Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Medicinal Aspects of PTP1B Inhibitors as Anti-Breast Cancer Agents: An Overview

Author(s): Rakesh Khator, Avadh Biharee, Neha Bhatia, Swanand Kulkarni, Yogesh Singh, Chandrabose Karthikeyan, Akhlesh Kumar Jain* and Suresh Thareja*

Volume 31, Issue 34, 2024

Published on: 25 September, 2023

Page: [5535 - 5549] Pages: 15

DOI: 10.2174/0929867331666230914103645

Price: $65

Abstract

Protein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. Therefore, huge research is being carried out on PTP1B inhibitors and their activity against breast cancer development. To date, only two PTP1B inhibitors, viz. ertiprotafib and trodusquemine, have entered clinical trials. The discovery of selective inhibitors of PTP1B could open a new avenue in breast cancer treatment. In this review, we provide an extensive overview on the involvement of PTP1B in breast cancer, its pathophysiology, with special attention on the discovery and development of various natural as well as synthetic PTP1B inhibitors. This study will provide significant information to the researchers developing PTP1B inhibitors for breast cancer treatment.

[1]
Chen, P.J.; Zhang, Y.T. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into its new implications in tumorigenesis. Curr. Cancer Drug Targets, 2022, 22(3), 181-194.
[http://dx.doi.org/10.2174/1568009622666220128113400] [PMID: 35088671]
[2]
Biharee, A.; Yadav, A.; Jangid, K.; Singh, Y.; Kulkarni, S.; Sawant, D.M.; Kumar, P.; Thareja, S.; Jain, A.K. Flavonoids as promising anticancer agents: An in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 1-12.
[http://dx.doi.org/10.1080/07391102.2022.2126397] [PMID: 36165610]
[3]
Villamar-Cruz, O.; Loza-Mejía, M.A.; Arias-Romero, L.E.; Camacho-Arroyo, I. Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep., 2021, 41(11), BSR20211994.
[http://dx.doi.org/10.1042/BSR20211994] [PMID: 34726241]
[4]
Breast cancer: Introduction. Seminars in Cancer Biology; Ingvarsson, S., Ed.; Academic Press, 2001.
[5]
Devi, N.; Kaur, K.; Biharee, A.; Jaitak, V. Recent development in indole derivatives as anticancer agent: A mechanistic approach. Anticancer. Agents Med. Chem., 2021, 21(14), 1802-1824.
[http://dx.doi.org/10.2174/1871520621999210104192644] [PMID: 33397272]
[6]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[7]
Heravi Karimovi, M.; Pourdehqan, M.; Jadid Milani, M.; Foroutan, S.K.; Aieen, F. Study of the effects of group counseling on quality of sexual life of patients with breast cancer under chemotherapy at Imam Khomeini Hospital. J. Maz. Univ. Med., 2006, 16(54), 43-51.
[8]
Cheng, H-C.; Qi, R.Z.; Paudel, H.; Zhu, H-J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011, 2011, 794089.
[http://dx.doi.org/10.4061/2011/794089]
[9]
Tonks, N.K. PTP1B: From the sidelines to the front lines! FEBS Lett., 2003, 546(1), 140-148.
[http://dx.doi.org/10.1016/S0014-5793(03)00603-3] [PMID: 12829250]
[10]
Ubersax, J.A.; Ferrell, J.E., Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 530-541.
[http://dx.doi.org/10.1038/nrm2203] [PMID: 17585314]
[11]
Sacco, F.; Perfetto, L.; Castagnoli, L.; Cesareni, G. The human phosphatase interactome: An intricate family portrait. FEBS Lett., 2012, 586(17), 2732-2739.
[http://dx.doi.org/10.1016/j.febslet.2012.05.008] [PMID: 22626554]
[12]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[13]
Bollu, L.R.; Mazumdar, A.; Savage, M.I.; Brown, P.H. Molecular pathways: Targeting protein tyrosine phosphatases in cancer. Clin. Cancer Res., 2017, 23(9), 2136-2142.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0934] [PMID: 28087641]
[14]
Bhore, N.; Wang, B.J.; Chen, Y.W.; Liao, Y.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int. J. Mol. Sci., 2017, 18(9), 1963.
[http://dx.doi.org/10.3390/ijms18091963] [PMID: 28902166]
[15]
Verma, S.K.; Yadav, Y.S.; Thareja, S. 2,4-thiazolidine-] diones as PTP1B inhibitors: A mini review (2012-2018). Mini Rev. Med. Chem., 2019, 19(7), 591-598.
[http://dx.doi.org/10.2174/1389557518666181026092029] [PMID: 30968766]
[16]
Yu, M.; Liu, Z.; Liu, Y.; Zhou, X.; Sun, F.; Liu, Y.; Li, L.; Hua, S.; Zhao, Y.; Gao, H.; Zhu, Z.; Na, M.; Zhang, Q.; Yang, R.; Zhang, J.; Yao, Y.; Chen, X. PTP1B markedly promotes breast cancer progression and is regulated by miR‐193a‐3p. FEBS J., 2019, 286(6), 1136-1153.
[http://dx.doi.org/10.1111/febs.14724] [PMID: 30548198]
[17]
Julien, S.G.; Dubé, N.; Read, M.; Penney, J.; Paquet, M.; Han, Y.; Kennedy, B.P.; Muller, W.J.; Tremblay, M.L. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet., 2007, 39(3), 338-346.
[http://dx.doi.org/10.1038/ng1963] [PMID: 17259984]
[18]
Bentires-Alj, M.; Neel, B.G. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res., 2007, 67(6), 2420-2424.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4610] [PMID: 17347513]
[19]
Tonks, N.K.; Muthuswamy, S.K. A brake becomes an accelerator: PTP1B--a new therapeutic target for breast cancer. Cancer Cell, 2007, 11(3), 214-216.
[http://dx.doi.org/10.1016/j.ccr.2007.02.022] [PMID: 17349579]
[20]
Dadke, S.; Chernoff, J. Interaction of protein tyrosine phosphatase (PTP) 1B with its substrates is influenced by two distinct binding domains. Biochem. J., 2002, 364(2), 377-383.
[http://dx.doi.org/10.1042/bj20011372] [PMID: 12023880]
[21]
Teimouri, M.; Hosseini, H. ArabSadeghabadi Z, Babaei-Khorzoughi R.; Gorgani-Firuzjaee, S.; Meshkani, R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J. Physiol. Biochem., 2022, 1-16.
[22]
Zhou, J.; Guo, H.; Zhang, Y.; Liu, H.; Dou, Q. The role of PTP1B (PTPN1) in the prognosis of solid tumors: A meta-analysis. Medicine, 2022, 101(40), e30826.
[http://dx.doi.org/10.1097/MD.0000000000030826] [PMID: 36221386]
[23]
Feldhammer, M.; Uetani, N.; Miranda-Saavedra, D.; Tremblay, M.L. PTP1B: A simple enzyme for a complex world. Crit. Rev. Biochem. Mol. Biol., 2013, 48(5), 430-445.
[http://dx.doi.org/10.3109/10409238.2013.819830] [PMID: 23879520]
[24]
Scapin, G.; Patel, S.B.; Becker, J.W.; Wang, Q.; Desponts, C.; Waddleton, D.; Skorey, K.; Cromlish, W.; Bayly, C.; Therien, M.; Gauthier, J.Y.; Li, C.S.; Lau, C.K.; Ramachandran, C.; Kennedy, B.P.; Asante-Appiah, E. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemistry, 2003, 42(39), 11451-11459.
[http://dx.doi.org/10.1021/bi035098j] [PMID: 14516196]
[25]
Sun, J.P.; Fedorov, A.A.; Lee, S.Y.; Guo, X.L.; Shen, K.; Lawrence, D.S.; Almo, S.C.; Zhang, Z.Y. Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J. Biol. Chem., 2003, 278(14), 12406-12414.
[http://dx.doi.org/10.1074/jbc.M212491200] [PMID: 12547827]
[26]
Ishibashi, T.; Bottaro, D.P.; Michieli, P.; Kelley, C.A.; Aaronson, S.A. A novel dual specificity phosphatase induced by serum stimulation and heat shock. J. Biol. Chem., 1994, 269(47), 29897-29902.
[http://dx.doi.org/10.1016/S0021-9258(18)43965-8] [PMID: 7961985]
[27]
Kumar, R.; Shinde, R.N.; Ajay, D.; Sobhia, M.E. Probing interaction requirements in PTP1B inhibitors: A comparative molecular dynamics study. J. Chem. Inf. Model., 2010, 50(6), 1147-1158.
[http://dx.doi.org/10.1021/ci900484g] [PMID: 20455572]
[28]
Eleftheriou, P.; Geronikaki, A.; Petrou, A. PTP1b inhibition, a promising approach for the treatment of diabetes type II. Curr. Top. Med. Chem., 2019, 19(4), 246-263.
[http://dx.doi.org/10.2174/1568026619666190201152153] [PMID: 30714526]
[29]
Liu, R.; Mathieu, C.; Berthelet, J.; Zhang, W.; Dupret, J.M.; Rodrigues Lima, F. Human protein tyrosine phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives. Int. J. Mol. Sci., 2022, 23(13), 7027.
[http://dx.doi.org/10.3390/ijms23137027] [PMID: 35806030]
[30]
Yasuda, I.; Endo, K.; Yamamoto, E.; Hirano, Y.; Yasuoka, K. Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein-ligand binding affinities. Commun. Biol., 2022, 5(1), 481.
[http://dx.doi.org/10.1038/s42003-022-03416-7] [PMID: 35589949]
[31]
Kamerlin, S.C.L.; Rucker, R.; Boresch, S. A targeted molecular dynamics study of WPD loop movement in PTP1B. Biochem. Biophys. Res. Commun., 2006, 345(3), 1161-1166.
[http://dx.doi.org/10.1016/j.bbrc.2006.04.181] [PMID: 16713994]
[32]
reddy, M.V.V.V.; Ghadiyaram, C.; Panigrahi, S.; Krishnamurthy, N.; Hosahalli, S.; Chandrasekharappa, A.; Manna, D.; Badiger, S.; Dubey, P.; Mangamoori, L. X-ray structure of PTP1B in complex with a new PTP1B inhibitor. Protein Pept. Lett., 2013, 21(1), 90-93.
[http://dx.doi.org/10.2174/09298665113209990089] [PMID: 23964742]
[33]
Thareja, S.; Aggarwal, S.; Bhardwaj, T.R.; Kumar, M. Protein tyrosine phosphatase 1B inhibitors: A molecular level legitimate approach for the management of diabetes mellitus. Med. Res. Rev., 2012, 32(3), 459-517.
[http://dx.doi.org/10.1002/med.20219] [PMID: 20814956]
[34]
Heneberg, P. Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr. Med. Chem., 2009, 16(6), 706-733.
[http://dx.doi.org/10.2174/092986709787458407] [PMID: 19199933]
[35]
Yip, S.C.; Saha, S.; Chernoff, J. PTP1B: A double agent in metabolism and oncogenesis. Trends Biochem. Sci., 2010, 35(8), 442-449.
[http://dx.doi.org/10.1016/j.tibs.2010.03.004] [PMID: 20381358]
[36]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018]
[37]
Sivaganesh, V.; Sivaganesh, V.; Scanlon, C.; Iskander, A.; Maher, S.; Lê, T.; Peethambaran, B. Protein tyrosine phosphatases: Mechanisms in cancer. Int. J. Mol. Sci., 2021, 22(23), 12865.
[http://dx.doi.org/10.3390/ijms222312865] [PMID: 34884670]
[38]
Liao, S.; Li, J.; Yu, L.; Sun, S. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J. Zhejiang Univ. Sci. B, 2017, 18(4), 334-342.
[http://dx.doi.org/10.1631/jzus.B1600184] [PMID: 28378571]
[39]
Hilmarsdottir, B.; Briem, E.; Halldorsson, S.; Kricker, J.; Ingthorsson, S.; Gustafsdottir, S.; Mælandsmo, G.M.; Magnusson, M.K.; Gudjonsson, T Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis., 2017, 8(5), e2796.
[http://dx.doi.org/10.1038/cddis.2017.177]
[40]
Soysal, S.; Obermann, E.C.; Gao, F.; Oertli, D.; Gillanders, W.E.; Viehl, C.T.; Muenst, S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 637-644.
[http://dx.doi.org/10.1007/s10549-012-2373-1] [PMID: 23242616]
[41]
Aceto, N.; Bentires-Alj, M. Targeting protein-tyrosine phosphatases in breast cancer. Oncotarget, 2012, 3(5), 514-515.
[http://dx.doi.org/10.18632/oncotarget.496] [PMID: 22626783]
[42]
Balavenkatraman, K.K.; Aceto, N.; Britschgi, A.; Mueller, U.; Bence, K.K.; Neel, B.G.; Bentires-Alj, M. Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol. Cancer Res., 2011, 9(10), 1377-1384.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0198] [PMID: 21849469]
[43]
Nunes-Xavier, C.E.; Martín-Pérez, J.; Elson, A.; Pulido, R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim. Biophys. Acta, 2013, 1836(2), 211-226.
[PMID: 23756181]
[44]
Ang, H.L.; Yuan, Y.; Lai, X.; Tan, T.Z.; Wang, L.; Huang, B.B.; Pandey, V.; Huang, R.Y.J.; Lobie, P.E.; Goh, B.C.; Sethi, G.; Yap, C.T.; Chan, C.W.; Lee, S.C.; Kumar, A.P. Putting the BRK on breast cancer: From molecular target to therapeutics. Theranostics, 2021, 11(3), 1115-1128.
[http://dx.doi.org/10.7150/thno.49716] [PMID: 33391524]
[45]
Wiener, J.R.; Windham, T.C.; Estrella, V.C.; Parikh, N.U.; Thall, P.F.; Deavers, M.T.; Bast, R.C., Jr; Mills, G.B.; Gallick, G.E. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol., 2003, 88(1), 73-79.
[http://dx.doi.org/10.1006/gyno.2002.6851] [PMID: 12504632]
[46]
Pike, K.A.; Tremblay, M.L. TC-PTP and PTP1B: Regulating JAK–STAT signaling, controlling lymphoid malignancies. Cytokine, 2016, 82, 52-57.
[http://dx.doi.org/10.1016/j.cyto.2015.12.025] [PMID: 26817397]
[47]
Kumar, A.; Rana, D.; Rana, R.; Bhatia, R. Protein tyrosine phosphatase (PTP1B): A promising drug target against life-threatening ailments. Curr. Mol. Pharmacol., 2020, 13(1), 17-30.
[http://dx.doi.org/10.2174/1874467212666190724150723] [PMID: 31339082]
[48]
Wang, Q.; Pan, Y.; Zhao, L.; Qi, F.; Liu, J. Protein tyrosine phosphatase 1B(PTP1B) promotes melanoma cells progression through Src activation. Bioengineered, 2021, 12(1), 8396-8406.
[http://dx.doi.org/10.1080/21655979.2021.1988376] [PMID: 34606417]
[49]
Przychodzen, P.; Kuban-Jankowska, A.; Wyszkowska, R.; Barone, G.; Bosco, G.L.; Celso, F.L.; Kamm, A.; Daca, A.; Kostrzewa, T.; Gorska-Ponikowska, M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol. in vitro, 2019, 61, 104624.
[http://dx.doi.org/10.1016/j.tiv.2019.104624] [PMID: 31419504]
[50]
Dubé, N.; Cheng, A.; Tremblay, M.L. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc. Natl. Acad. Sci., 2004, 101(7), 1834-1839.
[http://dx.doi.org/10.1073/pnas.0304242101] [PMID: 14766979]
[51]
Hu, C.; Li, G.; Mu, Y.; Wu, W.; Cao, B.; Wang, Z.; Yu, H.; Guan, P.; Han, L.; Li, L.; Huang, X. Discovery of anti-TNBC agents targeting PTP1B: Total synthesis, structure-activity relationship, in vitro and in vivo investigations of jamunones. J. Med. Chem., 2021, 64(9), 6008-6020.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00085] [PMID: 33860662]
[52]
Kostrzewa, T.; Wołosewicz, K.; Jamrozik, M.; Drzeżdżon, J.; Siemińska, J.; Jacewicz, D.; Górska-Ponikowska, M.; Kołaczkowski, M.; Łaźny, R.; Kuban-Jankowska, A. Curcumin and its new derivatives: Correlation between cytotoxicity against breast cancer cell lines, degradation of PTP1B phosphatase and ROS generation. Int. J. Mol. Sci., 2021, 22(19), 10368.
[http://dx.doi.org/10.3390/ijms221910368] [PMID: 34638706]
[53]
Kuban-Jankowska, A.; Kostrzewa, T.; Musial, C.; Barone, G.; Lo-Bosco, G.; Lo-Celso, F.; Gorska-Ponikowska, M. Green tea catechins induce inhibition of ptp1b phosphatase in breast cancer cells with potent anti-cancer properties: In vitro assay, molecular docking, and dynamics studies. Antioxidants, 2020, 9(12), 1208.
[http://dx.doi.org/10.3390/antiox9121208] [PMID: 33266280]
[54]
To, D-C.; Hoang, D-T; Tran, M-H; Pham, M-Q; Huynh, NT; Nguyen P-H PTP1B inhibitory flavonoids from Orthosiphon stamineus benth. and their growth inhibition on human breast cancer cells. Nat. Prod. Commun., 2020, 15(1), 1934578X19899517.
[55]
Kuban-Jankowska, A.; Gorska-Ponikowska, M.; Sahu, K.K.; Kostrzewa, T.; Wozniak, M.; Tuszynski, J. Docosahexaenoic acid inhibits PTP1B phosphatase and the viability of MCF-7 breast cancer cells. Nutrients, 2019, 11(11), 2554.
[http://dx.doi.org/10.3390/nu11112554] [PMID: 31652764]
[56]
Kostrzewa, T.; Przychodzen, P.; Gorska-Ponikowska, M.; Kuban-Jankowska, A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res., 2019, 39(2), 745-749.
[http://dx.doi.org/10.21873/anticanres.13171] [PMID: 30711953]
[57]
Kostrzewa, T.; Sahu, K.K.; Gorska-Ponikowska, M.; Tuszynski, J.A.; Kuban-Jankowska, A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Des. Devel. Ther., 2018, 12, 4139-4147.
[http://dx.doi.org/10.2147/DDDT.S186614] [PMID: 30584278]
[58]
Kuban-Jankowska, A.; Sahu, K.K.; Gorska-Ponikowska, M.; Tuszynski, J.A.; Wozniak, M. Inhibitory activity of iron chelators ATA and DFO on MCF-7 breast cancer cells and phosphatases PTP1B and SHP2. Anticancer Res., 2017, 37(9), 4799-4806.
[PMID: 28870898]
[59]
Gulipalli, K.C.; Bodige, S.; Ravula, P.; Endoori, S.; Vanaja, G.R.; Suresh Babu, G.; Narendra Sharath Chandra, J.N.; Seelam, N. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity. Bioorg. Med. Chem. Lett., 2017, 27(15), 3558-3564.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.047] [PMID: 28579122]
[60]
Kuban-Jankowska, A.; Gorska-Ponikowska, M.; Wozniak, M. Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2. Anticancer Res., 2017, 37(6), 2893-2898.
[PMID: 28551626]
[61]
Tian Zhao, B.; Hung Nguyen, D.; Mi Lee, B.; Hui Seong, S.; Sue Choi, J.; Sun Min, B.; Hee Woo, M. PTP1B inhibitory and cytotoxic activities of triterpenoids from the aerial parts of Agrimonia pilosa. Med. Chem. Res., 2017, 26(11), 2870-2878.
[http://dx.doi.org/10.1007/s00044-017-1986-7]
[62]
Wang, J.; Yang, J.L.; Zhou, P.P.; Meng, X.H.; Shi, Y.P. Further new gypenosides from jiaogulan (Gynostemma pentaphyllum). J. Agric. Food Chem., 2017, 65(29), 5926-5934.
[http://dx.doi.org/10.1021/acs.jafc.7b01477] [PMID: 28662582]
[63]
An, J.P.; Ha, T.; Kim, J.; Cho, T.; Oh, W. Protein tyrosine phosphatase 1B inhibitors from the stems of Akebia quinata. Molecules, 2016, 21(8), 1091.
[http://dx.doi.org/10.3390/molecules21081091] [PMID: 27548130]
[64]
Krishnan, N.; Koveal, D.; Miller, D.H.; Xue, B.; Akshinthala, S.D.; Kragelj, J.; Jensen, M.R.; Gauss, C.M.; Page, R.; Blackledge, M.; Muthuswamy, S.K.; Peti, W.; Tonks, N.K. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol., 2014, 10(7), 558-566.
[http://dx.doi.org/10.1038/nchembio.1528] [PMID: 24845231]
[65]
Bozorov, K.; Ma, H.R.; Zhao, J.Y.; Zhao, H.Q.; Chen, H.; Bobakulov, K.; Xin, X.L.; Elmuradov, B.; Shakhidoyatov, K.; Aisa, H.A. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: Synthesis and in vitro biological evaluation. Part 1. Eur. J. Med. Chem., 2014, 84, 739-745.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.065] [PMID: 25064350]
[66]
Uddin, M.N.; Sharma, G.; Yang, J.L.; Choi, H.S.; Lim, S.I.L.; Kang, K.W.; Oh, W.K. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica. Phytochemistry, 2014, 103, 99-106.
[http://dx.doi.org/10.1016/j.phytochem.2014.04.002] [PMID: 24815008]
[67]
Kwesiga, G.; Kelling, A.; Kersting, S.; Sperlich, E.; von Nickisch-Rosenegk, M.; Schmidt, B. Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity: 5-Deoxy-3′-prenylbiochanin A and erysubin F. J. Nat. Prod., 2020, 83(11), 3445-3453.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00932] [PMID: 33170684]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy