.cell.2013.01.015] [PMID: 23415224]
[146]
Guan X, Hu H, Tian M, Zhuang H, Ding C, Yu S. Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication. Sci Rep 2022; 12(1): 21320.
[http://dx.doi.org/10.1038/s41598-022-25932-6] [PMID: 36494502]
[147]
Wang Z, Cao Z, Wang Z. Significance of long non-coding RNA IFNG-AS1 in the progression and clinical prognosis in colon adenocarcinoma. Bioengineered 2021; 12(2): 11342-50.
[http://dx.doi.org/10.1080/21655979.2021.2003944] [PMID: 34872454]
[148]
Chernikov OV, Moon JS, Chen A, Hua KF. Editorial: NLRP3 inflammasome: Regulatory Mechanisms, Role in Health and Disease and Therapeutic Potential. Front Immunol 2021; 12: 765199.
[http://dx.doi.org/10.3389/fimmu.2021.765199] [PMID: 34616411]
[149]
Oeckinghaus A, Postler TS, Rao P, et al. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8(6): 1793-807.
[http://dx.doi.org/10.1016/j.celrep.2014.08.015] [PMID: 25220458]
[150]
Gheitasi R, Keramat F, Solgi G, Hajilooi M. Investigation of Linc-MAF-4 expression as an effective marker in brucellosis. Mol Immunol 2020; 123: 60-3.
[http://dx.doi.org/10.1016/j.molimm.2020.04.022] [PMID: 32417631]
[151]
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J Immunol 2014; 193(8): 3959-65.
[http://dx.doi.org/10.4049/jimmunol.1401099] [PMID: 25225667]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy