Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Efficient Hydrolysis of Cottonseed Oil with Amano Lipase Entrapped on Hydrolysed Polyvinyl Alcohol Gel Pellets Optimized via Factorial Design

Author(s): Farah Naz Talpur*, Sidra Khan, Ahsanullah Unar, Hassan Imran Afridi, Adnan Ibrahim and Muhammad Sohail Bashir*

Volume 27, Issue 18, 2023

Published on: 04 October, 2023

Page: [1641 - 1650] Pages: 10

DOI: 10.2174/1385272827666230912164358

Price: $65

Abstract

The aim of this study was to obtain the optimum hydrolysis of cottonseed oil via immobilized lipases (Lipases Rhizopus oryzae, SL from Pseudomonas (Burkholderia) cepacia, Amano lipase from Mucor javanica, ANL from Aspergillus niger lipase, TL from Pseudomonas stutzeri, QLM from Alcaligenes sp., Triacylglycerol lipase (EC 3.1.1.3), PL from Alcaligenes sp., AL from lysosomal acid lipase, Candida antarctica (CA), and Candida cylindrea (CC)) on hydrolysed polyvinyl alcohol (PVA) gel pellets.

The production of free fatty acids by the hydrolysis of triglycerides from several sources is an important component in the economic exploitation of naturally produced renewable raw materials.

Herein, various lipases, including Rhizopus oryzea, SL, Amano lipase from Mucor javanica, ANL, TL, QLM, EC, PL, AL, CA, and CC were screened for optimum hydrolysis of cottonseed oil. Following the selection of lipase for hydrolysis of cottonseed oil, transparent PVA gel was synthesized by physical gelation method employing Dimethyl sulfoxide and a water system. In the last step, immobilization of selected lipase i.e. Amano lipase for cotton seed oil was carried out at 4oC for one hour. After successful synthesis and immobilization, the PVA gel was characterized by FTIR and SEM analysis. Finally, factorial design was employed for optimization of experimental variables such as pH, time and amount of cotton seed oil hydrolysis by lipase immobilized PVA.

The obtained results indicated that lipase Amano was found better with higher free fatty acids (FFA) yields (with 98.38%) in 5 hours using 3 g of cottonseed oil, suggesting that PVA immobilized Amano lipase is an efficient catalyst to hydrolyze the cottonseed oil.

The overall study indicated that hydrolysed PVA gel is an effective biocompatible solid support for immobilization of lipases to obtain higher FFA from cottonseed oil following hydrolysis reaction.

« Previous
Graphical Abstract

[1]
Avelar, M.H.M.; Cassimiro, D.M.J.; Santos, K.C.; Domingues, R.C.C.; de Castro, H.F.; Mendes, A.A. Hydrolysis of vegetable oils catalyzed by lipase extract powder from dormant castor bean seeds. Ind. Crops Prod., 2013, 44, 452-458.
[http://dx.doi.org/10.1016/j.indcrop.2012.10.011]
[2]
Dyer, J.M.; Stymne, S.; Green, A.G.; Carlsson, A.S. High-value oils from plants. Plant J., 2008, 54(4), 640-655.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03430.x] [PMID: 18476869]
[3]
Murty, V.R.; Bhat, J.; Muniswaran, P.K.A. Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng.; BBE, 2002, 7(2), 57-66.
[http://dx.doi.org/10.1007/BF02935881]
[4]
Barros, M.; Fleuri, L.F.; Macedo, G.A. Seed lipases: Sources, applications and properties - a review. Braz. J. Chem. Eng., 2010, 27(1), 15-29.
[http://dx.doi.org/10.1590/S0104-66322010000100002]
[5]
Jain, D.; Mishra, S. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal., B Enzym., 2015, 117, 21-30.
[http://dx.doi.org/10.1016/j.molcatb.2015.04.002]
[6]
Sharma, A.; Chaurasia, S.P.; Dalai, A.K. Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catal. Today, 2013, 207, 93-100.
[http://dx.doi.org/10.1016/j.cattod.2012.05.006]
[7]
Daiha, K.G.; Angeli, R.; de Oliveira, S.D.; Almeida, R.V. Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS One, 2015, 10(6), e0131624.
[http://dx.doi.org/10.1371/journal.pone.0131624] [PMID: 26111144]
[8]
Abdelmoez, W.; Mostafa, N.A.; Mustafa, A. Utilization of oleochemical industry residues as substrates for lipase production for enzymatic sunflower oil hydrolysis. J. Clean. Prod., 2013, 59, 290-297.
[http://dx.doi.org/10.1016/j.jclepro.2013.06.032]
[9]
Márczy, J.S.; Németh, Á.S.; Samu, Z.; Háger-Veress, Á.; Szajáni, B. Production of hexanal from hydrolyzed sunflower oil by lipoxygenase and hydroperoxid lyase enzymes. Biotechnol. Lett., 2002, 24(20), 1673-1675.
[http://dx.doi.org/10.1023/A:1020657618363]
[10]
Noor, I.M.; Hasan, M.; Ramachandran, K.B. Effect of operating variables on the hydrolysis rate of palm oil by lipase. Process Biochem., 2003, 39(1), 13-20.
[http://dx.doi.org/10.1016/S0032-9592(02)00263-7]
[11]
Freitas, L.; Bueno, T.; Perez, V.H.; Santos, J.C.; de Castro, H.F. Enzymatic hydrolysis of soybean oil using lipase from different sources to yield concentrated of polyunsaturated fatty acids. World J. Microbiol. Biotechnol., 2007, 23(12), 1725-1731.
[http://dx.doi.org/10.1007/s11274-007-9421-8] [PMID: 27517828]
[12]
Sekhar, S.C.; Rao, B. Cottonseed oil as health oil. Pertanika, J. Trop. Agric. Sci., 2011, 34, 17-24.
[13]
Chua, LS; Alitabarimansor, M; Lee, CT; Mat, R Hydrolysis of virgin coconut oil using immobilized lipase in a batch reactor. Enzyme Research., 2012, 2012
[http://dx.doi.org/10.1155/2012/542589]
[14]
Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules, 2014, 19(7), 8995-9018.
[http://dx.doi.org/10.3390/molecules19078995] [PMID: 24979403]
[15]
Lozano, P.; Manjón, A.; Romojaro, F.; Canovas, M.; Iborra, J.L. A cross-flow reactor with immobilized pectolytic enzymes for juice clarification. Biotechnol. Lett., 1987, 9(12), 875-880.
[http://dx.doi.org/10.1007/BF01026202] [PMID: 28247143]
[16]
Kmínková, M.; Kučera, J. Comparison of pectolytic enzymes covalently bound to synthetic ion exchangers using different methods of binding. Enzyme Microb. Technol., 1983, 5(3), 204-208.
[http://dx.doi.org/10.1016/0141-0229(83)90096-0]
[17]
Qader, S.A.U.; Aman, A. Low molecular weight dextran: Immobilization of cells of Leuconostoc mesenteroides KIBGE HA1 on calcium alginate beads. Carbohydr. Polym., 2012, 87(4), 2589-2592.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.046]
[18]
Verma, D.K.; Patel, A.R.; Srivastav, P.P. Bioprocessing Technology in Food and Health: Potential Applications and Emerging Scope; CRC Press, 2018.
[http://dx.doi.org/10.1201/9781351167888]
[19]
Wang, D.; Cui, F.; Xi, L.; Tan, X.; Li, J.; Li, T. Preparation of a multifunctional non-stick tamarind polysaccharide-polyvinyl alcohol hydrogel immobilized with a quorum quenching enzyme for maintaining fish freshness. Carbohydr. Polym., 2023, 302, 120382.
[http://dx.doi.org/10.1016/j.carbpol.2022.120382] [PMID: 36604060]
[20]
Sande, D.; Colen, G.; dos Santos, G.F.; Ferraz, V.P.; Takahashi, J.A. Production of omega 3, 6, and 9 fatty acids from hydrolysis of vegetable oils and animal fat with Colletotrichum gloeosporioides lipase. Food Sci. Biotechnol., 2017, 27(2), 537-545.
[http://dx.doi.org/10.1007/s10068-017-0249-1] [PMID: 30263778]
[21]
Chandra, P. Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 2020, 19(1), 169.
[http://dx.doi.org/10.1186/s12934-020-01428-8]
[22]
Ezenwelu, C.O.; Afeez, O.A.; Anthony, O.U.; Promise, O.A.; Mmesoma, U.E.C.; Henry, O.E. Studies on properties of lipase produced from Aspergillus sp. isolated from compost soil. Adv. Enzyme Res., 2022, 10(2), 49-60.
[http://dx.doi.org/10.4236/aer.2022.102003]
[23]
Fang, G.; Chen, H.; Zhang, Y.; Chen, A. Immobilization of pectinase onto Fe3O4@SiO2–NH2 and its activity and stability. Int. J. Biol. Macromol., 2016, 88, 189-195.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.059] [PMID: 27037054]
[24]
Hou, Y.; Chen, C.; Liu, K.; Tu, Y.; Zhang, L.; Li, Y. Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Advances, 2015, 5(31), 24023-24030.
[http://dx.doi.org/10.1039/C5RA01280E]
[25]
Jayaramudu, T.; Ko, H.U.; Kim, H.; Kim, J.; Muthoka, R.; Kim, J. Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials, 2018, 11(9), 1615.
[http://dx.doi.org/10.3390/ma11091615] [PMID: 30181521]
[26]
Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J., 2022, 164, 110974.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110974]
[27]
Sassolas, A.; Hayat, A.; Marty, J-L. Enzyme immobilization by entrapment within a gel network. Methods Mol. Biol., 2013, 1051, 229-239.
[http://dx.doi.org/10.1007/978-1-62703-550-7_15]
[28]
Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol., 2003, 21(10), 445-451.
[http://dx.doi.org/10.1016/j.tibtech.2003.08.002] [PMID: 14512231]
[29]
Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly (vinyl alcohol) hydrogels: The old and new functional materials. Int. J. Polym. Sci., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/2225426]
[30]
Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Convers. Manage., 2018, 159, 42-53.
[http://dx.doi.org/10.1016/j.enconman.2018.01.021]
[31]
Xie, W.; Wang, J. Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels, 2014, 28(4), 2624-2631.
[http://dx.doi.org/10.1021/ef500131s]
[32]
Xie, W.; Zang, X. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil. Food Chem., 2017, 227, 397-403.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.082] [PMID: 28274449]
[33]
Duarte, J.C.; Rodrigues, J.A.R.; Moran, P.J.S.; Valença, G.P.; Nunhez, J.R. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express, 2013, 3(1), 31.
[http://dx.doi.org/10.1186/2191-0855-3-31] [PMID: 23721664]
[34]
Rezakhani, N.; Parivar, K.; Khayati, M.; Etemadzade, S. Immobilization of protease in biopolymers (mixture of alginate-chitosan). J. Paramed. Sci., 2014, 5(4)
[35]
Zhang, W.; Qing, W.; Ren, Z.; Li, W.; Chen, J. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresour. Technol., 2014, 172, 16-21.
[http://dx.doi.org/10.1016/j.biortech.2014.08.019] [PMID: 25218626]
[36]
Lee, M.H.; Kim, H.J.; Ha, D.J.; Paik, J.H.; Kim, H.Y. Therapeutic effect of topical application of linoleic acid and lincomycin in combination with betamethasone valerate in melasma patients. J. Korean Med. Sci., 2002, 17(4), 518-523.
[http://dx.doi.org/10.3346/jkms.2002.17.4.518] [PMID: 12172049]
[37]
Zhao, G.; Etherton, T.D.; Martin, K.R.; Vanden Heuvel, J.P.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem. Biophys. Res. Commun., 2005, 336(3), 909-917.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.204] [PMID: 16169525]
[38]
Tsai, C.T.; Meyer, A. Enzymatic cellulose hydrolysis: Enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules, 2014, 19(12), 19390-19406.
[http://dx.doi.org/10.3390/molecules191219390] [PMID: 25429563]
[39]
Goswami, D.; Basu, J.K.; De, S. Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit. Rev. Biotechnol., 2013, 33(1), 81-96.
[http://dx.doi.org/10.3109/07388551.2012.672319] [PMID: 22676042]
[40]
Fanglian, H. Bradford protein assay. Bio Protoc., 2011, 1, e45.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy