Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

CoCl2-mimicked Hypoxia Induces the Assembly of Stress Granules in Trophoblast Cells Via eIF2α Phosphorylation-dependent and - Independent Pathways

Author(s): Chunling Ma, Qiulan Lv, Liang Ma, Baoxiang Xing, Yan Li and Zhiyuan Li*

Volume 24, Issue 10, 2024

Published on: 16 October, 2023

Page: [1291 - 1300] Pages: 10

DOI: 10.2174/1566524023666230913111300

Price: $65

Abstract

Introduction: Hypoxia has been implicated in preeclampsia (PE) pathophysiology. Stress granules (SGs) are present in the placenta of patients with PE. However, the pathways that contribute to SG aggregation in PE remain poorly understood.

Objective: The objective of the current study is to investigate this issue.

Methods: We first established an in vitro hypoxia model using human trophoblast cell line HTR-8/SVneo treated with cobalt chloride (CoCl2). CCK8 assay and wound healing assay were conducted to assess the viability and migration of HTR-8/SVneo cells after exposure to CoCl2-mimicked hypoxia. SG component expression in HTR-8/SVneo cells treated with CoCl2 alone, or in combination with indicated siRNAs was evaluated by reverse transcription quantitative PCR (RT-qPCR), western blot and immunofluorescence staining.

Results: Our results found CoCl2-mimicked hypoxia inhibits the proliferation and migration of HTR-8/SVneo cells. The treatment of CoCl2 can induce SG assembly in HTR-8/Svneo cells. Mechanistically, both heme-regulated inhibitors (HRI) mediated eukaryotic translation initiation factor (eIF)2α phosphorylation pathway and 4E binding protein 1 (4EBP1) pathway are involved in SG formation under the stress of CoCl2- mimicked hypoxia.

Conclusion: Hypoxia-induced SGs in trophoblast cells might contribute to the etiology of PE.

[1]
Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet 2016; 387(10022): 999-1011.
[http://dx.doi.org/10.1016/S0140-6736(15)00070-7] [PMID: 26342729]
[2]
Yung HW, Atkinson D, Campion-Smith T, Olovsson M, Charnock-Jones DS, Burton GJ. Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of early- and late-onset pre-eclampsia. J Pathol 2014; 234(2): 262-76.
[http://dx.doi.org/10.1002/path.4394] [PMID: 24931423]
[3]
Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet 2019; 145(S1) (Suppl. 1): 1-33.
[http://dx.doi.org/10.1002/ijgo.12802] [PMID: 31111484]
[4]
Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30(6): 473-82.
[http://dx.doi.org/10.1016/j.placenta.2009.02.009] [PMID: 19375795]
[5]
Vangrieken P, Vanterpool SF, van Schooten FJ, et al. Histological villous maturation in placentas of complicated pregnancies. Histol Histopathol 2020; 35(8): 849-62.
[PMID: 31985030]
[6]
Mokas S, Mills JR, Garreau C, et al. Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell 2009; 20(11): 2673-83.
[http://dx.doi.org/10.1091/mbc.e08-10-1061] [PMID: 19369421]
[7]
Decker CJ, Parker R. P-bodies and stress granules: Possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012; 4(9): a012286.
[http://dx.doi.org/10.1101/cshperspect.a012286] [PMID: 22763747]
[8]
Anderson P, Kedersha N. Stress granules: The Tao of RNA triage. Trends Biochem Sci 2008; 33(3): 141-50.
[http://dx.doi.org/10.1016/j.tibs.2007.12.003] [PMID: 18291657]
[9]
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: More than just a passing phase? Trends Biochem Sci 2013; 38(10): 494-506.
[http://dx.doi.org/10.1016/j.tibs.2013.07.004] [PMID: 24029419]
[10]
Morita M, Gravel SP, Chénard V, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013; 18(5): 698-711.
[http://dx.doi.org/10.1016/j.cmet.2013.10.001] [PMID: 24206664]
[11]
Li ZY, Chen ZL, Zhang T, Wei C, Shi WY. TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging (Albany NY) 2016; 8(10): 2337-54.
[http://dx.doi.org/10.18632/aging.101050] [PMID: 27713146]
[12]
Ma C, Li C, Shao S, et al. Assembly of cytoplasmic stress granules in placentas in women with preeclampsia. Reprod Sci 2021; 28(10): 2869-77.
[http://dx.doi.org/10.1007/s43032-021-00592-5] [PMID: 34101146]
[13]
Yuan D, Yang Z, Chen Y, Li S, Tan B, Yu Q. Hypoxia-induced SPOP attenuates the mobility of trophoblast cells through inhibition of the PI3K/AKT/GSK3β pathway. Cell Biol Int 2021; 45(3): 599-611.
[http://dx.doi.org/10.1002/cbin.11501] [PMID: 33200474]
[14]
Lash GE, Hornbuckle J, Brunt A, et al. Effect of low oxygen concentrations on trophoblast-like cell line invasion. Placenta 2007; 28(5-6): 390-8.
[http://dx.doi.org/10.1016/j.placenta.2006.06.001] [PMID: 16905187]
[15]
Reineke LC, Dougherty JD, Pierre P, Lloyd RE. Large G3BP-induced granules trigger eIF2α phosphorylation. Mol Biol Cell 2012; 23(18): 3499-510.
[http://dx.doi.org/10.1091/mbc.e12-05-0385] [PMID: 22833567]
[16]
Fujimura K, Sasaki AT, Anderson P. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 2012; 40(16): 8099-110.
[http://dx.doi.org/10.1093/nar/gks566] [PMID: 22718973]
[17]
Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P. Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation. Biochem Biophys Res Commun 2012; 423(4): 763-9.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.033] [PMID: 22705549]
[18]
Tong W, Giussani DA. Preeclampsia link to gestational hypoxia. J Dev Orig Health Dis 2019; 10(3): 322-33.
[http://dx.doi.org/10.1017/S204017441900014X] [PMID: 30968806]
[19]
Fisher SJ. The placental problem: Linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol 2004; 2(1): 53.
[http://dx.doi.org/10.1186/1477-7827-2-53] [PMID: 15236649]
[20]
Chakraborty D, Rumi MAK, Soares M. NK cells, hypoxia and trophoblast cell differentiation. Cell Cycle 2012; 11(13): 2427-30.
[http://dx.doi.org/10.4161/cc.20542] [PMID: 22659845]
[21]
Burton GJ, Caniggia I. Hypoxia: Implications for implantation to delivery-a workshop report. Placenta 2001; 22 (Suppl. A): S63-5.
[http://dx.doi.org/10.1053/plac.2001.0642] [PMID: 11312631]
[22]
Jauniaux E, Greenwold N, Hempstock J, Burton GJ. Comparison of ultrasonographic and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil Steril 2003; 79(1): 100-6.
[http://dx.doi.org/10.1016/S0015-0282(02)04568-5] [PMID: 12524071]
[23]
Ali LE, Salih MM, Elhassan EM, Mohmmed AA, Adam I. Placental growth factor, vascular endothelial growth factor, and hypoxia-inducible factor-1α in the placentas of women with pre-eclampsia. J Matern Fetal Neonatal Med 2019; 32(16): 2628-32.
[http://dx.doi.org/10.1080/14767058.2018.1443066] [PMID: 29455633]
[24]
He C, Shan N, Xu P, et al. Hypoxia-induced downregulation of SRC-3 Suppresses trophoblastic invasion and migration through inhibition of the AKT/mTOR pathway: Implications for the pathogenesis of preeclampsia. Sci Rep 2019; 9(1): 10349.
[http://dx.doi.org/10.1038/s41598-019-46699-3] [PMID: 31316078]
[25]
Zhu J, Wang K, Li T, et al. Hypoxia-induced TET1 facilitates trophoblast cell migration and invasion through HIF1α signaling pathway. Sci Rep 2017; 7(1): 8077.
[http://dx.doi.org/10.1038/s41598-017-07560-7] [PMID: 28808304]
[26]
Ma L, Zhang Z, Dong K, Ma Y. TWIST1 alleviates hypoxia-induced damage of trophoblast Cells by inhibiting mitochondrial apoptosis pathway. Exp Cell Res 2019; 385(2): 111687.
[http://dx.doi.org/10.1016/j.yexcr.2019.111687] [PMID: 31669261]
[27]
Fu X, Gao X, Ge L, et al. Malonate induces the assembly of cytoplasmic stress granules. FEBS Lett 2016; 590(1): 22-33.
[http://dx.doi.org/10.1002/1873-3468.12049] [PMID: 26787461]
[28]
Scheuner D, Patel R, Wang F, et al. Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 2006; 281(30): 21458-68.
[http://dx.doi.org/10.1074/jbc.M603784200] [PMID: 16717090]
[29]
Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5(5): 897-904.
[http://dx.doi.org/10.1016/S1097-2765(00)80330-5] [PMID: 10882126]
[30]
McEwen E, Kedersha N, Song B, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 2005; 280(17): 16925-33.
[http://dx.doi.org/10.1074/jbc.M412882200] [PMID: 15684421]
[31]
Farny NG, Kedersha NL, Silver PA. Metazoan stress granule assembly is mediated by P-eIF2α-dependent and -independent mechanisms. RNA 2009; 15(10): 1814-21.
[http://dx.doi.org/10.1261/rna.1684009] [PMID: 19661161]
[32]
Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol 2010; 5(1): 173-92.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102149] [PMID: 20078220]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy