Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry

Author(s): Sama Sepordeh, Amir Mohammad Jafari, Sara Bazzaz, Amin Abbasi, Ramin Aslani, Sousan Houshmandi and Aziz Homayouni Rad*

Volume 25, Issue 10, 2024

Published on: 18 September, 2023

Page: [1245 - 1263] Pages: 19

DOI: 10.2174/1389201025666230912123849

Price: $65

Abstract

Background: Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk.

Objectives: With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance.

Results: Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods.

Conclusion: Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.

Graphical Abstract

[1]
Hayden, G.E.; Tuuri, R.E.; Scott, R.; Losek, J.D.; Blackshaw, A.M.; Schoenling, A.J.; Nietert, P.J.; Hall, G.A. Triage sepsis alert and sepsis protocol lower times to fluids and antibiotics in the ED. Am. J. Emerg. Med., 2016, 34(1), 1-9.
[http://dx.doi.org/10.1016/j.ajem.2015.08.039] [PMID: 26386734]
[2]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[3]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[4]
Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med., 2022, 14(1), 15.
[http://dx.doi.org/10.1186/s13073-022-01020-2] [PMID: 35172877]
[5]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[6]
Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: current crisis of antibiotic resistance. Bionanoscience, 2019, 9(4), 778-788.
[http://dx.doi.org/10.1007/s12668-019-00658-4]
[7]
Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microbes Infect., 2018, 7(1), 1-10.
[http://dx.doi.org/10.1038/s41426-018-0038-9] [PMID: 29535298]
[8]
Laxminarayan, R.; Chaudhury, R.R. Antibiotic resistance in India: drivers and opportunities for action. PLoS Med., 2016, 13(3), e1001974.
[http://dx.doi.org/10.1371/journal.pmed.1001974] [PMID: 26934098]
[9]
Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; Hannon, S.; Jones, T.; Church, D.; Booker, C.W.; Amoako, K.; Van Domselaar, G.; Read, R.R.; McAllister, T.A. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep., 2020, 10(1), 3937.
[http://dx.doi.org/10.1038/s41598-020-61002-5] [PMID: 32127598]
[10]
Armstrong, G.L.; Conn, L.A.; Pinner, R.W. Trends in infectious disease mortality in the United States during the 20th century. JAMA, 1999, 281(1), 61-66.
[http://dx.doi.org/10.1001/jama.281.1.61] [PMID: 9892452]
[11]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[12]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: alarm bells are ringing. Cureus, 2017, 9(6), e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[13]
Podolsky, S.H. The evolving response to antibiotic resistance (1945–2018). Palgrave Commun., 2018, 4(1), 124.
[http://dx.doi.org/10.1057/s41599-018-0181-x]
[14]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[15]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 2004, 10(S12)(Suppl.), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[16]
Sommer, M.O.A.; Munck, C.; Toft-Kehler, R.V.; Andersson, D.I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol., 2017, 15(11), 689-696.
[http://dx.doi.org/10.1038/nrmicro.2017.75] [PMID: 28757648]
[17]
Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[18]
Wellington, E.M.H.; Boxall, A.B.A.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; Thomas, C.M.; Williams, A.P. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis., 2013, 13(2), 155-165.
[http://dx.doi.org/10.1016/S1473-3099(12)70317-1] [PMID: 23347633]
[19]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[20]
Marchant, J. When antibiotics turn toxic. Nature, 2018, 555(7697), 431-433.
[http://dx.doi.org/10.1038/d41586-018-03267-5]
[21]
Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics (Basel), 2020, 9(12), 918.
[http://dx.doi.org/10.3390/antibiotics9120918] [PMID: 33348801]
[22]
Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: a worldwide challenge. Lancet, 2016, 387(10014), 168-175.
[http://dx.doi.org/10.1016/S0140-6736(15)00474-2] [PMID: 26603918]
[23]
Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science, 2017, 357(6358), 1350-1352.
[http://dx.doi.org/10.1126/science.aao1495] [PMID: 28963240]
[24]
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654.
[http://dx.doi.org/10.1073/pnas.1503141112] [PMID: 25792457]
[25]
Allen, H.K. Antibiotic resistance gene discovery in food-producing animals. Curr. Opin. Microbiol., 2014, 19, 25-29.
[http://dx.doi.org/10.1016/j.mib.2014.06.001] [PMID: 24994584]
[26]
Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr., 2018, 4(2), 137-150.
[http://dx.doi.org/10.1016/j.aninu.2017.09.004] [PMID: 30140753]
[27]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
[28]
Hawkey, P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 2008, 62(Suppl. 1), i1-i9.
[http://dx.doi.org/10.1093/jac/dkn241] [PMID: 18684701]
[29]
Martínez, J.L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front. Microbiol., 2012, 3, 1.
[http://dx.doi.org/10.3389/fmicb.2012.00001] [PMID: 22275914]
[30]
Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther., 2001, 24(6), 385-390.
[http://dx.doi.org/10.1046/j.1365-2885.2001.00360.x] [PMID: 11903868]
[31]
Marques, R.Z.; Wistuba, N.; Brito, J.C.M.; Bernardoni, V.; Rocha, D.C.; Gomes, M.P. Crop irrigation (soybean, bean, and corn) with enrofloxacin-contaminated water leads to yield reductions and antibiotic accumulation. Ecotoxicol. Environ. Saf., 2021, 216, 112193.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112193] [PMID: 33831726]
[32]
Shatzkes, K.; Connell, N.D.; Kadouri, D.E. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol., 2017, 12, 469-472.
[http://dx.doi.org/10.2217/fmb-2017-0021]
[33]
Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014, 5(1), 226-235.
[http://dx.doi.org/10.4161/viru.25991] [PMID: 23973944]
[34]
Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci., 2020, 7(3), 110.
[http://dx.doi.org/10.3390/vetsci7030110] [PMID: 32823495]
[35]
Losasso, C.; Di Cesare, A.; Mastrorilli, E.; Patuzzi, I.; Cibin, V.; Eckert, E.M.; Fontaneto, D.; Vanzo, A.; Ricci, A.; Corno, G. Assessing antimicrobial resistance gene load in vegan, vegetarian and omnivore human gut microbiota. Int. J. Antimicrob. Agents, 2018, 52(5), 702-705.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.07.023] [PMID: 30081136]
[36]
Fish, R.; Kutter, E.; Wheat, G.; Blasdel, B.; Kutateladze, M.; Kuhl, S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J. Wound Care, 2016, 25(Sup7), S27-S33.
[http://dx.doi.org/10.12968/jowc.2016.25.7.S27]
[37]
Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect., 2008, 38(8), 426-430.
[http://dx.doi.org/10.1016/j.medmal.2008.06.023] [PMID: 18687542]
[38]
Wills, Q.F.; Kerrigan, C.; Soothill, J.S. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother., 2005, 49(3), 1220-1221.
[http://dx.doi.org/10.1128/AAC.49.3.1220-1221.2005] [PMID: 15728933]
[39]
Wang, J.; Hu, B.; Xu, M.; Yan, Q.; Liu, S.; Zhu, X.; Sun, Z.; Tao, D.; Ding, L.; Reed, E.; Gong, J.; Li, Q.; Hu, J. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 2006, 17(2), 347-355.
[http://dx.doi.org/10.3892/ijmm.17.2.347] [PMID: 16391836]
[40]
Chanishvili, N. Phage therapy--history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res., 2012, 83, 3-40.
[http://dx.doi.org/10.1016/B978-0-12-394438-2.00001-3] [PMID: 22748807]
[41]
Ramesh, V.; Fralick, J.A.; Rolfe, R.D. Prevention of Clostridium difficile -induced ileocecitis with Bacteriophage. Anaerobe, 1999, 5(2), 69-78.
[http://dx.doi.org/10.1006/anae.1999.0192]
[42]
Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 2015, 112(23), 7267-7272.
[http://dx.doi.org/10.1073/pnas.1500107112] [PMID: 26060300]
[43]
Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother., 2012, 56(7), 3568-3575.
[http://dx.doi.org/10.1128/AAC.06330-11] [PMID: 22491690]
[44]
Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009, 34(4), 349-357.
[http://dx.doi.org/10.1111/j.1749-4486.2009.01973.x] [PMID: 19673983]
[45]
Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio, 2016, 7(6), e01847-e16.
[http://dx.doi.org/10.1128/mBio.01847-16] [PMID: 27834203]
[46]
Opal, S.M. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care, 2016, 20(1), 397.
[http://dx.doi.org/10.1186/s13054-016-1549-1]
[47]
Bonanno, G.; Procoli, A.; Mariotti, A.; Corallo, M.; Perillo, A.; Danese, S.; De Cristofaro, R.; Scambia, G.; Rutella, S. Effects of pegylated G-CSF on immune cell number and function in patients with gynecological malignancies. J. Transl. Med., 2010, 8(1), 114.
[http://dx.doi.org/10.1186/1479-5876-8-114] [PMID: 21062439]
[48]
Trimboli, F.; Morittu, V.M.; Di Loria, A.; Minuti, A.; Spina, A.A.; Piccioli-Cappelli, F.; Trevisi, E.; Britti, D.; Lopreiato, V. Effect of pegbovigrastim on hematological profile of simmental dairy cows during the transition period. Animals (Basel), 2019, 9(10), 841.
[http://dx.doi.org/10.3390/ani9100841] [PMID: 31640199]
[49]
Bonfiglio, G.; Neroni, B.; Radocchia, G.; Pompilio, A.; Mura, F.; Trancassini, M.; Di Bonaventura, G.; Pantanella, F.; Schippa, S. Growth control of adherent-invasive Escherichia coli (AIEC) by the predator bacteria Bdellovibrio bacteriovorus: a new therapeutic approach for Crohn’s disease patients. Microorganisms, 2019, 8(1), 17.
[http://dx.doi.org/10.3390/microorganisms8010017] [PMID: 31861852]
[50]
Domenech, M.; Sempere, J.; de Miguel, S.; Yuste, J. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front. Immunol., 2018, 9, 2700.
[http://dx.doi.org/10.3389/fimmu.2018.02700] [PMID: 30515172]
[51]
Navalkele, B.D.; Chopra, T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics, 2018, 12, 11-21.
[PMID: 29403263]
[52]
Kang, J.H.; Super, M.; Yung, C.W.; Cooper, R.M.; Domansky, K.; Graveline, A.R.; Mammoto, T.; Berthet, J.B.; Tobin, H.; Cartwright, M.J.; Watters, A.L.; Rottman, M.; Waterhouse, A.; Mammoto, A.; Gamini, N.; Rodas, M.J.; Kole, A.; Jiang, A.; Valentin, T.M.; Diaz, A.; Takahashi, K.; Ingber, D.E. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med., 2014, 20(10), 1211-1216.
[http://dx.doi.org/10.1038/nm.3640] [PMID: 25216635]
[53]
Amara, N.; Krom, B.P.; Kaufmann, G.F.; Meijler, M.M. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem. Rev., 2011, 111(1), 195-208.
[http://dx.doi.org/10.1021/cr100101c] [PMID: 21087050]
[54]
McDougald, D.; Rice, S.A.; Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem., 2007, 387(2), 445-453.
[http://dx.doi.org/10.1007/s00216-006-0761-2] [PMID: 17019574]
[55]
Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576-588.
[http://dx.doi.org/10.1038/nrmicro.2016.89] [PMID: 27510864]
[56]
Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D.M.; Senerovic, L. Long-chain 4-aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa. ACS Chem. Biol., 2017, 12(5), 1425-1434.
[http://dx.doi.org/10.1021/acschembio.6b01149] [PMID: 28350449]
[57]
Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv., 2019, 37(1), 68-90.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.006] [PMID: 30471318]
[58]
Fetzner, S. Quorum quenching enzymes. J. Biotechnol., 2015, 201, 2-14.
[http://dx.doi.org/10.1016/j.jbiotec.2014.09.001] [PMID: 25220028]
[59]
Goswami, J. Quorum sensing by super bugs and their resistance to antibiotics, a short review. Int. J. Pharm. Pharm. Sci., 2017, 3, 67-73.
[60]
Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. D-amino acids trigger biofilm disassembly. Science, 2010, 328(5978), 627-629.
[http://dx.doi.org/10.1126/science.1188628] [PMID: 20431016]
[61]
Douafer, H.; Andrieu, V.; Phanstiel, O., IV; Brunel, J.M. Antibiotic adjuvants: make antibiotics great again! J. Med. Chem., 2019, 62(19), 8665-8681.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01781] [PMID: 31063379]
[62]
Smits, L.P.; Bouter, K.E.C.; de Vos, W.M.; Borody, T.J.; Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5), 946-953.
[http://dx.doi.org/10.1053/j.gastro.2013.08.058] [PMID: 24018052]
[63]
DePeters, E.J.; George, L.W. Rumen transfaunation. Immunol. Lett., 2014, 162(2), 69-76.
[http://dx.doi.org/10.1016/j.imlet.2014.05.009] [PMID: 25262872]
[64]
Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755.
[http://dx.doi.org/10.1038/ajg.2012.251] [PMID: 23160295]
[65]
Wortelboer, K.; Nieuwdorp, M.; Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine, 2019, 44, 716-729.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.066] [PMID: 31201141]
[66]
Khoruts, A.; Staley, C.; Sadowsky, M.J. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 67-80.
[http://dx.doi.org/10.1038/s41575-020-0350-4] [PMID: 32843743]
[67]
Ma, Y.; Yang, J.; Cui, B.; Xu, H.; Xiao, C.; Zhang, F. How Chinese clinicians face ethical and social challenges in fecal microbiota transplantation: a questionnaire study. BMC Med. Ethics, 2017, 18(1), 39.
[http://dx.doi.org/10.1186/s12910-017-0200-2] [PMID: 28569156]
[68]
Vincent, M.G.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci., 2014, 4, 041-046.
[69]
Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. small, 2013, 9, 4069-4076.
[70]
Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008, 24(8), 4140-4144.
[http://dx.doi.org/10.1021/la7035949] [PMID: 18341364]
[71]
Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Interaction of Al 2 O 3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol., 2014, 116(4), 772-783.
[http://dx.doi.org/10.1111/jam.12423] [PMID: 24354999]
[72]
Muzammil, S.; Hayat, S. Fakhar-E-Alam, M.; Aslam, B.; Siddique, M.H.; Nisar, M.A.; Saqalein, M.; Atif, M.; Sarwar, A.; Khurshid, A. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci., 2018, 10, 352-374.
[73]
Friedman, A.; Friedman, J. New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin. Drug Deliv., 2009, 6(10), 1113-1122.
[http://dx.doi.org/10.1517/17425240903196743] [PMID: 19663720]
[74]
Kim, S.; Lee, D.G. PMAP-23 triggers cell death by nitric oxide-induced redox imbalance in Escherichia coli. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(7), 1187-1195.
[http://dx.doi.org/10.1016/j.bbagen.2019.04.014] [PMID: 31026481]
[75]
Brisbois, E.J.; Bayliss, J.; Wu, J.; Major, T.C.; Xi, C.; Wang, S.C.; Bartlett, R.H.; Handa, H.; Meyerhoff, M.E. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomater., 2014, 10(10), 4136-4142.
[http://dx.doi.org/10.1016/j.actbio.2014.06.032] [PMID: 24980058]
[76]
Kadam, S.; Shai, S.; Shahane, A.; Kaushik, K.S. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the ‘chink in the armor’? Biomedicines, 2019, 7(2), 35.
[http://dx.doi.org/10.3390/biomedicines7020035] [PMID: 31052335]
[77]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[78]
Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol., 2011, 32(1), 63-68.
[http://dx.doi.org/10.1016/j.etap.2011.03.011] [PMID: 21787731]
[79]
Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 2013, 31(1), 189-195.
[http://dx.doi.org/10.1016/j.foodcont.2012.09.022]
[80]
Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemary’s composition and biological activity. Ind. Crops Prod., 2015, 70, 41-47.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.062]
[81]
Barreto, H.M.; Silva Filho, E.C.; Lima, E.O.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; Tavares, C.C.A.; Tintino, S.R.; Rego, J.V.; de Abreu, A.P.L.; Lustosa, M.C.G.; Oliveira, R.W.G.; Citó, A.M.G.L.; Lopes, J.A.D. Chemical composition and possible use as adjuvant of the antibiotic therapy of the essential oil of Rosmarinus officinalis L. Ind. Crops Prod., 2014, 59, 290-294.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.026]
[82]
Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod., 2015, 70, 178-184.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.030]
[83]
Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol., 2008, 124(1), 91-97.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.02.028] [PMID: 18378032]
[84]
Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 2008, 108(3), 986-995.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.010] [PMID: 26065762]
[85]
Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—an essential oil from Ocimum basilicum L.—against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods, 2003, 54(1), 105-110.
[http://dx.doi.org/10.1016/S0167-7012(03)00012-5] [PMID: 12732427]
[86]
Koga, T.; Hirota, N.; Takumi, K. Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus. Microbiol. Res., 1999, 154(3), 267-273.
[http://dx.doi.org/10.1016/S0944-5013(99)80024-X] [PMID: 10652788]
[87]
Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control, 2011, 22(11), 1707-1714.
[http://dx.doi.org/10.1016/j.foodcont.2011.04.002]
[88]
Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol., 2008, 119(2), 325-327.
[http://dx.doi.org/10.1016/j.jep.2008.07.023] [PMID: 18703127]
[89]
Ahmad, A.; Khan, A.; Samber, N.; Manzoor, N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy, 2014, 1(2), 92-98.
[http://dx.doi.org/10.1016/j.synres.2014.11.001]
[90]
Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod., 2019, 132, 413-429.
[http://dx.doi.org/10.1016/j.indcrop.2019.02.051] [PMID: 32288268]
[91]
Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—myth or real alternative? Molecules, 2019, 24(11), 2130.
[http://dx.doi.org/10.3390/molecules24112130] [PMID: 31195752]
[92]
Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals, 2010, 23(3), 569-578.
[http://dx.doi.org/10.1007/s10534-010-9306-4] [PMID: 20195887]
[93]
Cattoir, V.; Felden, B. Future antibacterial strategies: from basic concepts to clinical challenges. J. Infect. Dis., 2019, 220(3), 350-360.
[http://dx.doi.org/10.1093/infdis/jiz134] [PMID: 30893436]
[94]
Parmeciano Di Noto, G.; Molina, M.C.; Quiroga, C. Insights into non-coding RNAs as novel antimicrobial drugs. Front. Genet., 2019, 10, 57.
[http://dx.doi.org/10.3389/fgene.2019.00057] [PMID: 30853970]
[95]
Lipsitch, M.; Siber, G.R. How can vaccines contribute to solving the antimicrobial resistance problem? MBio, 2016, 7(3), e00428-e16.
[http://dx.doi.org/10.1128/mBio.00428-16] [PMID: 27273824]
[96]
Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines. Probiotics Antimicrob. Proteins, 2023, 1-13.
[http://dx.doi.org/10.1007/s12602-022-10039-1] [PMID: 36588138]
[97]
Rad, A.H.; Aghebati-Maleki, L.; Kafil, H.S.; Abbasi, A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(11), 1787-1803.
[http://dx.doi.org/10.1080/10408398.2020.1765310] [PMID: 32410512]
[98]
Abbasi, A.; Rad, A.H.; Ghasempour, Z.; Sabahi, S.; Kafil, H.S.; Hasannezhad, P.; Rahbar Saadat, Y.; Shahbazi, N. The biological activities of postbiotics in gastrointestinal disorders. Crit. Rev. Food Sci. Nutr., 2022, 62(22), 5983-6004.
[http://dx.doi.org/10.1080/10408398.2021.1895061] [PMID: 33715539]
[99]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499.
[http://dx.doi.org/10.1080/10408398.2020.1738333] [PMID: 32160762]
[100]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4.
[http://dx.doi.org/10.15171/hpp.2020.02] [PMID: 32104650]
[101]
Ozma, M.A.; Abbasi, A.; Sabahi, S. Characterization of postbiotics derived from Lactobacillus paracasei ATCC 55544 and its application in Malva sylvestris seed mucilage edible coating to the improvement of the microbiological, and sensory properties of lamb meat during storage. Biointerface Res. Appl. Chem., 2022, 13.
[102]
Abbasi, A.; Rahbar Saadat, T.; Rahbar Saadat, Y. Microbial exopolysaccharides–β-glucans–as promising postbiotic candidates in vaccine adjuvants. Int. J. Biol. Macromol., 2022, 223, 346-361.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.003]
[103]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as promising tools for cancer adjuvant therapy. Adv. Pharm. Bull., 2020, 11(1), 1-5.
[http://dx.doi.org/10.34172/apb.2021.007] [PMID: 33747846]
[104]
Besselink, M.G.H.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.M.; Rosman, C.; Ploeg, R.J.; Brink, M.A.; Schaapherder, A.F.M.; Dejong, C.H.C.; Wahab, P.J.; van Laarhoven, C.J.H.M.; van der Harst, E.; van Eijck, C.H.J.; Cuesta, M.A.; Akkermans, L.M.A.; Gooszen, H.G. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet, 2008, 371(9613), 651-659.
[http://dx.doi.org/10.1016/S0140-6736(08)60207-X] [PMID: 18279948]
[105]
Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med., 2016, 8(1), 46.
[http://dx.doi.org/10.1186/s13073-016-0296-x] [PMID: 27102537]
[106]
Abbasi, A.; Hajipour, N.; Hasannezhad, P.; Baghbanzadeh, A.; Aghebati-Maleki, L. Potential in vivo delivery routes of postbiotics. Crit. Rev. Food Sci. Nutr., 2022, 62(12), 3345-3369.
[http://dx.doi.org/10.1080/10408398.2020.1865260] [PMID: 33356449]
[107]
Rad, A.H.; Abbasi, A.; Kafil, H.S.; Ganbarov, K. Potential pharmaceutical and food applications of postbiotics: a review. Curr. Pharm. Biotechnol., 2020, 21(15), 1576-1587.
[http://dx.doi.org/10.2174/1389201021666200516154833] [PMID: 32416671]
[108]
Sabahi, S.; Homayouni Rad, A.; Aghebati-Maleki, L.; Sangtarash, N.; Ozma, M.A.; Karimi, A.; Hosseini, H.; Abbasi, A. Postbiotics as the new frontier in food and pharmaceutical research. Crit. Rev. Food Sci. Nutr., 2022, 1-28.
[http://dx.doi.org/10.1080/10408398.2022.2056727] [PMID: 35348016]
[109]
Konstantinov, S.R.; Kuipers, E.J.; Peppelenbosch, M.P. Functional genomic analyses of the gut microbiota for CRC screening. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(12), 741-745.
[http://dx.doi.org/10.1038/nrgastro.2013.178] [PMID: 24042452]
[110]
Ozma, M.A.; Abbasi, A.; Ahangarzadeh Rezaee, M.; Hosseini, H.; Hosseinzadeh, N.; Sabahi, S.; Noori, S.M.A.; Sepordeh, S.; Khodadadi, E.; Lahouty, M.; Kafil, H.S. A critical review on the nutritional and medicinal profiles of garlic’s (Allium sativum L.) bioactive compounds. Food Rev. Int., 2022, 1-38.
[http://dx.doi.org/10.1080/87559129.2022.2100417]
[111]
Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Cytotoxic potentials of cell-free supernatant derived from lactobacillus casei CRL431 on HCT-116 and HT-29 human colon cancer cell lines. Biointerface Res. Appl. Chem., 2023, 13(5), 476.
[112]
Ozma, M.A.; Abbasi, A.; Akrami, S.; Lahouty, M.; Shahbazi, N.; Ganbarov, K.; Pagliano, P.; Sabahi, S.; Köse, Ş.; Yousefi, M.; Dao, S.; Asgharzadeh, M.; Hosseini, H.; Kafil, H.S. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193.
[PMID: 35693065]
[113]
Abbasi, A.; Sheykhsaran, E.; Kafil, H.S. Postbiotics: science, technology and applications; Bentham Science Publishers, 2021.
[http://dx.doi.org/10.2174/97816810883891210101]
[114]
Mohammad, M.A.; Molloy, A.; Scott, J. Hussein, Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int. J. Food Sci. Nutr., 2006, 57(7-8), 470-480.
[http://dx.doi.org/10.1080/09637480600968735] [PMID: 17162326]
[115]
Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol. Metab., 2020, 31(11), 818-834.
[http://dx.doi.org/10.1016/j.tem.2020.02.012] [PMID: 32284282]
[116]
Devlin, A.S.; Marcobal, A.; Dodd, D.; Nayfach, S.; Plummer, N.; Meyer, T.; Pollard, K.S.; Sonnenburg, J.L.; Fischbach, M.A. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe, 2016, 20(6), 709-715.
[http://dx.doi.org/10.1016/j.chom.2016.10.021] [PMID: 27916477]
[117]
Newburg, D.S.; Ko, J.S.; Leone, S.; Nanthakumar, N.N. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3′-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J. Nutr., 2016, 146(2), 358-367.
[http://dx.doi.org/10.3945/jn.115.220749] [PMID: 26701795]
[118]
Dunand, E.; Burns, P.; Binetti, A.; Bergamini, C.; Peralta, G.H.; Forzani, L.; Reinheimer, J.; Vinderola, G. Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J. Appl. Microbiol., 2019, 127(1), 219-229.
[http://dx.doi.org/10.1111/jam.14276] [PMID: 30973185]
[119]
Morisset, M.; Aubert-Jacquin, C.; Soulaines, P.; Moneret-Vautrin, D-A.; Dupont, C. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. Eur. J. Clin. Nutr., 2011, 65(2), 175-183.
[http://dx.doi.org/10.1038/ejcn.2010.250] [PMID: 21081959]
[120]
Hofacre, C.L.; Smith, J.A.; Mathis, G.F. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult. Sci., 2018, 97(6), 1929-1933.
[http://dx.doi.org/10.3382/ps/pey082] [PMID: 29762789]
[121]
Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol., 2014, 169(3-4), 188-197.
[http://dx.doi.org/10.1016/j.vetmic.2014.01.007] [PMID: 24522272]
[122]
Lu, M.; Li, R.W.; Zhao, H.; Yan, X.; Lillehoj, H.S.; Sun, Z.; Oh, S.; Wang, Y.; Li, C. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens. Res. Vet. Sci., 2020, 132, 142-149.
[http://dx.doi.org/10.1016/j.rvsc.2020.05.013] [PMID: 32575030]
[123]
Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol., 2011, 40(4), 341-347.
[http://dx.doi.org/10.1080/03079457.2011.590967] [PMID: 21812711]
[124]
Parish, W.E. Necrotic enteritis in the fowl (Gallus gallus domesticus). I. Histopathology of the disease and isolation of a strain of Clostridium welchii. J. Comp. Pathol., 1961, 71, 377-393.
[http://dx.doi.org/10.1016/S0368-1742(61)80043-X] [PMID: 14483884]
[125]
Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol., 2014, 19, 37-44.
[http://dx.doi.org/10.1016/j.mib.2014.05.019] [PMID: 24997398]
[126]
Salah-Eldin, A.; Fawzy, E.H.; Aboelmagd, B.A.; Ragab, E.A.; Bedawy, S. Clinical and laboratory studies on chicken isolates of Clostridium Perfringens in El-Behera, Egypt. J. Worlds Poult. Res., 2015, 5, 21-28.
[127]
Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without antibiotics: impact on animal welfare and implications for food policy. Transl. Anim. Sci., 2018, 2(4), 337-348.
[http://dx.doi.org/10.1093/tas/txy016] [PMID: 32704717]
[128]
Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450.
[http://dx.doi.org/10.1371/journal.pone.0192450] [PMID: 29444134]
[129]
Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; El-Shall, N.A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; El-Tarabily, K.A. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult. Sci., 2022, 101(2), 101590.
[http://dx.doi.org/10.1016/j.psj.2021.101590] [PMID: 34953377]
[130]
Eraky, R.D.; Abd El-Ghany, W.A. Genetic characterization, antibiogram pattern, and pathogenicity of Clostridium perfringens isolated from broiler chickens with necrotic enteritis. J. Indones. Trop. Anim. Agric., 2022, 47(1), 1-16.
[http://dx.doi.org/10.14710/jitaa.47.1.1-16]
[131]
Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult. Sci., 2017, 96(4), 966-975.
[http://dx.doi.org/10.3382/ps/pew362] [PMID: 28339522]
[132]
Johnson, C.N.; Kogut, M.H.; Genovese, K.; He, H.; Kazemi, S.; Arsenault, R.J. Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. Microorganisms, 2019, 7(8), 268.
[http://dx.doi.org/10.3390/microorganisms7080268] [PMID: 31426502]
[133]
Swaggerty, C.L.; Byrd, J.A., II; Arsenault, R.J.; Perry, F.; Johnson, C.N.; Genovese, K.J.; He, H.; Kogut, M.H.; Piva, A.; Grilli, E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult. Sci., 2022, 101(4), 101753.
[http://dx.doi.org/10.1016/j.psj.2022.101753] [PMID: 35240358]
[134]
Klemashevich, C.; Wu, C.; Howsmon, D.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Curr. Opin. Biotechnol., 2014, 26, 85-90.
[http://dx.doi.org/10.1016/j.copbio.2013.10.006] [PMID: 24679263]
[135]
Asgari, F.; Madjd, Z.; Falak, R.; Bahar, M.A.; Nasrabadi, M.H.; Raiani, M.; Shekarabi, M. Probiotic feeding affects T cell populations in blood and lymphoid organs in chickens. Benef. Microbes, 2016, 7(5), 669-675.
[http://dx.doi.org/10.3920/BM2016.0014] [PMID: 27349931]
[136]
Khalique, A.; Zeng, D.; Shoaib, M.; Wang, H.; Qing, X.; Rajput, D.S.; Pan, K.; Ni, X. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express, 2020, 10(1), 50.
[http://dx.doi.org/10.1186/s13568-020-00989-6] [PMID: 32172398]
[137]
Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct., 2023, 14(8), 3463-3474.
[http://dx.doi.org/10.1039/D2FO03695A] [PMID: 36912248]
[138]
Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol., 2017, 62, 195-201.
[http://dx.doi.org/10.1016/j.fsi.2017.01.015] [PMID: 28108342]
[139]
Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K.N. Aquaculture and stress management: a review of probiotic intervention. J. Anim. Physiol. Anim. Nutr. (Berl.), 2013, 97(3), 405-430.
[http://dx.doi.org/10.1111/j.1439-0396.2012.01301.x] [PMID: 22512693]
[140]
Zuo, Z.; Shang, B.; Shao, Y.; Li, W.; Sun, J. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol., 2019, 86, 160-168.
[http://dx.doi.org/10.1016/j.fsi.2018.11.003] [PMID: 30391532]
[141]
Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Sinderen, D.V. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol., 2005, 16(2), 198-203.
[http://dx.doi.org/10.1016/j.copbio.2005.02.008] [PMID: 15831387]
[142]
Huynh, T.G.; Cheng, A.C.; Chi, C.C.; Chiu, K.H.; Liu, C.H. A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol., 2018, 79, 284-293.
[http://dx.doi.org/10.1016/j.fsi.2018.05.031] [PMID: 29778843]
[143]
Yao, W.; Li, X.; Zhang, C.; Wang, J.; Cai, Y.; Leng, X. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 2021, 112, 46-55.
[http://dx.doi.org/10.1016/j.fsi.2021.02.011] [PMID: 33609702]
[144]
Boonanuntanasarn, S.; Wongsasak, U.; Pitaksong, T.; Chaijamrus, S. Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquacult. Nutr., 2016, 22(4), 837-845.
[http://dx.doi.org/10.1111/anu.12302]
[145]
Chen, M.; Chen, X.Q.; Tian, L.X.; Liu, Y.J.; Niu, J. Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquacult. Rep., 2020, 17, 100408.
[http://dx.doi.org/10.1016/j.aqrep.2020.100408]
[146]
Li, H.; Tian, X.; Zhao, K.; Jiang, W.; Dong, S. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai. Fish Shellfish Immunol., 2019, 87, 13-21.
[http://dx.doi.org/10.1016/j.fsi.2018.12.069] [PMID: 30599253]
[147]
Centeno-Martinez, R.E.; Dong, W.; Klopp, R.N.; Yoon, I.; Boerman, J.P.; Johnson, T.A. Effects of feeding Saccharomyces cerevisiae fermentation postbiotic on the fecal microbial community of Holstein dairy calves. Anim. Microbiome, 2023, 5(1), 13.
[http://dx.doi.org/10.1186/s42523-023-00234-y] [PMID: 36803311]
[148]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[149]
Sabahi, S.; Abbasi, A.; Mortazavi, S.A. Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. J. Appl. Microbiol., 2022, 133(2), 488-502.
[http://dx.doi.org/10.1111/jam.15578] [PMID: 35429123]
[150]
Jensen, G.S.; Benson, K.F.; Carter, S.G.; Endres, J.R. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol., 2010, 11(1), 15.
[http://dx.doi.org/10.1186/1471-2172-11-15] [PMID: 20331905]
[151]
Hoarau, C.; Martin, L.; Faugaret, D.; Baron, C.; Dauba, A.; Aubert-Jacquin, C.; Velge-Roussel, F.; Lebranchu, Y. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells. PLoS One, 2008, 3(7), e2753.
[http://dx.doi.org/10.1371/journal.pone.0002753] [PMID: 18648505]
[152]
Abbasi, A.; Aghebati-Maleki, A.; Yousefi, M.; Aghebati-Maleki, L. Probiotic intervention as a potential therapeutic for managing gestational disorders and improving pregnancy outcomes. J. Reprod. Immunol., 2021, 143, 103244.
[http://dx.doi.org/10.1016/j.jri.2020.103244] [PMID: 33186834]
[153]
Cousin, F.J.; Jouan-Lanhouet, S.; Dimanche-Boitrel, M.T.; Corcos, L.; Jan, G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One, 2012, 7(3), e31892.
[http://dx.doi.org/10.1371/journal.pone.0031892] [PMID: 22442660]
[154]
Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—a step beyond pre-and probiotics. Nutrients, 2020, 12(8), 2189.
[http://dx.doi.org/10.3390/nu12082189] [PMID: 32717965]
[155]
Rigo-Adrover, M.; Knipping, K.; Garssen, J.; van Limpt, K.; Knol, J.; Franch, À.; Castell, M.; Rodríguez-lagunas, M.; Pérez-Cano, F. Prevention of rotavirus diarrhea in suckling rats by a specific fermented milk concentrate with prebiotic mixture. Nutrients, 2019, 11(1), 189.
[http://dx.doi.org/10.3390/nu11010189] [PMID: 30669251]
[156]
Karimi, N.; Jabbari, V.; Nazemi, A.; Ganbarov, K.; Karimi, N.; Tanomand, A.; Karimi, S.; Abbasi, A.; Yousefi, B.; Khodadadi, E.; Kafil, H.S. Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb. Pathog., 2020, 148, 104481.
[http://dx.doi.org/10.1016/j.micpath.2020.104481] [PMID: 32916244]
[157]
Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; Nugnes, R.; Ferri, P.; Ciccarelli, G.; Giaccio, G.; Spadaro, R.; Maddalena, Y.; Berni Canani, F.; Berni Canani, R. Cow’s milk and rice fermented with Lactobacillus paracasei CBA L74 prevent infectious diseases in children: A randomized controlled trial. Clin. Nutr., 2017, 36(1), 118-125.
[http://dx.doi.org/10.1016/j.clnu.2015.12.004] [PMID: 26732025]
[158]
Malagón-Rojas, J.N.; Mantziari, A.; Salminen, S.; Szajewska, H. Postbiotics for preventing and treating common infectious diseases in children: a systematic review. Nutrients, 2020, 12(2), 389.
[http://dx.doi.org/10.3390/nu12020389] [PMID: 32024037]
[159]
Osman, A.; El-Gazzar, N.; Almanaa, T.N.; El-Hadary, A.; Sitohy, M. Lipolytic postbiotic from Lactobacillus paracasei manages metabolic syndrome in albino wistar rats. Molecules, 2021, 26(2), 472.
[http://dx.doi.org/10.3390/molecules26020472] [PMID: 33477482]
[160]
Abbasi, A.; Aghebati-Maleki, L.; Homayouni-Rad, A. The promising biological role of postbiotics derived from probiotic Lactobacillus species in reproductive health. Crit. Rev. Food Sci. Nutr., 2022, 62(32), 8829-8841.
[http://dx.doi.org/10.1080/10408398.2021.1935701] [PMID: 34152234]
[161]
Brial, F.; Le Lay, A.; Dumas, M.E.; Gauguier, D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell. Mol. Life Sci., 2018, 75(21), 3977-3990.
[http://dx.doi.org/10.1007/s00018-018-2901-1] [PMID: 30101405]
[162]
Nakamura, F.; Ishida, Y.; Sawada, D.; Ashida, N.; Sugawara, T.; Sakai, M.; Goto, T.; Kawada, T.; Fujiwara, S. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. J. Agric. Food Chem., 2016, 64(12), 2549-2559.
[http://dx.doi.org/10.1021/acs.jafc.5b05827] [PMID: 26927959]
[163]
Irving, A.T.; Mimuro, H.; Kufer, T.A.; Lo, C.; Wheeler, R.; Turner, L.J.; Thomas, B.J.; Malosse, C.; Gantier, M.P.; Casillas, L.N.; Votta, B.J.; Bertin, J.; Boneca, I.G.; Sasakawa, C.; Philpott, D.J.; Ferrero, R.L.; Kaparakis-Liaskos, M. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe, 2014, 15(5), 623-635.
[http://dx.doi.org/10.1016/j.chom.2014.04.001] [PMID: 24746552]
[164]
Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol., 2017, 8, 594.
[http://dx.doi.org/10.3389/fmicb.2017.00594] [PMID: 28428777]
[165]
Lin, J.; Zhuge, J.; Zheng, X.; Wu, Y.; Zhang, Z.; Xu, T.; Meftah, Z.; Xu, H.; Wu, Y.; Tian, N.; Gao, W.; Zhou, Y.; Zhang, X.; Wang, X. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic. Biol. Med., 2020, 150, 109-119.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.024] [PMID: 32105828]
[166]
Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; Kolandaivelu, K.; Veenema, A.H.; Alm, E.J.; Erdman, S.E. Microbial lysate upregulates host oxytocin. Brain Behav. Immun., 2017, 61, 36-49.
[http://dx.doi.org/10.1016/j.bbi.2016.11.002] [PMID: 27825953]
[167]
Nataraj, B.H.; Mallappa, R.H. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant staphylococcus aureus (MRSA). Curr. Microbiol., 2021, 78(6), 2194-2211.
[http://dx.doi.org/10.1007/s00284-021-02442-8] [PMID: 33881575]
[168]
Perrin, V.; Fenet, B.; Praly, J.P.; Lecroix, F.; Dung Ta, C. Identification and synthesis of a trisaccharide produced from lactose by transgalactosylation. Carbohydr. Res., 2000, 325(3), 202-210.
[http://dx.doi.org/10.1016/S0008-6215(99)00309-2] [PMID: 10795811]
[169]
Rather, I.A.; Choi, S.B.; Kamli, M.R.; Hakeem, K.R.; Sabir, J.S.M.; Park, Y.H.; Hor, Y.Y. Potential adjuvant therapeutic effect of Lactobacillus plantarum probio-88 postbiotics against SARS-COV-2. Vaccines (Basel), 2021, 9(10), 1067.
[http://dx.doi.org/10.3390/vaccines9101067] [PMID: 34696175]
[170]
Abbasi, A.; Bazzaz, S.; A. Ibrahim, S. Hekmatdoost, A.; Hosseini, H.; Sabahi, S.; Sheykhsaran, E.; Rahbar Saadat, Y.; Asghari Ozma, M.; Lahouty, M. A critical review on the gluten-induced enteropathy/celiac disease: Gluten-targeted dietary and non-dietary therapeutic approaches. Food Rev. Int., 2023, 1-41.
[http://dx.doi.org/10.1080/87559129.2023.2202405]
[171]
Spagnolello, O.; Pinacchio, C.; Santinelli, L.; Vassalini, P.; Innocenti, G.P.; De Girolamo, G.; Fabris, S.; Giovanetti, M.; Angeletti, S.; Russo, A.; Mastroianni, C.M.; Ciccozzi, M.; Ceccarelli, G.; d’Ettorre, G. Targeting microbiome: an alternative strategy for fighting SARS-CoV-2 infection. Chemotherapy, 2021, 66(1-2), 24-32.
[http://dx.doi.org/10.1159/000515344] [PMID: 33756475]
[172]
Hosseini, H.; Abbasi, A.; Sabahi, S.; Akrami, S.; Yousefi-Avarvand, A. Assessing the potential biological activities of postbiotics derived from saccharomyces cerevisiae: an in vitro study. Probiotics Antimicrob. Proteins, 2023, 1-17.
[http://dx.doi.org/10.1007/s12602-023-10117-y] [PMID: 37402072]
[173]
Todorov, S.D.; Tagg, J.R.; Ivanova, I.V. Could probiotics and postbiotics function as “Silver bullet” in the Post-COVID-19 era? Probiotics Antimicrob. Proteins, 2021, 13(6), 1499-1507.
[http://dx.doi.org/10.1007/s12602-021-09833-0] [PMID: 34386940]
[174]
Cecchini, M. Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action; OECD, 2015.
[175]
Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals (Basel), 2021, 11(12), 3431.
[http://dx.doi.org/10.3390/ani11123431] [PMID: 34944208]
[176]
Fabrega, J.; Carapeto, R. Regulatory review of the environmental risk assessment of veterinary medicinal products in the European Union, with particular focus on the centralised authorisation procedure. Environ. Sci. Eur., 2020, 32(1), 99.
[http://dx.doi.org/10.1186/s12302-020-00374-x]
[177]
Abbasi, A.; Sabahi, S.; Bazzaz, S.; Tajani, A.G.; Lahouty, M.; Aslani, R.; Hosseini, H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int. J. Biol. Macromol., 2023, 246, 125660.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125660] [PMID: 37399877]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy