Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Common Denominators of Parkinson’s Disease Pathogenesis and Methamphetamine Abuse

Author(s): Bruno Vincent* and Mayuri Shukla

Volume 22, Issue 13, 2024

Published on: 07 September, 2023

Page: [2113 - 2156] Pages: 44

DOI: 10.2174/1570159X21666230907151226

Price: $65

Abstract

The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson’s disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson’s disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson’s disease-like pathology and Parkinsonism.

Graphical Abstract

[1]
de Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[2]
Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J-Y.J.; Collado-Mateo, D.; Dahodwala, N.; Do, H.P.; Edessa, D.; Endres, M.; Fereshtehnejad, S-M.; Foreman, K.J.; Gankpe, F.G.; Gupta, R.; Hamidi, S.; Hankey, G.J.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; Kasaeian, A.; Khader, Y.; Khalil, I.; Khang, Y-H.; Kim, Y.J.; Kokubo, Y.; Logroscino, G.; Massano, J.; Mohamed Ibrahim, N.; Mohammed, M.A.; Mohammadi, A.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, B.T.; Nirayo, Y.L.; Ogbo, F.A.; Owolabi, M.O.; Pereira, D.M.; Postma, M.J.; Qorbani, M.; Rahman, M.A.; Roba, K.T.; Safari, H.; Safiri, S.; Satpathy, M.; Sawhney, M.; Shafieesabet, A.; Shiferaw, M.S.; Smith, M.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Truong, N.T.; Ukwaja, K.N.; Venketasubramanian, N.; Villafaina, S. weldegwergs, K.; Westerman, R.; Wijeratne, T.; Winkler, A.S.; Xuan, B.T.; Yonemoto, N.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(11), 939-953.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[3]
Schneider, S.A.; Obeso, J.A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci., 2014, 22, 205-220.
[http://dx.doi.org/10.1007/7854_2014_317] [PMID: 24850081]
[4]
Burré, J.; Vivona, S.; Diao, J.; Sharma, M.; Brunger, A.T.; Südhof, T.C. Properties of native brain α-synuclein. Nature, 2013, 498(7453), E4-E6.
[http://dx.doi.org/10.1038/nature12125] [PMID: 23765500]
[5]
Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[6]
Baba, M.; Nakajo, S.; Tu, P.H.; Tomita, T.; Nakaya, K.; Lee, V.M.; Trojanowski, J.Q.; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol., 1998, 152(4), 879-884.
[PMID: 9546347]
[7]
Dickson, D.W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med., 2012, 2(8), a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[8]
Masato, A.; Plotegher, N.; Boassa, D.; Bubacco, L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol. Neurodegener., 2019, 14(1), 35.
[http://dx.doi.org/10.1186/s13024-019-0332-6] [PMID: 31488222]
[9]
Hisahara, S.; Shimohama, S. Dopamine receptors and Parkinson’s disease. Int. J. Med. Chem., 2011, 2011, 1-16.
[http://dx.doi.org/10.1155/2011/403039] [PMID: 25954517]
[10]
Jankovic, J.; Tan, E.K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[11]
Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis, 2009, 14(4), 478-500.
[http://dx.doi.org/10.1007/s10495-008-0309-3] [PMID: 19165601]
[12]
Paulus, M.P.; Stewart, J.L. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: A review. JAMA Psychiatry, 2020, 77(9), 959-966.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.0246] [PMID: 32267484]
[13]
Farrell, M.; Martin, N.K.; Stockings, E.; Bórquez, A.; Cepeda, J.A.; Degenhardt, L.; Ali, R.; Tran, L.T.; Rehm, J.; Torrens, M.; Shoptaw, S.; McKetin, R. Responding to global stimulant use: challenges and opportunities. Lancet, 2019, 394(10209), 1652-1667.
[http://dx.doi.org/10.1016/S0140-6736(19)32230-5] [PMID: 31668409]
[14]
McGregor, C.; Srisurapanont, M.; Jittiwutikarn, J.; Laobhripatr, S.; Wongtan, T.; White, J.M. The nature, time course and severity of methamphetamine withdrawal. Addiction, 2005, 100(9), 1320-1329.
[http://dx.doi.org/10.1111/j.1360-0443.2005.01160.x] [PMID: 16128721]
[15]
Hartz, D.T.; Frederick-Osborne, S.L.; Galloway, G.P. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis. Drug Alcohol Depend., 2001, 63(3), 269-276.
[http://dx.doi.org/10.1016/S0376-8716(00)00217-9] [PMID: 11418231]
[16]
Martinotti, G.; De Risio, L.; Vannini, C.; Schifano, F.; Pettorruso, M.; Di Giannantonio, M. Substance-related exogenous psychosis: a postmodern syndrome. CNS Spectr., 2021, 26(1), 84-91.
[http://dx.doi.org/10.1017/S1092852920001479] [PMID: 32580808]
[17]
Martinotti, G.; Negri, A.; Schiavone, S.; Montemitro, C.; Vannini, C.; Baroni, G.; Pettorruso, M.; De Giorgio, F.; Giorgetti, R.; Verrastro, V.; Trabace, L.; Garcia, A.; Castro, I.; Iglesias Lopez, J.; Merino Del Villar, C.; Schifano, F.; di Giannantonio, M. Club drugs: psychotropic effects and psychopathological characteristics of a sample of inpatients. Front. Psychiatry, 2020, 11, 879.
[http://dx.doi.org/10.3389/fpsyt.2020.00879] [PMID: 33110412]
[18]
Martinotti, G.; Lupi, M.; Carlucci, L.; Cinosi, E.; Santacroce, R.; Acciavatti, T.; Chillemi, E.; Bonifaci, L.; Janiri, L.; Di Giannantonio, M. Novel psychoactive substances: use and knowledge among adolescents and young adults in urban and rural areas. Hum. Psychopharmacol., 2015, 30(4), 295-301.
[http://dx.doi.org/10.1002/hup.2486] [PMID: 26216566]
[19]
Chiappini, S.; Mosca, A.; Miuli, A.; Santovito, M.C.; Orsolini, L.; Corkery, J.M.; Guirguis, A.; Pettorruso, M.; Martinotti, G.; Di Giannantonio, M.; Schifano, F. New psychoactive substances and suicidality: a systematic review of the current literature. Medicina (Kaunas), 2021, 57(6), 580.
[http://dx.doi.org/10.3390/medicina57060580] [PMID: 34204131]
[20]
Schifano, F.; Chiappini, S.; Miuli, A.; Corkery, J.M.; Scherbaum, N.; Napoletano, F.; Arillotta, D.; Zangani, C.; Catalani, V.; Vento, A.; Pettorruso, M.; Martinotti, G.; Massimo, D.G.; Guirguis, A. New psychoactive substances (NPS) and serotonin syndrome onset: A systematic review. Exp. Neurol., 2021, 339, 113638.
[http://dx.doi.org/10.1016/j.expneurol.2021.113638] [PMID: 33571533]
[21]
Corazza, O.; Valeriani, G.; Bersani, F.S.; Corkery, J.; Martinotti, G.; Bersani, G.; Schifano, F. “Spice,” “kryptonite,” “black mamba”: an overview of brand names and marketing strategies of novel psychoactive substances on the web. J. Psychoactive Drugs, 2014, 46(4), 287-294.
[http://dx.doi.org/10.1080/02791072.2014.944291] [PMID: 25188698]
[22]
Schifano, F.; Leoni, M.; Martinotti, G.; Rawaf, S.; Rovetto, F. Importance of cyberspace for the assessment of the drug abuse market: preliminary results from the Psychonaut 2002 project. Cyberpsychol. Behav., 2003, 6(4), 405-410.
[http://dx.doi.org/10.1089/109493103322278790] [PMID: 14511453]
[23]
Schifano, F.; Deluca, P.; Agosti, L.; Martinotti, G.; Corkery, J.M.; Alex, B.; Caterina, B.; Heikki, B.; Raffaella, B.; Anna, C.; Lucia, D.F.; Dorte, D.R.; Magi, F.; Susana, F.; Irene, F.; Claude, G.; Lisbet, H.; Lene, S.J.; Mauro, L.; Christopher, L.; Aino, M.; Teuvo, P.; Milena, P.; Salman, R.; Damien, R.; Angela, R.M.; Francesco, R.; Norbert, S.; Holger, S.; Josep, T.; Marta, T.; Francesco, Z. New trends in the cyber and street market of recreational drugs? The case of 2C-T-7 (‘Blue Mystic’). J. Psychopharmacol., 2005, 19(6), 675-679.
[http://dx.doi.org/10.1177/0269881105056660] [PMID: 16272191]
[24]
Shukla, M.; Vincent, B. The multi-faceted impact of methamphetamine on Alzheimer’s disease: From a triggering role to a possible therapeutic use. Ageing Res. Rev., 2020, 60, 101062.
[http://dx.doi.org/10.1016/j.arr.2020.101062] [PMID: 32304732]
[25]
Lappin, J.M.; Darke, S. Methamphetamine and heightened risk for early-onset stroke and Parkinson’s disease: A review. Exp. Neurol., 2021, 343, 113793.
[http://dx.doi.org/10.1016/j.expneurol.2021.113793] [PMID: 34166684]
[26]
Das, A.; Price, D.; Clothier, J. Case Series: Choreoathetoid movements associated with methamphetamine: A case report and review of literature. Am. J. Addict., 2018, 27(5), 364-367.
[http://dx.doi.org/10.1111/ajad.12759] [PMID: 29968954]
[27]
Millot, M.; Saga, Y.; Duperrier, S.; Météreau, E.; Beaudoin-Gobert, M.; Sgambato, V. Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiol. Dis., 2020, 134, 104643.
[http://dx.doi.org/10.1016/j.nbd.2019.104643] [PMID: 31689516]
[28]
Boroujeni, M.E.; Nasrollahi, A.; Boroujeni, P.B.; Fadaeifathabadi, F.; Farhadieh, M.; Tehrani, A.M.; Nakhaei, H.; Sajedian, A.M.; Peirouvi, T.; Aliaghaei, A. Exposure to methamphetamine exacerbates motor activities and alters circular RNA profile of cerebellum. J. Pharmacol. Sci., 2020, 144(1), 1-8.
[http://dx.doi.org/10.1016/j.jphs.2020.05.010] [PMID: 32576439]
[29]
Todd, G.; Burns, L.; Pearson-Dennett, V.; Esterman, A.; Faulkner, P.L.; Wilcox, R.A.; Thewlis, D.; Vogel, A.P.; White, J.M. Prevalence of self-reported movement dysfunction among young adults with a history of ecstasy and methamphetamine use. Drug Alcohol Depend., 2019, 205, 107595.
[http://dx.doi.org/10.1016/j.drugalcdep.2019.107595] [PMID: 31600615]
[30]
Temmingh, H.S.; van den Brink, W.; Howells, F.; Sibeko, G.; Stein, D.J. Methamphetamine use and antipsychotic-related extrapyramidal side-effects in patients with psychotic disorders. J. Dual Diagn., 2020, 16(2), 208-217.
[http://dx.doi.org/10.1080/15504263.2020.1714099] [PMID: 31984872]
[31]
Shukla, M.; Vincent, B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci. Biobehav. Rev., 2021, 131, 541-559.
[http://dx.doi.org/10.1016/j.neubiorev.2021.09.016] [PMID: 34606820]
[32]
Foroughi, K.; Khaksari, M.; Shayannia, A. Molecular docking studies of methamphetamine and amphetamine-related derivatives as an inhibitor against dopamine receptor. Curr. Computeraided Drug Des., 2020, 16(2), 122-133.
[http://dx.doi.org/10.2174/1573409915666181204144411] [PMID: 30514192]
[33]
Pregeljc, D.; Teodorescu-Perijoc, D.; Vianello, R.; Umek, N.; Mavri, J. How important is the use of cocaine and amphetamines in the development of Parkinson disease? A computational study. Neurotox. Res., 2020, 37(3), 724-731.
[http://dx.doi.org/10.1007/s12640-019-00149-0] [PMID: 31828739]
[34]
Ares-Santos, S.; Granado, N.; Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med., 2013, 273(5), 437-453.
[http://dx.doi.org/10.1111/joim.12049] [PMID: 23600399]
[35]
Francardo, V. Sigma-1 receptor: a potential new target for Parkinson′s disease? Neural Regen. Res., 2014, 9(21), 1882-1883.
[http://dx.doi.org/10.4103/1673-5374.145351] [PMID: 25558236]
[36]
Hedges, D.M.; Obray, J.D.; Yorgason, J.T.; Jang, E.Y.; Weerasekara, V.K.; Uys, J.D.; Bellinger, F.P.; Steffensen, S.C. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology, 2018, 43(6), 1405-1414.
[http://dx.doi.org/10.1038/npp.2017.291] [PMID: 29185481]
[37]
Shin, E.J.; Dang, D.K.; Tran, T.V.; Tran, H.Q.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Yamada, K.; Nabeshima, T.; Kim, H.C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch. Pharm. Res., 2017, 40(4), 403-428.
[http://dx.doi.org/10.1007/s12272-017-0897-y] [PMID: 28243833]
[38]
Jiang, W.; Li, J.; Zhang, Z.; Wang, H.; Wang, Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur. J. Pharmacol., 2014, 745, 243-248.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.043] [PMID: 25445041]
[39]
Ding, J.; Hu, S.; Meng, Y.; Li, C.; Huang, J.; He, Y.; Qiu, P. Alpha-Synuclein deficiency ameliorates chronic methamphetamine induced neurodegeneration in mice. Toxicology, 2020, 438, 152461.
[http://dx.doi.org/10.1016/j.tox.2020.152461] [PMID: 32278788]
[40]
Wu, M.; Su, H.; Zhao, M. The role of α-Synuclein in methamphetamine-induced neurotoxicity. Neurotox. Res., 2021, 39(3), 1007-1021.
[http://dx.doi.org/10.1007/s12640-021-00332-2] [PMID: 33555547]
[41]
Gelfand, Y.; Kaplitt, M.G. Gene therapy for psychiatric disorders. World Neurosurg, 2013, 80(3-4), S32.e11-S32.e28.
[http://dx.doi.org/10.1016/j.wneu.2012.12.028] [PMID: 23268195]
[42]
Bousman, C.A.; Glatt, S.J.; Everall, I.P.; Tsuang, M.T. Genetic association studies of methamphetamine use disorders: A systematic review and synthesis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(8), 1025-1049.
[http://dx.doi.org/10.1002/ajmg.b.30936] [PMID: 19219857]
[43]
Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci., 2010, 30(21), 7281-7289.
[http://dx.doi.org/10.1523/JNEUROSCI.0490-10.2010] [PMID: 20505094]
[44]
Mullin, S.; Schapira, A. The genetics of Parkinson’s disease. Br. Med. Bull., 2015, 114(1), 39-52.
[http://dx.doi.org/10.1093/bmb/ldv022] [PMID: 25995343]
[45]
Wray, S.; Lewis, P.A. A tangled web - tau and sporadic Parkinson’s disease. Front. Psychiatry, 2010, 1, 150.
[http://dx.doi.org/10.3389/fpsyt.2010.00150] [PMID: 21423457]
[46]
Tavassoly, O.; Lee, J.S. Methamphetamine binds to α-synuclein and causes a conformational change which can be detected by nanopore analysis. FEBS Lett., 2012, 586(19), 3222-3228.
[http://dx.doi.org/10.1016/j.febslet.2012.06.040] [PMID: 22771474]
[47]
Butler, B.; Gamble-George, J.; Prins, P.; North, A.; Clarke, J.T.; Khoshbouei, H. Chronic methamphetamine increases alpha-synuclein protein levels in the striatum and hippocampus but not in the cortex of juvenile mice. J. Addict. Prev., 2014, 2(2), 6.
[PMID: 25621291]
[48]
Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; Tomiyama, H.; Nakashima, K.; Hasegawa, K.; Obata, F.; Yoshikawa, T.; Kawakami, H.; Sakoda, S.; Yamamoto, M.; Hattori, N.; Murata, M.; Nakamura, Y.; Toda, T. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet., 2009, 41(12), 1303-1307.
[http://dx.doi.org/10.1038/ng.485] [PMID: 19915576]
[49]
Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; Krüger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.; Bonin, M.; Nalls, M.A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.; Okun, M.S.; Racette, B.A.; Cookson, M.R.; Foote, K.D.; Fernandez, H.H.; Traynor, B.J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.; van der Brug, M.; Lopez, G.; Chanock, S.J.; Schatzkin, A.; Park, Y.; Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N.W.; Lorenz, D.; Deuschl, G.; Chen, H.; Riess, O.; Hardy, J.A.; Singleton, A.B.; Gasser, T. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet., 2009, 41(12), 1308-1312.
[http://dx.doi.org/10.1038/ng.487] [PMID: 19915575]
[50]
Biagioni, F.; Ferese, R.; Limanaqi, F.; Madonna, M.; Lenzi, P.; Gambardella, S.; Fornai, F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res., 2019, 1719, 157-175.
[http://dx.doi.org/10.1016/j.brainres.2019.05.035] [PMID: 31150652]
[51]
Heinzerling, K.G.; Shoptaw, S. Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. Gend. Med., 2012, 9(2), 112-120.
[http://dx.doi.org/10.1016/j.genm.2012.02.005] [PMID: 22445683]
[52]
Altmann, V.; Schumacher-Schuh, A.F.; Rieck, M.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. Val66Met BDNF polymorphism is associated with Parkinson’s disease cognitive impairment. Neurosci. Lett., 2016, 615, 88-91.
[http://dx.doi.org/10.1016/j.neulet.2016.01.030] [PMID: 26806863]
[53]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[54]
Costa, A.; Peppe, A.; Carlesimo, G.A.; Zabberoni, S.; Scalici, F.; Caltagirone, C.; Angelucci, F. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front. Behav. Neurosci., 2015, 9, 253.
[http://dx.doi.org/10.3389/fnbeh.2015.00253] [PMID: 26441580]
[55]
He, L.; Liao, Y.; Wu, Q.; Liu, T. Association between brain-derived neurotrophic factor Val66Met polymorphism and methamphetamine use disorder: A meta-analysis. Front. Psychiatry, 2020, 11, 585852.
[http://dx.doi.org/10.3389/fpsyt.2020.585852] [PMID: 33329128]
[56]
Tekumalla, P.K.; Calon, F.; Rahman, Z.; Birdi, S.; Rajput, A.H.; Hornykiewicz, O.; Di Paolo, T.; Bédard, P.J.; Nestler, E.J. Elevated levels of ΔFosB and RGS9 in striatum in Parkinson’s disease. Biol. Psychiatry, 2001, 50(10), 813-816.
[http://dx.doi.org/10.1016/S0006-3223(01)01234-3] [PMID: 11720701]
[57]
Okahisa, Y.; Kodama, M.; Takaki, M.; Inada, T.; Uchimura, N.; Yamada, M.; Iwata, N.; Iyo, M.; Sora, I.; Ozaki, N.; Ujike, H. Association between the regulator of G-protein signaling 9 gene and patients with methamphetamine use. Curr. Neuropharmacol., 2011, 9(1), 190-194.
[http://dx.doi.org/10.2174/157015911795017029] [PMID: 21886588]
[58]
Liu, W.; Wu, H.; Chen, L.; Wen, Y.; Kong, X.; Gao, W.Q. Park7 interacts with p47phox to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res., 2015, 25(6), 691-706.
[http://dx.doi.org/10.1038/cr.2015.63] [PMID: 26021615]
[59]
Polissidis, A.; Petropoulou-Vathi, L.; Nakos-Bimpos, M.; Rideout, H.J. The future of targeted gene-based treatment strategies and biomarkers in Parkinson’s disease. Biomolecules, 2020, 10(6), 912.
[http://dx.doi.org/10.3390/biom10060912] [PMID: 32560161]
[60]
Chouliaras, L.; Kumar, G.S.; Thomas, A.J.; Lunnon, K.; Chinnery, P.F.; O’Brien, J.T. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog. Neurobiol., 2020, 192, 101822.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101822] [PMID: 32407744]
[61]
Li, L.; Chen, S.; Wang, Y.; Yue, X.; Xu, J.; Xie, W.; Qiu, P.; Liu, C.; Wang, A.; Wang, H. Role of GSK3β/α-synuclein axis in methamphetamine-induced neurotoxicity in PC12 cells. Toxicol. Res. (Camb.), 2018, 7(2), 221-234.
[http://dx.doi.org/10.1039/C7TX00189D] [PMID: 30090577]
[62]
Tong, Y.; Xu, Y.; Scearce-Levie, K.; Ptáček, L.J.; Fu, Y.H. COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics, 2010, 11(1), 41-52.
[http://dx.doi.org/10.1007/s10048-009-0201-5] [PMID: 19548013]
[63]
Sarajärvi, T.; Tuusa, J.T.; Haapasalo, A.; Lackman, J.J.; Sormunen, R.; Helisalmi, S.; Roehr, J.T.; Parrado, A.R.; Mäkinen, P.; Bertram, L.; Soininen, H.; Tanzi, R.E.; Petäjä-Repo, U.E.; Hiltunen, M. Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Mol. Cell. Biol., 2011, 31(11), 2326-2340.
[http://dx.doi.org/10.1128/MCB.05015-11] [PMID: 21464208]
[64]
Voineskos, A.N.; Lerch, J.P.; Felsky, D.; Shaikh, S.; Rajji, T.K.; Miranda, D.; Lobaugh, N.J.; Mulsant, B.H.; Pollock, B.G.; Kennedy, J.L. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68(2), 198-206.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.194] [PMID: 21300947]
[65]
Roussotte, F.F.; Jahanshad, N.; Hibar, D.P.; Sowell, E.R.; Kohannim, O.; Barysheva, M.; Hansell, N.K.; McMahon, K.L.; de Zubicaray, G.I.; Montgomery, G.W.; Martin, N.G.; Wright, M.J.; Toga, A.W.; Jack, C.R., Jr; Weiner, M.W.; Thompson, P.M. ADNI. A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: Replication in elderly and young populations. Hum. Brain Mapp., 2014, 35(4), 1226-1236.
[http://dx.doi.org/10.1002/hbm.22247] [PMID: 23427138]
[66]
Roos, A.; Fouche, J.P.; Toit, S.; Plessis, S.; Stein, D.J.; Donald, K.A. Structural brain network development in children following prenatal methamphetamine exposure. J. Comp. Neurol., 2020, 528(11), 1856-1863.
[http://dx.doi.org/10.1002/cne.24858] [PMID: 31953852]
[67]
Feier, G.; Valvassori, S.S.; Lopes-Borges, J.; Varela, R.B.; Bavaresco, D.V.; Scaini, G.; Morais, M.O.; Andersen, M.L.; Streck, E.L.; Quevedo, J. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci. Lett., 2012, 530(1), 75-79.
[http://dx.doi.org/10.1016/j.neulet.2012.09.039] [PMID: 23022501]
[68]
Bu, Q.; Lv, L.; Yan, G.; Deng, P.; Wang, Y.; Zhou, J.; Yang, Y.; Li, Y.; Cen, X. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology, 2013, 36, 17-23.
[http://dx.doi.org/10.1016/j.neuro.2013.02.007] [PMID: 23462569]
[69]
Chavoshi, H.; Boroujeni, M.E.; Abdollahifar, M.A.; Amini, A.; Tehrani, A.M.; Moghaddam, M.H.; Norozian, M.; Farahani, R.M.; Aliaghaei, A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J. Chem. Neuroanat., 2020, 109, 101854.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101854] [PMID: 32795519]
[70]
Huang, X.; Chen, Y-Y.; Shen, Y.; Cao, X.; Li, A.; Liu, Q.; Li, Z.; Zhang, L-B.; Dai, W.; Tan, T.; Arias-Carrion, O.; Xue, Y-X.; Su, H.; Yuan, T-F. Methamphetamine abuse impairs motor cortical plasticity and function. Mol. Psychiatry, 2017, 22(9), 1274-1281.
[http://dx.doi.org/10.1038/mp.2017.143] [PMID: 28831198]
[71]
Gama, R.L.; Bruin, V.M.S.; Távora, D.G.F.; Duran, F.L.S.; Bittencourt, L.; Tufik, S. Structural brain abnormalities in patients with Parkinson’s disease with visual hallucinations: A comparative voxel-based analysis. Brain Cogn., 2014, 87, 97-103.
[http://dx.doi.org/10.1016/j.bandc.2014.03.011] [PMID: 24732953]
[72]
Gao, Y.; Nie, K.; Huang, B.; Mei, M.; Guo, M.; Xie, S.; Huang, Z.; Wang, L.; Zhao, J.; Zhang, Y.; Wang, L. Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett., 2017, 658, 121-132.
[http://dx.doi.org/10.1016/j.neulet.2017.08.028] [PMID: 28823894]
[73]
Li, R.; Zou, T.; Wang, X.; Wang, H.; Hu, X.; Xie, F.; Meng, L.; Chen, H. Basal ganglia atrophy–associated causal structural network degeneration in Parkinson’s disease. Hum. Brain Mapp., 2022, 43(3), 1145-1156.
[http://dx.doi.org/10.1002/hbm.25715] [PMID: 34792836]
[74]
Rektor, I.; Svátková, A.; Vojtíšek, L.; Zikmundová, I.; Vaníček, J.; Király, A.; Szabó, N. White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy. PLoS One, 2018, 13(1), e0187939.
[http://dx.doi.org/10.1371/journal.pone.0187939] [PMID: 29304183]
[75]
Thompson, P.M.; Hayashi, K.M.; Simon, S.L.; Geaga, J.A.; Hong, M.S.; Sui, Y.; Lee, J.Y.; Toga, A.W.; Ling, W.; London, E.D. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci., 2004, 24(26), 6028-6036.
[http://dx.doi.org/10.1523/JNEUROSCI.0713-04.2004] [PMID: 15229250]
[76]
Chang, L.; Smith, L.M.; LoPresti, C.; Yonekura, M.L.; Kuo, J.; Walot, I.; Ernst, T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. Neuroimaging, 2004, 132(2), 95-106.
[http://dx.doi.org/10.1016/j.pscychresns.2004.06.004] [PMID: 15598544]
[77]
Chang, L.; Cloak, C.; Patterson, K.; Grob, C.; Miller, E.N.; Ernst, T. Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biol. Psychiatry, 2005, 57(9), 967-974.
[http://dx.doi.org/10.1016/j.biopsych.2005.01.039] [PMID: 15860336]
[78]
Bae, S.C.; Lyoo, I.K.; Sung, Y.H.; Yoo, J.; Chung, A.; Yoon, S.J.; Kim, D.J.; Hwang, J.; Kim, S.J.; Renshaw, P.F. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend., 2006, 81(1), 83-88.
[http://dx.doi.org/10.1016/j.drugalcdep.2005.05.016] [PMID: 16005161]
[79]
Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Shakiba, M. Alhagh, Charkhat, G.E. Stereological analysis of the brain in methamphetamine abusers compared to the controls. Int. J. High Risk Behav. Addict., 2017, 6(4), e63201.
[http://dx.doi.org/10.5812/ijhrba.63201]
[80]
Nie, L.; Zhao, Z.; Wen, X.; Luo, W.; Ju, T.; Ren, A.; Wu, B.; Li, J. Gray-matter structure in long-term abstinent methamphetamine users. BMC Psychiatry, 2020, 20(1), 158.
[http://dx.doi.org/10.1186/s12888-020-02567-3] [PMID: 32272912]
[81]
He, H.; Liang, L.; Tang, T.; Luo, J.; Wang, Y.; Cui, H. Progressive brain changes in Parkinson’s disease: A meta-analysis of structural magnetic resonance imaging studies. Brain Res., 2020, 1740, 146847.
[http://dx.doi.org/10.1016/j.brainres.2020.146847] [PMID: 32330518]
[82]
Arab, A.; Ruda-Kucerova, J.; Minsterova, A.; Drazanova, E.; Szabó, N.; Starcuk, Z., Jr; Rektorova, I.; Khairnar, A. Rektorova, I.; Khairnar, A. Diffusion Kurtosis imaging detects microstructural changes in a methamphetamine-induced mouse model of Parkinson’s disease. Neurotox. Res., 2019, 36(4), 724-735.
[http://dx.doi.org/10.1007/s12640-019-00068-0] [PMID: 31209787]
[83]
Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; Cadet, J.L.; Volkow, N.D. Chronic methamphetamine effects on brain structure and function in rats. PLoS One, 2016, 11(6), e0155457.
[http://dx.doi.org/10.1371/journal.pone.0155457] [PMID: 27275601]
[84]
Huang, S.; Dai, Y.; Zhang, C.; Yang, C.; Huang, Q.; Hao, W.; Shen, H. Higher impulsivity and lower grey matter volume in the bilateral prefrontal cortex in long-term abstinent individuals with severe methamphetamine use disorder. Drug Alcohol Depend., 2020, 212, 108040.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.108040] [PMID: 32428790]
[85]
Ravanidis, S.; Bougea, A.; Karampatsi, D.; Papagiannakis, N.; Maniati, M.; Stefanis, L.; Doxakis, E. Differentially expressed circular RNAs in peripheral blood mononuclear cells of patients with Parkinson’s disease. Mov. Disord., 2021, 36(5), 1170-1179.
[http://dx.doi.org/10.1002/mds.28467] [PMID: 33433033]
[86]
Lu, Y.; Peng, Q.; Zeng, Z.; Wang, J.; Deng, Y.; Xie, L.; Mo, C.; Zeng, J.; Qin, X.; Li, S. CYP2D6 phenotypes and Parkinson’s disease risk: A meta-analysis. J. Neurol. Sci., 2014, 336(1-2), 161-168.
[http://dx.doi.org/10.1016/j.jns.2013.10.030] [PMID: 24211060]
[87]
Dean, A.C.; Nurmi, E.L.; Morales, A.M.; Cho, A.K.; Seaman, L.C.; London, E.D. CYP2D6 genotype may moderate measures of brain structure in methamphetamine users. Addict. Biol., 2021, 26(3), e12950.
[http://dx.doi.org/10.1111/adb.12950] [PMID: 32767519]
[88]
Lappin, J.M.; Darke, S.; Farrell, M. Methamphetamine use and future risk for Parkinson’s disease: Evidence and clinical implications. Drug Alcohol Depend., 2018, 187, 134-140.
[http://dx.doi.org/10.1016/j.drugalcdep.2018.02.032] [PMID: 29665491]
[89]
Thrash, B.; Thiruchelvan, K.; Ahuja, M.; Suppiramaniam, V.; Dhanasekaran, M. Methamphetamine-induced neurotoxicity: the road to Parkinson’s disease. Pharmacol. Rep., 2009, 61(6), 966-977.
[http://dx.doi.org/10.1016/S1734-1140(09)70158-6] [PMID: 20081231]
[90]
Davidson, C.; Gow, A.J.; Lee, T.H.; Ellinwood, E.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev., 2001, 36(1), 1-22.
[http://dx.doi.org/10.1016/S0165-0173(01)00054-6] [PMID: 11516769]
[91]
Itzhak, Y.; Martin, J.L.; Ali, S.F. Methamphetamine-induced dopaminergic neurotoxicity in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(6), 1177-1183.
[http://dx.doi.org/10.1016/S0278-5846(02)00257-9] [PMID: 12452543]
[92]
Sonsalla, P.K.; Jochnowitz, N.D.; Zeevalk, G.D.; Oostveen, J.A.; Hall, E.D. Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res., 1996, 738(1), 172-175.
[http://dx.doi.org/10.1016/0006-8993(96)00995-X] [PMID: 8949944]
[93]
Ares-Santos, S.; Granado, N.; Espadas, I.; Martinez-Murillo, R.; Moratalla, R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology, 2014, 39(5), 1066-1080.
[http://dx.doi.org/10.1038/npp.2013.307] [PMID: 24169803]
[94]
Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci., 2018, 12.
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[95]
Kaasinen, V.; Vahlberg, T.; Stoessl, A.J.; Strafella, A.P.; Antonini, A. Dopamine receptors in Parkinson’s disease: A meta-analysis of imaging studies. Mov. Disord., 2021, 36(8), 1781-1791.
[http://dx.doi.org/10.1002/mds.28632] [PMID: 33955044]
[96]
Beauvais, G.; Atwell, K.; Jayanthi, S.; Ladenheim, B.; Cadet, J.L. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One, 2011, 6(12), e28946.
[http://dx.doi.org/10.1371/journal.pone.0028946] [PMID: 22174933]
[97]
Coppedè, F. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal, 2012, 2012, 1-12.
[http://dx.doi.org/10.1100/2012/489830] [PMID: 22623900]
[98]
Labbé, C.; Lorenzo-Betancor, O.; Ross, O.A. Epigenetic regulation in Parkinson’s disease. Acta Neuropathol., 2016, 132(4), 515-530.
[http://dx.doi.org/10.1007/s00401-016-1590-9] [PMID: 27358065]
[99]
Cadet, J.L.; Jayanthi, S. Epigenetics of addiction. Neurochem. Int., 2021, 147, 105069.
[http://dx.doi.org/10.1016/j.neuint.2021.105069] [PMID: 33992741]
[100]
Cadet, J.L.; Jayanthi, S. Epigenetic landscape of methamphetamine use disorder. Curr. Neuropharmacol., 2021, 19(12), 2060-2066.
[http://dx.doi.org/10.2174/1570159X19666210524111915] [PMID: 34030618]
[101]
Cadet, J.L.; Jayanthi, S.; Mccoy, M.T.; Vawter, M.; Ladenheim, B. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41(1), 40-48.
[http://dx.doi.org/10.1002/syn.1058] [PMID: 11354012]
[102]
Thomas, D.M.; Francescutti-Verbeem, D.M.; Liu, X.; Kuhn, D.M. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment - an oligonucleotide microarray approach. J. Neurochem., 2004, 88(2), 380-393.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02182.x] [PMID: 14690526]
[103]
Martin, T.A.; Jayanthi, S.; McCoy, M.T.; Brannock, C.; Ladenheim, B.; Garrett, T.; Lehrmann, E.; Becker, K.G.; Cadet, J.L. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS One, 2012, 7(3), e34236.
[http://dx.doi.org/10.1371/journal.pone.0034236] [PMID: 22470541]
[104]
Godino, A.; Jayanthi, S.; Cadet, J.L. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 2015, 10(7), 574-580.
[http://dx.doi.org/10.1080/15592294.2015.1055441] [PMID: 26023847]
[105]
Limanaqi, F.; Gambardella, S.; Biagioni, F.; Busceti, C.L.; Fornai, F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 1-28.
[http://dx.doi.org/10.1155/2018/4982453] [PMID: 30140365]
[106]
Marshall, L.L.; Killinger, B.A.; Ensink, E.; Li, P.; Li, K.X.; Cui, W.; Lubben, N.; Weiland, M.; Wang, X.; Gordevicius, J.; Coetzee, G.A.; Ma, J.; Jovinge, S.; Labrie, V. Epigenomic analysis of Parkinson’s disease neurons identifies Tet2 loss as neuroprotective. Nat. Neurosci., 2020, 23(10), 1203-1214.
[http://dx.doi.org/10.1038/s41593-020-0690-y] [PMID: 32807949]
[107]
Jayanthi, S.; Gonzalez, B.; McCoy, M.T.; Ladenheim, B.; Bisagno, V.; Cadet, J.L. Methamphetamine induces TET1- and TET3-dependent DNA hydroxymethylation of Crh and Avp genes in the rat nucleus accumbens. Mol. Neurobiol., 2018, 55(6), 5154-5166.
[http://dx.doi.org/10.1007/s12035-017-0750-9] [PMID: 28842817]
[108]
Tan, Y.; Delvaux, E.; Nolz, J.; Coleman, P.D.; Chen, S.; Mastroeni, D. Upregulation of histone deacetylase 2 in laser capture nigral microglia in Parkinson’s disease. Neurobiol. Aging, 2018, 68, 134-141.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.02.018] [PMID: 29803514]
[109]
González, B.; Bernardi, A.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; García-Rill, E.; Urbano, F.J.; Cadet, J.L.; Bisagno, V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict. Biol., 2020, 25(2), e12737.
[http://dx.doi.org/10.1111/adb.12737] [PMID: 30811820]
[110]
Li, H.; Chen, J.A.; Ding, Q.Z.; Lu, G.Y.; Wu, N.; Su, R.B.; Li, F.; Li, J. Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci., 2021, 22(1), 24.
[http://dx.doi.org/10.1186/s12868-021-00616-5] [PMID: 33823794]
[111]
Deng, H.; Wang, P.; Jankovic, J. The genetics of Parkinson disease. Ageing Res. Rev., 2018, 42, 72-85.
[http://dx.doi.org/10.1016/j.arr.2017.12.007] [PMID: 29288112]
[112]
Nakahara, T.; Kuroki, T.; Ohta, E.; Kajihata, T.; Yamada, H.; Yamanaka, M.; Hashimoto, K.; Tsutsumi, T.; Hirano, M.; Uchimura, H. Effect of the neurotoxic dose of methamphetamine on gene expression of parkin and Pael-receptors in rat striatum. Parkinsonism Relat. Disord., 2003, 9(4), 213-219.
[http://dx.doi.org/10.1016/S1353-8020(02)00052-4] [PMID: 12618056]
[113]
Guhathakurta, S.; Kim, J.; Adams, L.; Basu, S.; Song, M.K.; Adler, E.; Je, G.; Fiadeiro, M.B.; Kim, Y.S. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease. EMBO Mol. Med., 2021, 13(2), e12188.
[http://dx.doi.org/10.15252/emmm.202012188] [PMID: 33428332]
[114]
Södersten, E.; Toskas, K.; Rraklli, V.; Tiklova, K.; Björklund, Å.K.; Ringnér, M.; Perlmann, T.; Holmberg, J. A comprehensive map coupling histone modifications with gene regulation in adult dopaminergic and serotonergic neurons. Nat. Commun., 2018, 9(1), 1226.
[http://dx.doi.org/10.1038/s41467-018-03538-9] [PMID: 29581424]
[115]
Lin, X.; Parisiadou, L.; Gu, X.L.; Wang, L.; Shim, H.; Sun, L.; Xie, C.; Long, C.X.; Yang, W.J.; Ding, J.; Chen, Z.Z.; Gallant, P.E.; Tao-Cheng, J.H.; Rudow, G.; Troncoso, J.C.; Liu, Z.; Li, Z.; Cai, H. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron, 2009, 64(6), 807-827.
[http://dx.doi.org/10.1016/j.neuron.2009.11.006] [PMID: 20064389]
[116]
Tong, Y.; Yamaguchi, H.; Giaime, E.; Boyle, S.; Kopan, R.; Kelleher, R.J., III; Shen, J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9879-9884.
[http://dx.doi.org/10.1073/pnas.1004676107] [PMID: 20457918]
[117]
Gehrke, S.; Imai, Y.; Sokol, N.; Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 2010, 466(7306), 637-641.
[http://dx.doi.org/10.1038/nature09191] [PMID: 20671708]
[118]
Zhao, Y.; Zhang, K.; Jiang, H.; Du, J.; Na, Z.; Hao, W.; Yu, S.; Zhao, M. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder. J. Neuroimmune Pharmacol., 2016, 11(3), 542-548.
[http://dx.doi.org/10.1007/s11481-016-9671-z] [PMID: 27108111]
[119]
Zhu, L.; Li, J.; Dong, N.; Guan, F.; Liu, Y.; Ma, D.; Goh, E.L.K.; Chen, T. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci. Rep., 2016, 6(1), 36993.
[http://dx.doi.org/10.1038/srep36993] [PMID: 27869204]
[120]
Kobeissy, F.H.; Warren, M.W.; Ottens, A.K.; Sadasivan, S.; Zhang, Z.; Gold, M.S.; Wang, K.K.W. Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J. Proteome Res., 2008, 7(5), 1971-1983.
[http://dx.doi.org/10.1021/pr800029h] [PMID: 18452277]
[121]
Wang, J.; Liu, Y.; Chen, T. Identification of key genes and pathways in Parkinson’s disease through integrated analysis. Mol. Med. Rep., 2017, 16(4), 3769-3776.
[http://dx.doi.org/10.3892/mmr.2017.7112] [PMID: 28765971]
[122]
Kirilyuk, A.; Shimoji, M.; Catania, J.; Sahu, G.; Pattabiraman, N.; Giordano, A.; Albanese, C.; Mocchetti, I.; Toretsky, J.A.; Uversky, V.N.; Avantaggiati, M.L. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One, 2012, 7(11), e48243.
[http://dx.doi.org/10.1371/journal.pone.0048243] [PMID: 23133622]
[123]
Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(3), 1170.
[http://dx.doi.org/10.3390/ijms21031170] [PMID: 32050617]
[124]
Iamjan, S.; Thanoi, S.; Watiktinkorn, P.; Fachim, H.; Dalton, C.F.; Nudmamud-Thanoi, S.; Reynolds, G.P. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics, 2021, 13(12), 953-965.
[http://dx.doi.org/10.2217/epi-2020-0463] [PMID: 34008409]
[125]
Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F.; Teoh, S.L. MicroRNA dysregulation in Parkinson’s disease: A narrative review. Front. Neurosci., 2021, 15, 660379.
[http://dx.doi.org/10.3389/fnins.2021.660379] [PMID: 33994934]
[126]
Sandau, U.S.; Duggan, E.; Shi, X.; Smith, S.J.; Huckans, M.; Schutzer, W.E.; Loftis, J.M.; Janowsky, A.; Nolan, J.P.; Saugstad, J.A. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J. Extracell. Vesicles, 2020, 10(1), e12028.
[http://dx.doi.org/10.1002/jev2.12028] [PMID: 33613872]
[127]
Liu, D.; Zhu, L.; Ni, T.; Guan, F.; Chen, Y.; Ma, D.; Goh, E.L.K.; Chen, T. Ago2 and Dicer1 are involved in METH‐induced locomotor sensitization in mice via biogenesis of miRNA. Addict. Biol., 2019, 24(3), 498-508.
[http://dx.doi.org/10.1111/adb.12616] [PMID: 29516602]
[128]
Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression analysis of NF-κB-related lncRNAs in Parkinson’s disease. Front. Immunol., 2021, 12, 755246.
[http://dx.doi.org/10.3389/fimmu.2021.755246] [PMID: 34721431]
[129]
Hernandez, S.M.; Tikhonova, E.B.; Baca, K.R.; Zhao, F.; Zhu, X.; Karamyshev, A.L. Unexpected implication of SRP and AGO2 in Parkinson’s disease: Involvement in alpha-synuclein biogenesis. Cells, 2021, 10(10), 2792.
[http://dx.doi.org/10.3390/cells10102792] [PMID: 34685771]
[130]
Yang, J.; Li, L.; Hong, S.; Zhang, D.; Zhou, Y. Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. Pharm. Biol., 2020, 58(1), 797-805.
[http://dx.doi.org/10.1080/13880209.2020.1803366] [PMID: 32893733]
[131]
Mavridis, I.N. Neurology nucleus accumbens and Parkinson’s disease: exploring the role of Mavridis atrophy. OA Case Rep, 2014, 3(4), 35.
[132]
Zhou, L.; Yang, L.; Li, Y.; Mei, R.; Yu, H.; Gong, Y.; Du, M.; Wang, F. MicroRNA-128 protects dopamine neurons from apoptosis and upregulates the expression of excitatory amino acid transporter 4 in Parkinson’s disease by binding to AXIN1. Cell. Physiol. Biochem., 2018, 51(5), 2275-2289.
[http://dx.doi.org/10.1159/000495872] [PMID: 30537735]
[133]
Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691.
[http://dx.doi.org/10.1038/srep35691] [PMID: 27767084]
[134]
Li, J.; Zhu, L.; Su, H.; Liu, D.; Yan, Z.; Ni, T.; Wei, H.; Goh, E.L.K.; Chen, T. Regulation of miR‐128 in the nucleus accumbens affects methamphetamine‐induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict. Biol., 2021, 26(1), e12881.
[http://dx.doi.org/10.1111/adb.12881] [PMID: 32058631]
[135]
Cheng, M.; Liu, L.; Lao, Y.; Liao, W.; Liao, M.; Luo, X.; Wu, J.; Xie, W.; Zhang, Y.; Xu, N. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget, 2016, 7(27), 42274-42287.
[http://dx.doi.org/10.18632/oncotarget.9786] [PMID: 27281615]
[136]
Zhang, Y.; Tan, F.; Xu, P.; Qu, S. Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease. Neural Plast., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/8941327] [PMID: 26981287]
[137]
Wang, Y.; Wei, T.; Zhao, W.; Ren, Z.; Wang, Y.; Zhou, Y.; Song, X.; Zhou, R.; Zhang, X.; Jiao, D. MicroRNA-181a is involved in methamphetamine addiction through the ERAD pathway. Front. Mol. Neurosci., 2021, 14, 667725.
[http://dx.doi.org/10.3389/fnmol.2021.667725] [PMID: 34025353]
[138]
Kanagaraj, N.; Beiping, H.; Dheen, S.T.; Tay, S.S.W. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 2014, 272, 167-179.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.039] [PMID: 24792712]
[139]
Bosch, P.J.; Benton, M.C.; Macartney-Coxson, D.; Kivell, B.M. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci., 2015, 16(1), 43.
[http://dx.doi.org/10.1186/s12868-015-0186-y] [PMID: 26188473]
[140]
Liu, T.; Zhang, Y.; Liu, W.; Zhao, J. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p. Neurochem. Res., 2021, 46(2), 230-240.
[http://dx.doi.org/10.1007/s11064-020-03157-1] [PMID: 33241432]
[141]
Pan, Y.; Nicolazzo, J.A. Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics. Adv. Drug Deliv. Rev., 2018, 135, 62-74.
[http://dx.doi.org/10.1016/j.addr.2018.04.009] [PMID: 29665383]
[142]
Desai, B.S.; Monahan, A.J.; Carvey, P.M.; Hendey, B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant., 2007, 16(3), 285-299.
[http://dx.doi.org/10.3727/000000007783464731] [PMID: 17503739]
[143]
Cabezas, R.; Avila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado, C.J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci., 2014, 8, 211.
[http://dx.doi.org/10.3389/fncel.2014.00211] [PMID: 25136294]
[144]
Al-Bachari, S.; Naish, J.H.; Parker, G.J.M.; Emsley, H.C.A.; Parkes, L.M. Blood-brain barrier leakage is increased in Parkinson’s disease. Front. Physiol., 2020, 11, 593026.
[http://dx.doi.org/10.3389/fphys.2020.593026] [PMID: 33414722]
[145]
Gray, M.T.; Woulfe, J.M. Striatal blood-brain barrier permeability in Parkinson’s disease. J. Cereb. Blood Flow Metab., 2015, 35(5), 747-750.
[http://dx.doi.org/10.1038/jcbfm.2015.32] [PMID: 25757748]
[146]
Bates, C.A.; Zheng, W. Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinson’s disease. Fluids Barriers CNS, 2014, 11(1), 17.
[http://dx.doi.org/10.1186/2045-8118-11-17] [PMID: 25093076]
[147]
Lee, H.; Pienaar, I.S. Disruption of the blood-brain barrier in parkinson’s disease: curse or route to a cure? Front. Biosci., 2014, 19(2), 272-280.
[http://dx.doi.org/10.2741/4206] [PMID: 24389183]
[148]
Elabi, O.; Gaceb, A.; Carlsson, R.; Padel, T.; Soylu-Kucharz, R.; Cortijo, I.; Li, W.; Li, J.Y.; Paul, G. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci. Rep., 2021, 11(1), 1120.
[http://dx.doi.org/10.1038/s41598-020-80889-8] [PMID: 33441868]
[149]
Northrop, N.A.; Yamamoto, B.K. Methamphetamine effects on blood-brain barrier structure and function. Front. Neurosci., 2015, 9, 69.
[http://dx.doi.org/10.3389/fnins.2015.00069] [PMID: 25788874]
[150]
Gonçalves, J.; Leitão, R.A.; Higuera-Matas, A.; Assis, M.A.; Coria, S.M.; Fontes-Ribeiro, C.; Ambrosio, E.; Silva, A.P. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav. Immun., 2017, 62, 306-317.
[http://dx.doi.org/10.1016/j.bbi.2017.02.017] [PMID: 28237710]
[151]
Kiyatkin, E.A.; Sharma, H.S. Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose. Int. Rev. Neurobiol., 2019, 146, 189-207.
[http://dx.doi.org/10.1016/bs.irn.2019.06.010] [PMID: 31349927]
[152]
Dunn, L.; Allen, G.F.G.; Mamais, A.; Ling, H.; Li, A.; Duberley, K.E.; Hargreaves, I.P.; Pope, S.; Holton, J.L.; Lees, A.; Heales, S.J.; Bandopadhyay, R. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol. Aging, 2014, 35(5), 1111-1115.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.001] [PMID: 24300239]
[153]
Chang, L.; Alicata, D.; Ernst, T.; Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction, 2007, 102(Suppl. 1), 16-32.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01782.x] [PMID: 17493050]
[154]
Herland, A.; Maoz, B.M.; FitzGerald, E.A.; Grevesse, T.; Vidoudez, C.; Sheehy, S.P.; Budnik, N.; Dauth, S.; Mannix, R.; Budnik, B.; Parker, K.K.; Ingber, D.E. Proteomic and metabolomic characterization of human neurovascular unit cells in response to methamphetamine. Adv. Biosyst., 2020, 4(9), 1900230.
[http://dx.doi.org/10.1002/adbi.201900230] [PMID: 32744807]
[155]
Ventura, F.; Muga, M.; Coelho-Santos, V.; Fontes-Ribeiro, C.A.; Leitão, R.A.; Silva, A.P. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol. Lett., 2020, 334, 53-59.
[http://dx.doi.org/10.1016/j.toxlet.2020.09.013] [PMID: 32956829]
[156]
Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci., 2019, 13, 869.
[http://dx.doi.org/10.3389/fnins.2019.00869] [PMID: 31481869]
[157]
Hwang, J.S.; Cha, E.H.; Park, B.; Ha, E.; Seo, J.H. PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch. Pharm. Res., 2020, 43(12), 1347-1355.
[http://dx.doi.org/10.1007/s12272-020-01284-5] [PMID: 33200316]
[158]
Namyen, J.; Permpoonputtana, K.; Nopparat, C.; Tocharus, J.; Tocharus, C.; Govitrapong, P. Protective effects of melatonin on methamphetamine-induced blood-brain barrier dysfunction in rat model. Neurotox. Res., 2020, 37(3), 640-660.
[http://dx.doi.org/10.1007/s12640-019-00156-1] [PMID: 31900895]
[159]
Xue, Y.; He, J.T.; Zhang, K.K.; Chen, L.J.; Wang, Q.; Xie, X.L. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem. Biophys. Res. Commun., 2019, 509(2), 395-401.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.144] [PMID: 30594393]
[160]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[161]
Costa, C.A.; Manaa, W.E.; Duplan, E.; Checler, F. The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells, 2020, 9(11), 2495.
[http://dx.doi.org/10.3390/cells9112495] [PMID: 33212954]
[162]
Tsujii, S.; Ishisaka, M.; Hara, H. Modulation of endoplasmic reticulum stress in Parkinson’s disease. Eur. J. Pharmacol., 2015, 765, 154-156.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.033] [PMID: 26297973]
[163]
Mercado, G.; Castillo, V.; Soto, P.; Sidhu, A. ER stress and Parkinson’s disease: Pathological inputs that converge into the secretory pathway. Brain Res., 2016, 1648(Pt B), 626-632.
[http://dx.doi.org/10.1016/j.brainres.2016.04.042] [PMID: 27103567]
[164]
Du, X.; Xie, X.; Liu, R. The role of α-synuclein oligomers in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(22), 8645.
[http://dx.doi.org/10.3390/ijms21228645] [PMID: 33212758]
[165]
Shah, A.; Kumar, A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget, 2016, 7(29), 46100-46119.
[http://dx.doi.org/10.18632/oncotarget.10025] [PMID: 27323860]
[166]
Hayashi, T.; Justinova, Z.; Hayashi, E.; Cormaci, G.; Mori, T.; Tsai, S.Y.; Barnes, C.; Goldberg, S.R.; Su, T.P. Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J. Pharmacol. Exp. Ther., 2010, 332(3), 1054-1063.
[http://dx.doi.org/10.1124/jpet.109.159244] [PMID: 19940104]
[167]
Irie, Y.; Saeki, M.; Tanaka, H.; Kanemura, Y.; Otake, S.; Ozono, Y.; Nagai, T.; Kondo, Y.; Kudo, K.; Kamisaki, Y.; Miki, N.; Taira, E. Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells. Cell Tissue Res., 2011, 345(2), 231-241.
[http://dx.doi.org/10.1007/s00441-011-1207-5] [PMID: 21789578]
[168]
Chao, J.; Zhang, Y.; Du, L.; Zhou, R.; Wu, X.; Shen, K.; Yao, H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep., 2017, 7(1), 11540.
[http://dx.doi.org/10.1038/s41598-017-11065-8] [PMID: 28912535]
[169]
Wongprayoon, P.; Govitrapong, P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox. Res., 2017, 31(1), 1-10.
[http://dx.doi.org/10.1007/s12640-016-9647-z] [PMID: 27370255]
[170]
Tsai, S-Y.A.; Bendriem, R.M.; Lee, C.T.D. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol. Stress, 2019, 10, 100145.
[http://dx.doi.org/10.1016/j.ynstr.2018.100145] [PMID: 30937351]
[171]
Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Abdollahifar, M.A.; Tehrani, A.S.; Rezaei-Tavirani, M.; Niknazar, S.; Tahmasebinia, F.; Mahmoudiasl, G.R.; Khoshsirat, S.; Abbaszadeh, H.A. NUPR1-CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. J. Chem. Neuroanat., 2021, 114, 101942.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101942] [PMID: 33675952]
[172]
Chen, G.; Yu, G.; Yong, Z.; Yan, H.; Su, R.; Wang, H. A large dose of methamphetamine inhibits drug evoked synaptic plasticity via ER stress in the hippocampus. Mol. Med. Rep., 2021, 23(4), 278.
[http://dx.doi.org/10.3892/mmr.2021.11917] [PMID: 33576466]
[173]
Chen, G.; Wei, X.; Xu, X.; Yu, G.; Yong, Z.; Su, R.; Tao, L. Methamphetamine inhibits long-term memory acquisition and synaptic plasticity by evoking endoplasmic reticulum stress. Front. Neurosci., 2021, 14, 630713.
[http://dx.doi.org/10.3389/fnins.2020.630713] [PMID: 33519373]
[174]
Anderson, F.L.; von Herrmann, K.M.; Andrew, A.S.; Kuras, Y.I.; Young, A.L.; Scherzer, C.R.; Hickey, W.F.; Lee, S.L.; Havrda, M.C. Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients. NPJ Parkinsons Dis., 2021, 7(1), 2.
[http://dx.doi.org/10.1038/s41531-020-00147-6] [PMID: 33398042]
[175]
Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684.
[http://dx.doi.org/10.1016/j.tcb.2017.05.005] [PMID: 28619472]
[176]
Liu, Y.; Wen, D.; Gao, J.; Xie, B.; Yu, H.; Shen, Q.; Zhang, J.; Jing, W.; Cong, B.; Ma, C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res. Bull., 2020, 162, 73-83.
[http://dx.doi.org/10.1016/j.brainresbull.2020.06.005] [PMID: 32544512]
[177]
Qie, X.; Wen, D.; Guo, H.; Xu, G.; Liu, S.; Shen, Q.; Liu, Y.; Zhang, W.; Cong, B.; Ma, C. Endoplasmic reticulum stress mediates methamphetamine-induced blood-brain barrier damage. Front. Pharmacol., 2017, 8, 639.
[http://dx.doi.org/10.3389/fphar.2017.00639] [PMID: 28959203]
[178]
Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 29-44.
[http://dx.doi.org/10.1016/j.bbadis.2009.08.013] [PMID: 19733240]
[179]
Trinh, D.; Israwi, A.R.; Arathoon, L.R.; Gleave, J.A.; Nash, J.E. The multi‐faceted role of mitochondria in the pathology of Parkinson’s disease. J. Neurochem., 2021, 156(6), 715-752.
[http://dx.doi.org/10.1111/jnc.15154] [PMID: 33616931]
[180]
Chang, K.H.; Chen, C.M. The role of oxidative stress in Parkinson’s disease. Antioxidants, 2020, 9(7), 597.
[http://dx.doi.org/10.3390/antiox9070597] [PMID: 32650609]
[181]
Clark, E.H.; Vázquez de la Torre, A.; Hoshikawa, T.; Briston, T. Targeting mitophagy in Parkinson’s disease. J. Biol. Chem., 2021, 296, 100209.
[http://dx.doi.org/10.1074/jbc.REV120.014294] [PMID: 33372898]
[182]
Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s disease: Clinical, molecular, and translational aspects. J. Parkinsons Dis., 2021, 11(1), 45-60.
[http://dx.doi.org/10.3233/JPD-201981] [PMID: 33074190]
[183]
Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[184]
Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[185]
Exner, N.; Treske, B.; Paquet, D.; Holmström, K.; Schiesling, C.; Gispert, S.; Carballo-Carbajal, I.; Berg, D.; Hoepken, H.H.; Gasser, T.; Krüger, R.; Winklhofer, K.F.; Vogel, F.; Reichert, A.S.; Auburger, G.; Kahle, P.J.; Schmid, B.; Haass, C. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci., 2007, 27(45), 12413-12418.
[http://dx.doi.org/10.1523/JNEUROSCI.0719-07.2007] [PMID: 17989306]
[186]
Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; Zhou, J.; Chen, Q. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem., 2011, 286(13), 11649-11658.
[http://dx.doi.org/10.1074/jbc.M110.144238] [PMID: 21292769]
[187]
Portz, P.; Lee, M.K. Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson’s disease. Cells, 2021, 10(4), 885.
[http://dx.doi.org/10.3390/cells10040885] [PMID: 33924585]
[188]
Moszczynska, A.; Yamamoto, B.K. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J. Neurochem., 2011, 116(6), 1005-1017.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07147.x] [PMID: 21166679]
[189]
Moon, H.E.; Paek, S.H. Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol., 2015, 24(2), 103-116.
[http://dx.doi.org/10.5607/en.2015.24.2.103] [PMID: 26113789]
[190]
Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci., 2015, 40(4), 200-210.
[http://dx.doi.org/10.1016/j.tibs.2015.02.003] [PMID: 25757399]
[191]
Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem., 2016, 139(Suppl. 1), 216-231.
[http://dx.doi.org/10.1111/jnc.13731] [PMID: 27546335]
[192]
Brown, J.M.; Quinton, M.S.; Yamamoto, B.K. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J. Neurochem., 2005, 95(2), 429-436.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03379.x] [PMID: 16086684]
[193]
Tian, C.; Murrin, L.C.; Zheng, J.C. Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One, 2009, 4(5), e5546.
[http://dx.doi.org/10.1371/journal.pone.0005546] [PMID: 19436752]
[194]
Shin, E.J.; Tran, H.Q.; Nguyen, P.T.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Nabeshima, T.; Kim, H.C. Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: Involvement in oxidative stress, neuroinflammation, and pro-apoptosis-A review. Neurochem. Res., 2018, 43(1), 66-78.
[http://dx.doi.org/10.1007/s11064-017-2318-5] [PMID: 28589520]
[195]
Samidurai, M.; Palanisamy, B.N.; Bargues-Carot, A.; Hepker, M.; Kondru, N.; Manne, S.; Zenitsky, G.; Jin, H.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. PKC delta activation promotes endoplasmic reticulum stress (ERS) and NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation subsequent to asynuclein-induced microglial activation: Involvement of thioredoxin-interacting protein (TXNIP)/thioredoxin (Trx) redoxisome pathway. Front. Aging Neurosci., 2021, 13, 661505.
[http://dx.doi.org/10.3389/fnagi.2021.661505] [PMID: 34276337]
[196]
Nash, J.E.; Ravenscroft, P.; McGuire, S.; Crossman, A.R.; Menniti, F.S.; Brotchie, J.M. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp. Neurol., 2004, 188(2), 471-479.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.004] [PMID: 15246846]
[197]
Yang, L.; Guo, N.; Fan, W.; Ni, C.; Huang, M.; Bai, L.; Zhang, L.; Zhang, X.; Wen, Y.; Li, Y.; Zhou, X.; Bai, J. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology, 2020, 78, 163-169.
[http://dx.doi.org/10.1016/j.neuro.2020.03.006] [PMID: 32203791]
[198]
Carrillo-Mora, P.; Silva-Adaya, D.; Villaseñor-Aguayo, K. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs. Basal Ganglia, 2013, 3(3), 147-157.
[http://dx.doi.org/10.1016/j.baga.2013.09.001]
[199]
Wang, R.; Sun, H.; Ren, H.; Wang, G. α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome. Sci. China Life Sci., 2020, 63(12), 1850-1859.
[http://dx.doi.org/10.1007/s11427-020-1756-9] [PMID: 32681494]
[200]
Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinson’s disease. Neural Regen. Res., 2021, 16(7), 1383-1391.
[http://dx.doi.org/10.4103/1673-5374.300980] [PMID: 33318422]
[201]
Sun, L.; Li, H.M.; Seufferheld, M.J.; Walters, K.R., Jr; Margam, V.M.; Jannasch, A.; Diaz, N.; Riley, C.P.; Sun, W.; Li, Y.F.; Muir, W.M.; Xie, J.; Wu, J.; Zhang, F.; Chen, J.Y.; Barker, E.L.; Adamec, J.; Pittendrigh, B.R. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One, 2011, 6(4), e18215.
[http://dx.doi.org/10.1371/journal.pone.0018215] [PMID: 21533132]
[202]
Majdi, F.; Taheri, F.; Salehi, P.; Motaghinejad, M.; Safari, S. Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling. Med. Hypotheses, 2019, 133, 109371.
[http://dx.doi.org/10.1016/j.mehy.2019.109371] [PMID: 31465975]
[203]
Zeng, Q.; Xiong, Q.; Zhou, M.; Tian, X.; Yue, K.; Li, Y.; Shu, X.; Ru, Q. Resveratrol attenuates methamphetamine‐induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J. Food Biochem., 2021, 45(2), e13622.
[http://dx.doi.org/10.1111/jfbc.13622] [PMID: 33502009]
[204]
Zhong, Y.; Cai, X.; Ding, L.; Liao, J.; Liu, X.; Huang, Y.; Chen, X.; Long, L. Nrf2 inhibits the progression of Parkinson’s disease by upregulating AABR07032261.5 to repress pyroptosis. J. Inflamm. Res., 2022, 15, 669-685.
[http://dx.doi.org/10.2147/JIR.S345895] [PMID: 35140498]
[205]
Potula, R.; Hawkins, B.J.; Cenna, J.M.; Fan, S.; Dykstra, H.; Ramirez, S.H.; Morsey, B.; Brodie, M.R.; Persidsky, Y. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J. Immunol., 2010, 185(5), 2867-2876.
[http://dx.doi.org/10.4049/jimmunol.0903691] [PMID: 20668216]
[206]
Chen, X.; Qiu, F.; Zhao, X.; Lu, J.; Tan, X.; Xu, J.; Chen, C.; Zhang, F.; Liu, C.; Qiao, D.; Wang, H. Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methamphetamine. ACS Chem. Neurosci., 2020, 11(8), 1102-1116.
[http://dx.doi.org/10.1021/acschemneuro.9b00559] [PMID: 32186847]
[207]
Kim, B.W.; Jeong, K.H.; Kim, J.H.; Jin, M.; Kim, J.H.; Lee, M.G.; Choi, D.K.; Won, S.Y.; McLean, C.; Jeon, M.T.; Lee, H.W.; Kim, S.R.; Suk, K. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J. Neurosci., 2016, 36(20), 5608-5622.
[http://dx.doi.org/10.1523/JNEUROSCI.4261-15.2016] [PMID: 27194339]
[208]
Eidson, L.N.; Kannarkat, G.T.; Barnum, C.J.; Chang, J.; Chung, J.; Caspell-Garcia, C.; Taylor, P.; Mollenhauer, B.; Schlossmacher, M.G.; Ereshefsky, L.; Yen, M.; Kopil, C.; Frasier, M.; Marek, K.; Hertzberg, V.S.; Tansey, M.G. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J. Neuroinflammation, 2017, 14(1), 164.
[http://dx.doi.org/10.1186/s12974-017-0935-1] [PMID: 28821274]
[209]
Hwang, R.D.; Wiemerslage, L.; LaBreck, C.J.; Khan, M.; Kannan, K.; Wang, X.; Zhu, X.; Lee, D.; Fridell, Y.W.C. The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson’s disease. Neurobiol. Dis., 2014, 69, 180-191.
[http://dx.doi.org/10.1016/j.nbd.2014.05.032] [PMID: 24965893]
[210]
Sepehr, A.; Taheri, F.; Heidarian, S.; Motaghinejad, M.; Safari, S. Neuroprotective and neuro-survival properties of safinamide against methamphetamine-induced neurodegeneration: Hypothetic possible role of BDNF/TrkB/PGC-1α signaling pathway and mitochondrial uncoupling protein −2(UCP-2). Med. Hypotheses, 2020, 143, 110094.
[http://dx.doi.org/10.1016/j.mehy.2020.110094] [PMID: 32682215]
[211]
Teodorof-Diedrich, C.; Spector, S.A. Human immunodeficiency virus type 1 and methamphetamine-mediated mitochondrial damage and neuronal degeneration in human neurons. J. Virol., 2020, 94(20), e00924-e20.
[http://dx.doi.org/10.1128/JVI.00924-20] [PMID: 32796068]
[212]
Vedam-Mai, V. Harnessing the immune system for the treatment of Parkinson’s disease. Brain Res., 2021, 1758, 147308.
[http://dx.doi.org/10.1016/j.brainres.2021.147308] [PMID: 33524380]
[213]
Kline, E.M.; Houser, M.C.; Herrick, M.K.; Seibler, P.; Klein, C.; West, A.; Tansey, M.G. Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation. Mov. Disord., 2021, 36(1), 25-36.
[http://dx.doi.org/10.1002/mds.28411] [PMID: 33314312]
[214]
Castorina, A.; Thomas Broome, S.; Louangaphay, K.; Keay, K.A.; Leggio, G.M.; Musumeci, G. Dopamine: an immune transmitter. Neural Regen. Res., 2020, 15(12), 2173-2185.
[http://dx.doi.org/10.4103/1673-5374.284976] [PMID: 32594028]
[215]
Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and inflammation-An interesting interplay in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(22), 8421.
[http://dx.doi.org/10.3390/ijms21228421] [PMID: 33182554]
[216]
Tan, J.S.Y.; Chao, Y.X.; Rötzschke, O.; Tan, E.K. New insights into immune-mediated mechanisms in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(23), 9302.
[http://dx.doi.org/10.3390/ijms21239302] [PMID: 33291304]
[217]
Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam Arlehamn, C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[218]
Grozdanov, V.; Danzer, K.M. Intracellular alpha-synuclein and immune cell function. Front. Cell Dev. Biol., 2020, 8, 562692.
[http://dx.doi.org/10.3389/fcell.2020.562692] [PMID: 33178682]
[219]
Macur, K.; Ciborowski, P. Immune system and methamphetamine: Molecular basis of a relationship. Curr. Neuropharmacol., 2021, 19(12), 2067-2076.
[http://dx.doi.org/10.2174/1570159X19666210428121632] [PMID: 33913404]
[220]
Papageorgiou, M.; Raza, A.; Fraser, S.; Nurgali, K.; Apostolopoulos, V. Methamphetamine and its immune-modulating effects. Maturitas, 2019, 121, 13-21.
[http://dx.doi.org/10.1016/j.maturitas.2018.12.003] [PMID: 30704560]
[221]
Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res., 2017, 120, 60-67.
[http://dx.doi.org/10.1016/j.phrs.2017.03.009] [PMID: 28302577]
[222]
Salamanca, S.A.; Sorrentino, E.E.; Nosanchuk, J.D.; Martinez, L.R. Impact of methamphetamine on infection and immunity. Front. Neurosci., 2015, 8, 445.
[http://dx.doi.org/10.3389/fnins.2014.00445] [PMID: 25628526]
[223]
Potula, R.; Haldar, B.; Cenna, J.M.; Sriram, U.; Fan, S. Methamphetamine alters T cell cycle entry and progression: role in immune dysfunction. Cell Death Discov., 2018, 4(1), 44.
[http://dx.doi.org/10.1038/s41420-018-0045-6] [PMID: 29581895]
[224]
Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Hutchinson, M.R.; Watkins, L.R. Methamphetamine activates Toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem. Neurosci., 2019, 10(8), 3622-3634.
[http://dx.doi.org/10.1021/acschemneuro.9b00225] [PMID: 31282647]
[225]
Xue, L.; Geng, Y.; Li, M.; Jin, Y.F.; Ren, H.X.; Li, X.; Wu, F.; Wang, B.; Cheng, W.Y.; Chen, T.; Chen, Y.J. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int. Immunopharmacol., 2016, 36, 187-198.
[http://dx.doi.org/10.1016/j.intimp.2016.04.030] [PMID: 27156126]
[226]
Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinson’s disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00004-0] [PMID: 22814707]
[227]
Olmos, G.; Lladó, J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/861231] [PMID: 24966471]
[228]
Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11(9), 372-377.
[http://dx.doi.org/10.1016/S0962-8924(01)02064-5] [PMID: 11514191]
[229]
Dong, Y.; Dekens, D.; De Deyn, P.; Naudé, P.; Eisel, U. Targeting of tumor necrosis factor alpha receptors as a therapeutic strategy for neurodegenerative disorders. Antibodies (Basel), 2015, 4(4), 369-408.
[http://dx.doi.org/10.3390/antib4040369]
[230]
Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S210-S212.
[http://dx.doi.org/10.1016/S1353-8020(11)70065-7] [PMID: 22166438]
[231]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[232]
Krasnova, I.N.; Justinova, Z.; Cadet, J.L. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl.), 2016, 233(10), 1945-1962.
[http://dx.doi.org/10.1007/s00213-016-4235-8] [PMID: 26873080]
[233]
Gonçalves, J.; Martins, T.; Ferreira, R.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Macedo, T.R.; Silva, A.P. Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann. N. Y. Acad. Sci., 2008, 1139(1), 103-111.
[http://dx.doi.org/10.1196/annals.1432.043] [PMID: 18991854]
[234]
Coelho-Santos, V.; Leitão, R.A.; Cardoso, F.L.; Palmela, I.; Rito, M.; Barbosa, M.; Brito, M.A.; Fontes-Ribeiro, C.A.; Silva, A.P. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2015, 35(8), 1260-1271.
[http://dx.doi.org/10.1038/jcbfm.2015.59] [PMID: 25899299]
[235]
Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res., 2009, 34(8), 1401-1404.
[http://dx.doi.org/10.1007/s11064-009-9921-z] [PMID: 19214748]
[236]
Yang, X.; Zhao, H.; Liu, X.; Xie, Q.; Zhou, X.; Deng, Q.; Wang, G. The relationship between serum cytokine levels and the degree of psychosis and cognitive impairment in patients with methamphetamine-associated psychosis in Chinese patients. Front. Psychiatry, 2020, 11, 594766.
[http://dx.doi.org/10.3389/fpsyt.2020.594766] [PMID: 33362607]
[237]
Benkler, M.; Agmon-Levin, N.; Shoenfeld, Y. Parkinson’s disease, autoimmunity, and olfaction. Int. J. Neurosci., 2009, 119(12), 2133-2143.
[http://dx.doi.org/10.3109/00207450903178786] [PMID: 19916845]
[238]
Reynolds, J.L.; Mahajan, S.D.; Sykes, D.E.; Schwartz, S.A.; Nair, M.P.N. Proteomic analyses of methamphetamine (METH)-induced differential protein expression by immature dendritic cells (IDC). Biochim. Biophys. Acta. Proteins Proteomics, 2007, 1774(4), 433-442.
[http://dx.doi.org/10.1016/j.bbapap.2007.02.001] [PMID: 17363347]
[239]
Zhang, X.; Dong, F.; Mayer, G.E.; Bruch, D.C.; Ren, J.; Culver, B. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats. Neuroscience, 2007, 150(4), 950-958.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.059] [PMID: 17988800]
[240]
Teismann, P. COX‐2 in the neurodegenerative process of Parkinson’s disease. Biofactors, 2012, 38(6), 395-397.
[http://dx.doi.org/10.1002/biof.1035] [PMID: 22826171]
[241]
Puchałowicz, K.; Tarnowski, M.; Baranowska-Bosiacka, I.; Chlubek, D.; Dziedziejko, V. P2X and P2Y receptors—role in the pathophysiology of the nervous system. Int. J. Mol. Sci., 2014, 15(12), 23672-23704.
[http://dx.doi.org/10.3390/ijms151223672] [PMID: 25530618]
[242]
Jun, D.J.; Kim, J.; Jung, S.Y.; Song, R.; Noh, J.H.; Park, Y.S.; Ryu, S.H.; Kim, J.H.; Kong, Y.Y.; Chung, J.M.; Kim, K.T. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors. J. Biol. Chem., 2007, 282(52), 37350-37358.
[http://dx.doi.org/10.1074/jbc.M707915200] [PMID: 17962183]
[243]
Liu, H.; Han, X.; Li, Y.; Zou, H.; Xie, A. Association of P2X7 receptor gene polymorphisms with sporadic Parkinson’s disease in a Han Chinese population. Neurosci. Lett., 2013, 546, 42-45.
[http://dx.doi.org/10.1016/j.neulet.2013.04.049] [PMID: 23648388]
[244]
Fernandes, N.C.; Sriram, U.; Gofman, L.; Cenna, J.M.; Ramirez, S.H.; Potula, R. Methamphetamine alters microglial immune function through P2X7R signaling. J. Neuroinflammation, 2016, 13(1), 91.
[http://dx.doi.org/10.1186/s12974-016-0553-3] [PMID: 27117066]
[245]
Herrero, M.T.; Estrada, C.; Maatouk, L.; Vyas, S. Inflammation in Parkinson’s disease: role of glucocorticoids. Front. Neuroanat., 2015, 9, 32.
[http://dx.doi.org/10.3389/fnana.2015.00032] [PMID: 25883554]
[246]
Zuloaga, D.G.; Jacosbskind, J.S.; Raber, J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front. Neurosci., 2015, 9, 178.
[http://dx.doi.org/10.3389/fnins.2015.00178] [PMID: 26074755]
[247]
Dang, J.; Tiwari, S.K.; Agrawal, K.; Hui, H.; Qin, Y.; Rana, T.M. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol. Psychiatry, 2021, 26(4), 1194-1207.
[http://dx.doi.org/10.1038/s41380-020-0676-x] [PMID: 32051547]
[248]
Ghavidel, N.; Khodagholi, F.; Ahmadiani, A.; Khosrowabadi, R.; Asadi, S.; Shams, J. Inflammation but not programmed cell death is activated in methamphetamine-dependent patients: Relevance to the brain function. Int. J. Psychophysiol., 2020, 157, 42-50.
[http://dx.doi.org/10.1016/j.ijpsycho.2020.09.004] [PMID: 32976886]
[249]
Persons, A.L.; Desai Bradaric, B.; Kelly, L.P.; Kousik, S.M.; Graves, S.M.; Yamamoto, B.K.; Napier, T.C. Gut and brain profiles that resemble pre-motor and early-stage Parkinson’s disease in methamphetamine self-administering rats. Drug Alcohol Depend., 2021, 225, 108746.
[http://dx.doi.org/10.1016/j.drugalcdep.2021.108746] [PMID: 34098381]
[250]
Qian, M.; Fang, X.; Wang, X. Autophagy and inflammation. Clin. Transl. Med., 2017, 6(1), 24.
[http://dx.doi.org/10.1186/s40169-017-0154-5] [PMID: 28748360]
[251]
Cerri, S.; Blandini, F. Role of autophagy in Parkinson’s disease. Curr. Med. Chem., 2019, 26(20), 3702-3718.
[http://dx.doi.org/10.2174/0929867325666180226094351] [PMID: 29484979]
[252]
Wang, B.; Abraham, N.; Gao, G.; Yang, Q. Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Transl. Neurodegener., 2016, 5(1), 19.
[http://dx.doi.org/10.1186/s40035-016-0065-1] [PMID: 27822367]
[253]
Moors, T.E.; Hoozemans, J.J.M.; Ingrassia, A.; Beccari, T.; Parnetti, L.; Chartier-Harlin, M.C.; van de Berg, W.D.J. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol. Neurodegener., 2017, 12(1), 11.
[http://dx.doi.org/10.1186/s13024-017-0154-3] [PMID: 28122627]
[254]
Meng, Y.; Ding, J.; Li, C.; Fan, H.; He, Y.; Qiu, P. Transfer of pathological α-synuclein from neurons to astrocytes via exosomes causes inflammatory responses after METH exposure. Toxicol. Lett., 2020, 331, 188-199.
[http://dx.doi.org/10.1016/j.toxlet.2020.06.016] [PMID: 32569805]
[255]
Tripathi, M.K.; Rajput, C.; Mishra, S.; Rasheed, M.S.; Singh, M.P. Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: feats, constraints, and flaws of modulators. Neurotox. Res., 2019, 35(1), 260-270.
[http://dx.doi.org/10.1007/s12640-018-9917-z] [PMID: 29949106]
[256]
Sun, L.; Lian, Y.; Ding, J.; Meng, Y.; Li, C.; Chen, L.; Qiu, P. The role of chaperone‐mediated autophagy in neurotoxicity induced by alpha‐synuclein after methamphetamine exposure. Brain Behav., 2019, 9(8), e01352.
[http://dx.doi.org/10.1002/brb3.1352] [PMID: 31286692]
[257]
Roohbakhsh, A.; Shirani, K.; Karimi, G. Methamphetamine-induced toxicity: The role of autophagy? Chem. Biol. Interact., 2016, 260, 163-167.
[http://dx.doi.org/10.1016/j.cbi.2016.10.012] [PMID: 27746146]
[258]
Li, B.; Chen, R.; Chen, L.; Qiu, P.; Ai, X.; Huang, E.; Huang, W.; Chen, C.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol. Neurobiol., 2017, 54(3), 1642-1660.
[http://dx.doi.org/10.1007/s12035-015-9637-9] [PMID: 26873849]
[259]
Xu, X.; Huang, E.; Tai, Y.; Zhao, X.; Chen, X.; Chen, C.; Chen, R.; Liu, C.; Lin, Z.; Wang, H.; Xie, W.B. Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front. Mol. Neurosci., 2017, 10, 203.
[http://dx.doi.org/10.3389/fnmol.2017.00203] [PMID: 28694771]
[260]
Ma, J.; Wan, J.; Meng, J.; Banerjee, S.; Ramakrishnan, S.; Roy, S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis., 2014, 5(3), e1099.
[http://dx.doi.org/10.1038/cddis.2014.64] [PMID: 24603327]
[261]
Khoshsirat, S.; Khoramgah, M.S.; Mahmoudiasl, G.R.; Rezaei-Tavirani, M.; Abdollahifar, M.A.; Tahmasebinia, F.; Darabi, S.; Niknazar, S.; Abbaszadeh, H.A. LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J. Chem. Neuroanat., 2020, 107, 101802.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101802] [PMID: 32416129]
[262]
Zhu, Z.; Yang, C.; Iyaswamy, A.; Krishnamoorthi, S.; Sreenivasmurthy, S.G.; Liu, J.; Wang, Z.; Tong, B.C.K.; Song, J.; Lu, J.; Cheung, K.H.; Li, M. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(3), 728.
[http://dx.doi.org/10.3390/ijms20030728] [PMID: 30744070]
[263]
Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s disease. J. Mol. Biol., 2020, 432(8), 2651-2672.
[http://dx.doi.org/10.1016/j.jmb.2020.01.037] [PMID: 32061929]
[264]
Hu, Z.; Chen, B.; Zhang, J.; Ma, Y. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J. Biol. Chem., 2017, 292(44), 18062-18074.
[http://dx.doi.org/10.1074/jbc.M116.764795] [PMID: 28928221]
[265]
Sepúlveda, D.; Grunenwald, F.; Vidal, A.; Troncoso-Escudero, P.; Cisternas-Olmedo, M.; Villagra, R.; Vergara, P.; Aguilera, C.; Nassif, M.; Vidal, R.L. Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson’s disease. Sci. Rep., 2022, 12(1), 2038.
[http://dx.doi.org/10.1038/s41598-022-05941-1] [PMID: 35132125]
[266]
Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ., 2011, 18(4), 571-580.
[http://dx.doi.org/10.1038/cdd.2010.191] [PMID: 21311563]
[267]
Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588.
[http://dx.doi.org/10.1523/JNEUROSCI.4390-09.2009] [PMID: 19864570]
[268]
Lucin, K.M.; O’Brien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; Wyss-Coray, T. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron, 2013, 79(5), 873-886.
[http://dx.doi.org/10.1016/j.neuron.2013.06.046] [PMID: 24012002]
[269]
Lin, M.; Shivalingappa, P.C.; Jin, H.; Ghosh, A.; Anantharam, V.; Ali, S.; Kanthasamy, A.G.; Kanthasamy, A. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells. Neuroscience, 2012, 210, 308-332.
[http://dx.doi.org/10.1016/j.neuroscience.2012.03.004] [PMID: 22445524]
[270]
Shin, E.J.; Duong, C.X.; Nguyen, X.K.T.; Li, Z.; Bing, G.; Bach, J.H.; Park, D.H.; Nakayama, K.; Ali, S.F.; Kanthasamy, A.G.; Cadet, J.L.; Nabeshima, T.; Kim, H.C. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav. Brain Res., 2012, 232(1), 98-113.
[http://dx.doi.org/10.1016/j.bbr.2012.04.001] [PMID: 22512859]
[271]
Gordon, R.; Singh, N.; Lawana, V.; Ghosh, A.; Harischandra, D.S.; Jin, H.; Hogan, C.; Sarkar, S.; Rokad, D.; Panicker, N.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson’s disease. Neurobiol. Dis., 2016, 93, 96-114.
[http://dx.doi.org/10.1016/j.nbd.2016.04.008] [PMID: 27151770]
[272]
Zhang, D.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J. Pharmacol. Exp. Ther., 2007, 322(3), 913-922.
[http://dx.doi.org/10.1124/jpet.107.124669] [PMID: 17565007]
[273]
Dai, D.; Yuan, J.; Wang, Y.; Xu, J.; Mao, C.; Xiao, Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci. Rep., 2019, 9(1), 8034.
[http://dx.doi.org/10.1038/s41598-019-44573-w] [PMID: 31142803]
[274]
Yang, T.; Zang, S.; Wang, Y.; Zhu, Y.; Jiang, L.; Chen, X.; Zhang, X.; Cheng, J.; Gao, R.; Xiao, H.; Wang, J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol. Lett., 2020, 333, 150-158.
[http://dx.doi.org/10.1016/j.toxlet.2020.07.028] [PMID: 32768653]
[275]
Sekine, Y.; Ouchi, Y.; Sugihara, G.; Takei, N.; Yoshikawa, E.; Nakamura, K.; Iwata, Y.; Tsuchiya, K.J.; Suda, S.; Suzuki, K.; Kawai, M.; Takebayashi, K.; Yamamoto, S.; Matsuzaki, H.; Ueki, T.; Mori, N.; Gold, M.S.; Cadet, J.L. Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci., 2008, 28(22), 5756-5761.
[http://dx.doi.org/10.1523/JNEUROSCI.1179-08.2008] [PMID: 18509037]
[276]
Rathitharan, G.; Truong, J.; Tong, J.; McCluskey, T.; Meyer, J.H.; Mizrahi, R.; Warsh, J.; Rusjan, P.; Kennedy, J.L.; Houle, S.; Kish, S.J.; Boileau, I. Microglia imaging in methamphetamine use disorder: A positron emission tomography study with the 18 kDa translocator protein radioligand [F‐18]FEPPA. Addict. Biol., 2021, 26(1), e12876.
[http://dx.doi.org/10.1111/adb.12876] [PMID: 32017280]
[277]
Lucot, K.L.; Stevens, M.Y.; Bonham, T.A.; Azevedo, E.C.; Chaney, A.M.; Webber, E.D.; Jain, P.; Klockow, J.L.; Jackson, I.M.; Carlson, M.L.; Graves, E.E.; Montine, T.J.; James, M.L. Tracking innate immune activation in a mousae model of Parkinson’s disease using TREM1 and TSPO PET tracers. J. Nucl. Med., 2022, 63(10), 1570-1578.
[http://dx.doi.org/10.2967/jnumed.121.263039] [PMID: 35177426]
[278]
Erekat, N.S. Apoptosis and its role in Parkinson’s disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4]
[279]
Bekker, M.; Abrahams, S.; Loos, B.; Bardien, S. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol. Aging, 2021, 100, 91-105.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.013] [PMID: 33516928]
[280]
Alves da Costa, C.; Checler, F. Apoptosis in Parkinson’s disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cell. Signal., 2011, 23(6), 963-968.
[http://dx.doi.org/10.1016/j.cellsig.2010.10.020] [PMID: 20969953]
[281]
Hirata, H.; Cadet, J.L. p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J. Neurochem., 1997, 69(2), 780-790.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69020780.x] [PMID: 9231739]
[282]
da Costa, C.A.; Sunyach, C.; Giaime, E.; West, A.; Corti, O.; Brice, A.; Safe, S.; Abou-Sleiman, P.M.; Wood, N.W.; Takahashi, H.; Goldberg, M.S.; Shen, J.; Checler, F. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat. Cell Biol., 2009, 11(11), 1370-1375.
[http://dx.doi.org/10.1038/ncb1981] [PMID: 19801972]
[283]
Biswas, S.C.; Ryu, E.; Park, C.; Malagelada, C.; Greene, L.A. Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem. Res., 2005, 30(6-7), 839-845.
[http://dx.doi.org/10.1007/s11064-005-6877-5] [PMID: 16187218]
[284]
Sanphui, P.; Kumar Das, A.; Biswas, S.C. Forkhead Box O3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of p53 up‐regulated modulator of apoptosis (Puma) in a model of Parkinson’s disease. J. Neurochem., 2020, 154(5), 547-561.
[http://dx.doi.org/10.1111/jnc.14969] [PMID: 31971251]
[285]
Steckley, D.; Karajgikar, M.; Dale, L.B.; Fuerth, B.; Swan, P.; Drummond-Main, C.; Poulter, M.O.; Ferguson, S.S.G.; Strasser, A.; Cregan, S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci., 2007, 27(47), 12989-12999.
[http://dx.doi.org/10.1523/JNEUROSCI.3400-07.2007] [PMID: 18032672]
[286]
Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity. Mov. Disord., 2014, 29(1), 41-53.
[http://dx.doi.org/10.1002/mds.25724] [PMID: 24167038]
[287]
Cadet, J.L.; Jayanthi, S.; Deng, X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox. Res., 2005, 8(3-4), 199-206.
[http://dx.doi.org/10.1007/BF03033973] [PMID: 16371314]
[288]
Lenzi, P.; Marongiu, R.; Falleni, A.; Gelmetti, V.; Busceti, C.L.; Michiorri, S.; Valente, E.M.; Fornai, F. A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch. Ital. Biol., 2012, 150(2-3), 194-217.
[http://dx.doi.org/10.4449/aib.v150i2/3.1417] [PMID: 23165879]
[289]
Furuya, T.; Hayakawa, H.; Yamada, M.; Yoshimi, K.; Hisahara, S.; Miura, M.; Mizuno, Y.; Mochizuki, H. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J. Neurosci., 2004, 24(8), 1865-1872.
[http://dx.doi.org/10.1523/JNEUROSCI.3309-03.2004] [PMID: 14985426]
[290]
Huang, W.; Xie, W.B.; Qiao, D.; Qiu, P.; Huang, E.; Li, B.; Chen, C.; Liu, C.; Wang, Q.; Lin, Z.; Wang, H. Caspase-11 plays an essential role in methamphetamine-induced dopaminergic neuron apoptosis. Toxicol. Sci., 2015, 145(1), 68-79.
[http://dx.doi.org/10.1093/toxsci/kfv014] [PMID: 25631491]
[291]
Cai, D.; Huang, E.; Luo, B.; Yang, Y.; Zhang, F.; Liu, C.; Lin, Z.; Xie, W-B.; Wang, H. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis., 2016, 7(3), e2161.
[http://dx.doi.org/10.1038/cddis.2016.67] [PMID: 27031958]
[292]
Cao, L.; Fu, M.; Kumar, S.; Kumar, A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis., 2016, 7(10), e2425.
[http://dx.doi.org/10.1038/cddis.2016.317] [PMID: 27763640]
[293]
Dong, L.G.; Lu, F.F.; Zu, J.; Zhang, W.; Xu, C.Y.; Jin, G.L.; Yang, X.X.; Xiao, Q.H.; Cui, C.C.; Xu, R.; Zhou, S.; Zhu, J.N.; Shen, T.; Cui, G.Y. MiR-133b inhibits MPP+-induced apoptosis in Parkinson’s disease model by inhibiting the ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11192-11198.
[http://dx.doi.org/10.26355/eurrev_202011_23607] [PMID: 33215437]
[294]
Liu, H.L.; Li, T.; Wang, H.J.; Hu, T.; Hu, Y.L.; Zhang, J.; Sun, J.H.; Dong, X.G. Regulation of miR-133b on methamphetamine-induced neuronal apoptosis in PC12 cells. J Sun Yat-sen Univ. Med. Sci., 2018, 6, 26-33.
[295]
Xu, X.; Huang, E.; Luo, B.; Cai, D.; Zhao, X.; Luo, Q.; Jin, Y.; Chen, L.; Wang, Q.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ‐related signaling pathway. FASEB J., 2018, 32(12), 6737-6759.
[http://dx.doi.org/10.1096/fj.201701460RRR] [PMID: 29939784]
[296]
Wu, Z.; Xia, Y.; Wang, Z.; Su, Kang S.; Lei, K.; Liu, X.; Jin, L.; Wang, X.; Cheng, L.; Ye, K. C/EBPβ/δ-secretase signaling mediates Parkinson’s disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB. Mol. Psychiatry, 2021, 26(2), 568-585.
[http://dx.doi.org/10.1038/s41380-020-0687-7] [PMID: 32086435]
[297]
Subu, R.; Jayanthi, S.; Cadet, J.L. Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch. Toxicol., 2020, 94(10), 3515-3526.
[http://dx.doi.org/10.1007/s00204-020-02844-w] [PMID: 32676729]
[298]
Oueslati, A.; Fournier, M.; Lashuel, H.A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. Prog. Brain Res., 2010, 183, 115-145.
[http://dx.doi.org/10.1016/S0079-6123(10)83007-9] [PMID: 20696318]
[299]
Ding, J.; Wang, Y.; Huang, J.; Lian, Y.; Meng, Y.; Li, C.; He, Y.; Qiu, P. Role of alpha-synuclein phosphorylation at Serine 129 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neuroreport, 2020, 11, 787-797.
[http://dx.doi.org/10.1097/WNR.0000000000001495] [PMID: 32568772]
[300]
Kaul, S.; Kanthasamy, A.; Kitazawa, M.; Anantharam, V.; Kanthasamy, A.G. Caspase-3 dependent proteolytic activation of protein kinase Cdelta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur. J. Neurosci., 2003, 18(6), 1387-1401.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02864.x] [PMID: 14511319]
[301]
Yang, Y.; Kaul, S.; Zhang, D.; Anantharam, V.; Kanthasamy, A.G. Suppression of caspase-3-dependent proteolytic activation of protein kinase Cδ by small interfering RNA prevents MPP+-induced dopaminergic degeneration. Mol. Cell. Neurosci., 2004, 25(3), 406-421.
[http://dx.doi.org/10.1016/j.mcn.2003.11.011] [PMID: 15033169]
[302]
Nguyen, X.K.T.; Lee, J.; Shin, E.J.; Dang, D.K.; Jeong, J.H.; Nguyen, T.T.L.; Nam, Y.; Cho, H.J.; Lee, J.C.; Park, D.H.; Jang, C.G.; Hong, J.S.; Nabeshima, T.; Kim, H.C. Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCδ gene. J. Pineal Res., 2015, 58(1), 86-106.
[http://dx.doi.org/10.1111/jpi.12195] [PMID: 25407782]
[303]
Dang, D.K.; Shin, E.J.; Kim, D.J.; Tran, H.Q.; Jeong, J.H.; Jang, C.G.; Ottersen, O.P.; Nah, S.Y.; Hong, J.S.; Nabeshima, T.; Kim, H.C. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic. Biol. Med., 2018, 115, 318-337.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.018] [PMID: 29269308]
[304]
Brichta, L.; Greengard, P.; Flajolet, M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci., 2013, 36(9), 543-554.
[http://dx.doi.org/10.1016/j.tins.2013.06.003] [PMID: 23876424]
[305]
Werner, F.; Covenas, R. Classical neurotransmitters and neuropeptides involved in Parkinson’s disease: A multi-neurotransmitter system. J. Cytol. Histol., 2014, 5(5), 1000266.
[http://dx.doi.org/10.4172/2157-7099.1000266]
[306]
Brichta, L.; Greengard, P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front. Neuroanat., 2014, 8, 152.
[http://dx.doi.org/10.3389/fnana.2014.00152] [PMID: 25565977]
[307]
Bubenikova-Valesova, V.; Kacer, P.; Syslova, K.; Rambousek, L.; Janovsky, M.; Schutova, B.; Hruba, L.; Slamberova, R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci., 2009, 27(6), 525-530.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.06.012] [PMID: 19591914]
[308]
Morrow, B.A.; Roth, R.H.; Redmond, D.E.; Elsworth, J.D. Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson’s disease. Neuroscience, 2011, 189, 277-285.
[http://dx.doi.org/10.1016/j.neuroscience.2011.05.046] [PMID: 21640165]
[309]
Moreira da Silva Santos, A.; Kelly, J.P.; Doyle, K.M. Dose-dependent effects of binge-like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology, 2017, 75(2), 63-71.
[http://dx.doi.org/10.1159/000480513] [PMID: 29065400]
[310]
Nakagawa, T.; Suzuki, Y.; Nagayasu, K.; Kitaichi, M.; Shirakawa, H.; Kaneko, S. Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures. PLoS One, 2011, 6(9), e24865.
[http://dx.doi.org/10.1371/journal.pone.0024865] [PMID: 21980362]
[311]
He, T.; Han, C.; Liu, C.; Chen, J.; Yang, H.; Zheng, L.; Waddington, J.L.; Zhen, X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl.), 2022, 239(3), 951-964.
[http://dx.doi.org/10.1007/s00213-022-06097-6] [PMID: 35190859]
[312]
Lin, M.; Sambo, D.; Khoshbouei, H. Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci., 2016, 36(40), 10376-10391.
[http://dx.doi.org/10.1523/JNEUROSCI.1392-16.2016] [PMID: 27707972]
[313]
Zampese, E.; Surmeier, D.J. Calcium, bioenergetics, and Parkinson’s disease. Cells, 2020, 9(9), 2045.
[http://dx.doi.org/10.3390/cells9092045] [PMID: 32911641]
[314]
Barone, P. Neurotransmission in Parkinson’s disease: beyond dopamine. Eur. J. Neurol., 2010, 17(3), 364-376.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02900.x] [PMID: 20050885]
[315]
Miguelez, C.; De Deurwaerdère, P.; Sgambato, V. Editorial: Non-dopaminergic systems in Parkinson’s disease. Front. Pharmacol., 2020, 11, 593822.
[http://dx.doi.org/10.3389/fphar.2020.593822] [PMID: 33013427]
[316]
Müller, M.L.T.M.; Bohnen, N.I. Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep., 2013, 13(9), 377.
[http://dx.doi.org/10.1007/s11910-013-0377-9] [PMID: 23943367]
[317]
Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis., 2016, 2(1), 16001.
[http://dx.doi.org/10.1038/npjparkd.2016.1] [PMID: 28725692]
[318]
Zee, S.; Müller, M.L.T.M.; Kanel, P.; Laar, T.; Bohnen, N.I. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov. Disord., 2021, 36(3), 642-650.
[http://dx.doi.org/10.1002/mds.28360] [PMID: 33137238]
[319]
Bohnen, N.I.; Kaufer, D.I.; Ivanco, L.S.; Lopresti, B.; Koeppe, R.A.; Davis, J.G.; Mathis, C.A.; Moore, R.Y.; DeKosky, S.T. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: An in vivo positron emission tomographic study. Arch. Neurol., 2003, 60(12), 1745-1748.
[http://dx.doi.org/10.1001/archneur.60.12.1745] [PMID: 14676050]
[320]
Wilkins, K.B.; Parker, J.E.; Bronte-Stewart, H.M. Gait variability is linked to the atrophy of the Nucleus Basalis of Meynert and is resistant to STN DBS in Parkinson’s disease. Neurobiol. Dis., 2020, 146, 105134.
[http://dx.doi.org/10.1016/j.nbd.2020.105134] [PMID: 33045357]
[321]
Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573.
[http://dx.doi.org/10.1016/j.bbr.2009.12.048] [PMID: 20060022]
[322]
Cai, Y.; Nielsen, B.E.; Boxer, E.E.; Aoto, J.; Ford, C.P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron, 2021, 109(7), 1137-1149.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.01.028] [PMID: 33600762]
[323]
Siegel, J.A.; Craytor, M.J.; Raber, J. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav. Pharmacol., 2010, 21(7), 602-614.
[http://dx.doi.org/10.1097/FBP.0b013e32833e7e44] [PMID: 20729719]
[324]
Escubedo, E.; Camarasa, J.; Chipana, C.; García-Ratés, S.; Pubill, D. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. Int. Rev. Neurobiol., 2009, 88, 121-166.
[http://dx.doi.org/10.1016/S0074-7742(09)88006-9] [PMID: 19897077]
[325]
Baladi, M.G.; Nielsen, S.M.; McIntosh, J.M.; Hanson, G.R.; Fleckenstein, A.E. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors. Behav. Pharmacol., 2016, 27(5), 422-430.
[http://dx.doi.org/10.1097/FBP.0000000000000215] [PMID: 26871405]
[326]
Vieira-Brock, P.; McFadden, L.; McIntosh, J.M.; Hanson, G.; Fleckenstein, A. Nicotine, methamphetamine-induced dopaminergic deficits, and the impact on α4β2 and α6β2 nicotinic receptors. FASEB J., 2015, 29(S1), 768.1.
[http://dx.doi.org/10.1096/fasebj.29.1_supplement.768.1]
[327]
Albin, R.L.; Müller, M.L.T.M.; Bohnen, N.I.; Spino, C.; Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. α4β2* nicotinic cholinergic receptor target engagement in Parkinson disease gait-balance disorders. Ann. Neurol., 2021, 90(1), 130-142.
[http://dx.doi.org/10.1002/ana.26102] [PMID: 33977560]
[328]
Mizoguchi, H.; Wang, T.; Kusaba, M.; Fukumoto, K.; Yamada, K. Nicotine and varenicline ameliorate changes in reward-based choice strategy and altered decision-making in methamphetamine-treated rats. Behav. Brain Res., 2019, 359, 935-941.
[http://dx.doi.org/10.1016/j.bbr.2018.06.016] [PMID: 29935276]
[329]
Garton, D.R.; Ross, S.G.; Maldonado-Hernández, R.; Quick, M.; Lasalde-Dominicci, J.A.; Lizardi-Ortiz, J.E. Amphetamine enantiomers inhibit homomeric α7 nicotinic receptor through a competitive mechanism and within the intoxication levels in humans. Neuropharmacology, 2019, 144, 172-183.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.032] [PMID: 30359640]
[330]
Myslivecek, J. Two players in the field: Hierarchical model of interaction between the dopamine and acetylcholine signaling systems in the striatum. Biomedicines, 2021, 9(1), 25.
[http://dx.doi.org/10.3390/biomedicines9010025] [PMID: 33401461]
[331]
Ferrucci, M.; Limanaqi, F.; Ryskalin, L.; Biagioni, F.; Busceti, C.L.; Fornai, F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front. Neuroanat., 2019, 13, 48.
[http://dx.doi.org/10.3389/fnana.2019.00048] [PMID: 31133823]
[332]
Farar, V.; Valuskova, P.; Sevcikova, M.; Myslivecek, J.; Slamberova, R. Mapping of the prenatal and postnatal methamphetamine effects on D1-like dopamine, M1 and M2 muscarinic receptors in rat central nervous system. Brain Res. Bull., 2018, 137, 17-22.
[http://dx.doi.org/10.1016/j.brainresbull.2017.11.003] [PMID: 29128414]
[333]
Perez, X.A. Preclinical evidence for a role of the nicotinic cholinergic system in Parkinson’s disease. Neuropsychol. Rev., 2015, 25(4), 371-383.
[http://dx.doi.org/10.1007/s11065-015-9303-z] [PMID: 26553323]
[334]
Desai, R.I.; Bergman, J. Methamphetamine-like discriminative-stimulus effects of nicotinic agonists. J. Pharmacol. Exp. Ther., 2014, 348(3), 478-488.
[http://dx.doi.org/10.1124/jpet.113.211235] [PMID: 24389640]
[335]
Takeda, A.; Tomiyama, M.; Hanajima, R. The relationship between pathophysiology and neurotransmitters in Parkinson’s disease. Brain Nerve, 2021, 73(7), 829-837.
[http://dx.doi.org/10.11477/mf.1416201843] [PMID: 34234041]
[336]
O’Gorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front. Neurol., 2018, 9, 806.
[http://dx.doi.org/10.3389/fneur.2018.00806] [PMID: 30319535]
[337]
Buchanan, R.J.; Darrow, D.P.; Meier, K.T.; Robinson, J.; Schiehser, D.M.; Glahn, D.C.; Nadasdy, Z. Changes in GABA and glutamate concentrations during memory tasks in patients with Parkinson’s disease undergoing DBS surgery. Front. Hum. Neurosci., 2014, 8, 81.
[http://dx.doi.org/10.3389/fnhum.2014.00081] [PMID: 24639638]
[338]
Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164.
[http://dx.doi.org/10.1016/j.jphs.2020.07.011] [PMID: 32807662]
[339]
Wang, J.; Wang, F.; Mai, D.; Qu, S. Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front. Neurosci., 2020, 14, 585584.
[http://dx.doi.org/10.3389/fnins.2020.585584] [PMID: 33324150]
[340]
Fujáková-Lipski, M.; Kaping, D.; Šírová, J.; Horáček, J.; Páleníček, T.; Zach, P.; Klaschka, J.; Kačer, P.; Syslová, K.; Vrajová, M.; Bubenikova-Valešová, V.; Beste, C.; Šlamberová, R. Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol., 2017, 91(10), 3373-3384.
[http://dx.doi.org/10.1007/s00204-017-1969-y] [PMID: 28477265]
[341]
He, T.; Li, N.; Shi, P.; Xu, X.; Nie, J.; Lu, X.; Yu, P.; Fan, Y.; Ge, F.; Guan, X. Electroacupuncture alleviates spatial memory deficits in METH withdrawal mice by enhancing astrocyte‐mediated glutamate clearance in the dCA1. Addict. Biol., 2022, 27(1), e13068.
[http://dx.doi.org/10.1111/adb.13068] [PMID: 34128302]
[342]
Chojnacki, M.R.; Jayanthi, S.; Cadet, J.L. Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. Eur. J. Pharmacol., 2020, 889, 173732.
[http://dx.doi.org/10.1016/j.ejphar.2020.173732] [PMID: 33220277]
[343]
Su, H.; Chen, T.; Zhong, N.; Jiang, H.; Du, J.; Xiao, K.; Xu, D.; Wang, Z.; Zhao, M. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. Ann. Transl. Med., 2020, 8(6), 347.
[http://dx.doi.org/10.21037/atm.2020.02.95] [PMID: 32355791]
[344]
Althobaiti, Y.S.; Almalki, A.H.; Das, S.C.; Alshehri, F.S.; Sari, Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci. Lett., 2016, 634, 25-31.
[http://dx.doi.org/10.1016/j.neulet.2016.09.058] [PMID: 27702628]
[345]
Rowley, H.L.; Pinder, L.; Kulkarni, R.; Cheetham, S.; Heal, D.J. Simultaneous determination of the effects of methamphetamine on GABA, glutamate and monoamines by microdialysis in the prefrontal cortex and hippocampus of rats. Drug Alcohol Depend., 2015, 156, e194.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.07.524]
[346]
Tehrani, A.M.; Boroujeni, M.E.; Aliaghaei, A.; Feizi, M.A.H.; Safaralizadeh, R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci. Lett., 2019, 712, 134478.
[http://dx.doi.org/10.1016/j.neulet.2019.134478] [PMID: 31491463]
[347]
Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers, 2021, 7(1), 47.
[http://dx.doi.org/10.1038/s41572-021-00280-3] [PMID: 34210995]
[348]
Papapetropoulos, S.; Mash, D.C. Psychotic symptoms in Parkinson’s disease. J. Neurol., 2005, 252(7), 753-764.
[http://dx.doi.org/10.1007/s00415-005-0918-5] [PMID: 15999234]
[349]
Marsh, L. Depression and Parkinson’s disease: current knowledge. Curr. Neurol. Neurosci. Rep., 2013, 13(12), 409.
[http://dx.doi.org/10.1007/s11910-013-0409-5] [PMID: 24190780]
[350]
Hsieh, J.H.; Stein, D.J.; Howells, F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci., 2014, 8, 537.
[http://dx.doi.org/10.3389/fnhum.2014.00537] [PMID: 25100979]
[351]
Zhang, Y.; Meng, X.; Jiao, Z.; Liu, Y.; Zhang, X.; Qu, S. Generation of a novel mouse model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem. Neurosci., 2020, 11(3), 406-417.
[http://dx.doi.org/10.1021/acschemneuro.9b00609] [PMID: 31909584]
[352]
Fischer, K.D.; Knackstedt, L.A.; Rosenberg, P.A. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem. Int., 2021, 144, 104896.
[http://dx.doi.org/10.1016/j.neuint.2020.104896] [PMID: 33159978]
[353]
Zhang, J.N.; Huang, Y.L.; Yang, H.M.; Wang, Y.; Gu, L.; Zhang, H. Blockade of metabotropic glutamate receptor 5 attenuates axonal degeneration in 6-hydroxydopamine-induced model of Parkinson’s disease. Mol. Cell. Neurosci., 2021, 110, 103572.
[http://dx.doi.org/10.1016/j.mcn.2020.103572] [PMID: 33248235]
[354]
Gass, J.T.; Osborne, M.P.H.; Watson, N.L.; Brown, J.L.; Olive, M.F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology, 2009, 34(4), 820-833.
[http://dx.doi.org/10.1038/npp.2008.140] [PMID: 18800068]
[355]
Petzold, J.; Szumlinski, K.K.; London, E.D. Targeting mGlu5 for methamphetamine use disorder. Pharmacol. Ther., 2021, 224, 107831.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107831] [PMID: 33705840]
[356]
Heysieattalab, S.; Naghdi, N.; Hosseinmardi, N.; Zarrindast, M.R.; Haghparast, A.; Khoshbouei, H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse, 2016, 70(8), 325-335.
[http://dx.doi.org/10.1002/syn.21905] [PMID: 27029021]
[357]
Bravo, J.; Ribeiro, I.; Terceiro, A.F.; Andrade, E.B.; Portugal, C.C.; Lopes, I.M.; Azevedo, M.M.; Sousa, M.; Lopes, C.D.F.; Lobo, A.C.; Canedo, T.; Relvas, J.B.; Summavielle, T. Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced microglia reactivity and enhance neuronal plasticity. Cells, 2022, 11(3), 355.
[http://dx.doi.org/10.3390/cells11030355] [PMID: 35159165]
[358]
Simões, P.F.; Silva, A.P.; Pereira, F.C.; Marques, E.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Macedo, T.R. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann. N. Y. Acad. Sci., 2008, 1139(1), 232-241.
[http://dx.doi.org/10.1196/annals.1432.028] [PMID: 18991869]
[359]
Jayanthi, S.; McCoy, M.T.; Chen, B.; Britt, J.P.; Kourrich, S.; Yau, H.J.; Ladenheim, B.; Krasnova, I.N.; Bonci, A.; Cadet, J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry, 2014, 76(1), 47-56.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.034] [PMID: 24239129]
[360]
Jiao, D. liu, Y.; Li, X.; liu, J.; Zhao, M. The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci., 2015, 9, 162.
[http://dx.doi.org/10.3389/fncel.2015.00162] [PMID: 25999814]
[361]
Zhao, Y.; Peng, S.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. Variants in GABBR1 gene are associated with methamphetamine dependence and two years’ relapse after drug rehabilitation. J. Neuroimmune Pharmacol., 2018, 13(4), 523-531.
[http://dx.doi.org/10.1007/s11481-018-9802-9] [PMID: 30143926]
[362]
Li, J.; Ma, S.; Chen, J.; Hu, K.; Li, Y.; Zhang, Z.; Su, Z.; Woodgett, J.R.; Li, M.; Huang, Q. GSK-3β contributes to Parkinsonian dopaminergic neuron death: Evidence from conditional knockout mice and tideglusib. Front. Mol. Neurosci., 2020, 13, 81.
[http://dx.doi.org/10.3389/fnmol.2020.00081] [PMID: 32581704]
[363]
Duda, P.; Wiśniewski, J.; Wójtowicz, T.; Wójcicka, O.; Jaśkiewicz, M.; Drulis-Fajdasz, D.; Rakus, D.; McCubrey, J.A.; Gizak, A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin. Ther. Targets, 2018, 22(10), 833-848.
[http://dx.doi.org/10.1080/14728222.2018.1526925] [PMID: 30244615]
[364]
Kwok, J.B.J.; Hallupp, M.; Loy, C.T.; Chan, D.K.Y.; Woo, J.; Mellick, G.D.; Buchanan, D.D.; Silburn, P.A.; Halliday, G.M.; Schofield, P.R. GSK3B polymorphisms alter transcription and splicing in Parkinson’s disease. Ann. Neurol., 2005, 58(6), 829-839.
[http://dx.doi.org/10.1002/ana.20691] [PMID: 16315267]
[365]
Nagao, M.; Hayashi, H. Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neurosci. Lett., 2009, 449(2), 103-107.
[http://dx.doi.org/10.1016/j.neulet.2008.10.104] [PMID: 19007860]
[366]
Kalinderi, K.; Fidani, L.; Katsarou, Z.; Clarimón, J.; Bostantjopoulou, S.; Kotsis, A. GSK3β polymorphisms, MAPT H1 haplotype and Parkinson’s disease in a Greek cohort. Neurobiol. Aging, 2011, 32(3), 546.e1-546.e5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.007] [PMID: 19573950]
[367]
Credle, J.J.; George, J.L.; Wills, J.; Duka, V.; Shah, K.; Lee, Y-C.; Rodriguez, O.; Simkins, T.; Winter, M.; Moechars, D.; Steckler, T.; Goudreau, J.; Finkelstein, D.I.; Sidhu, A. GSK-3β dysregulation contributes to parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ., 2015, 22(5), 838-851.
[http://dx.doi.org/10.1038/cdd.2014.179] [PMID: 25394490]
[368]
Lin, C.H.; Tsai, P.I.; Wu, R.M.; Chien, C.T. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J. Neurosci., 2010, 30(39), 13138-13149.
[http://dx.doi.org/10.1523/JNEUROSCI.1737-10.2010] [PMID: 20881132]
[369]
Kawakami, F.; Shimada, N.; Ohta, E.; Kagiya, G.; Kawashima, R.; Maekawa, T.; Maruyama, H.; Ichikawa, T. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β. FEBS J., 2014, 281(1), 3-13.
[http://dx.doi.org/10.1111/febs.12579] [PMID: 24165324]
[370]
Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci. Lett., 2021, 740, 135426.
[http://dx.doi.org/10.1016/j.neulet.2020.135426] [PMID: 33075420]
[371]
Jellinger, K.A. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J. Neural Transm. (Vienna), 2018, 125(4), 615-650.
[http://dx.doi.org/10.1007/s00702-017-1821-9] [PMID: 29222591]
[372]
Duka, T.; Duka, V.; Joyce, J.N.; Sidhu, A. α‐Synuclein contributes to GSK‐3β‐catalyzed Tau phosphorylation in Parkinson’s disease models. FASEB J., 2009, 23(9), 2820-2830.
[http://dx.doi.org/10.1096/fj.08-120410] [PMID: 19369384]
[373]
Coakeley, S.; Strafella, A.P. Imaging tau pathology in Parkinsonisms. NPJ Parkinsons Dis., 2017, 3(1), 22.
[http://dx.doi.org/10.1038/s41531-017-0023-3] [PMID: 28685158]
[374]
Das, G.; Misra, A.K.; Das, S.K.; Ray, K.; Ray, J. Role of tau kinases (CDK5R1 and GSK3B) in Parkinson’s disease: A study from India. Neurobiol. Aging, 2012, 33(7), 1485.e9-1485.e15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.016] [PMID: 21130530]
[375]
Li, D.W.; Liu, Z.Q. Wei-Chen; Min-Yao; Li, G.R. Association of glycogen synthase kinase-3β with Parkinson’s disease (Review). Mol. Med. Rep., 2014, 9(6), 2043-2050.
[http://dx.doi.org/10.3892/mmr.2014.2080] [PMID: 24681994]
[376]
Zhu, J.; Xu, X.; Liang, Y.; Zhu, R. Downregulation of microRNA-15b-5p targeting the akt3-mediated GSK-3β/β-catenin signaling pathway inhibits cell apoptosis in Parkinson’s disease. BioMed Res. Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8814862] [PMID: 33506036]
[377]
Di Martino, R.M.C.; Pruccoli, L.; Bisi, A.; Gobbi, S.; Rampa, A.; Martinez, A.; Pérez, C.; Martinez-Gonzalez, L.; Paglione, M.; Di Schiavi, E.; Seghetti, F.; Tarozzi, A.; Belluti, F. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of Parkinson’s disease. ACS Chem. Neurosci., 2020, 11(17), 2728-2740.
[http://dx.doi.org/10.1021/acschemneuro.0c00363] [PMID: 32663009]
[378]
Teixeira, F.R.; Randle, S.J.; Patel, S.P.; Mevissen, T.E.T.; Zenkeviciute, G.; Koide, T.; Komander, D.; Laman, H. Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease. Biochem. J., 2016, 473(20), 3563-3580.
[http://dx.doi.org/10.1042/BCJ20160387] [PMID: 27503909]
[379]
Fonzo, A.D.; Dekker, M.C.J.; Montagna, P.; Baruzzi, A.; Yonova, E.H.; Guedes, L.C.; Szczerbinska, A.; Zhao, T.; Dubbel-Hulsman, L.O.M.; Wouters, C.H.; de Graaff, E.; Oyen, W.J.G.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Horstink, M.W.; Bonifati, V. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology, 2009, 72(3), 240-245.
[http://dx.doi.org/10.1212/01.wnl.0000338144.10967.2b] [PMID: 19038853]
[380]
Yan, P.; Xu, D.; Ji, Y.; Yin, F.; Cui, J.; Su, R.; Wang, Y.; Zhu, Y.; Wei, S.; Lai, J. LiCl pretreatment ameliorates adolescent methamphetamine exposure-induced long-term alterations in behavior and hippocampal ultrastructure in adulthood in mice. Int. J. Neuropsychopharmacol., 2019, 22(4), 303-316.
[http://dx.doi.org/10.1093/ijnp/pyz001] [PMID: 30649326]
[381]
Chen, L.; Zhou, L.; Yu, P.; Fang, F.; Jiang, L.; Fei, J.; Xiao, H.; Wang, J. Methamphetamine exposure upregulates the amyloid precursor protein and hyperphosphorylated tau expression: The roles of insulin signaling in SH-SY5Y cell line. J. Toxicol. Sci., 2019, 44(7), 493-503.
[http://dx.doi.org/10.2131/jts.44.493] [PMID: 31270305]
[382]
Panmak, P.; Nopparat, C.; Permpoonpattana, K.; Namyen, J.; Govitrapong, P. Melatonin protects against methamphetamine-induced Alzheimer’s disease-like pathological changes in rat hippocampus. Neurochem. Int., 2021, 148, 105121.
[http://dx.doi.org/10.1016/j.neuint.2021.105121] [PMID: 34224806]
[383]
Xu, C.; Wang, J.; Wu, P.; Xue, Y.; Zhu, W.; Li, Q.; Zhai, H.; Shi, J.; Lu, L. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J. Neurochem., 2011, 118(1), 126-139.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07281.x] [PMID: 21517846]
[384]
Wang, J.; Sun, L.L.; Zhu, W.L.; Sun, Y.; Liu, J.F.; Lu, L.; Shi, J. Role of calcineurin in the VTA in rats behaviorally sensitized to methamphetamine. Psychopharmacology (Berl.), 2012, 220(1), 117-128.
[http://dx.doi.org/10.1007/s00213-011-2461-7] [PMID: 21901318]
[385]
Xing, B.; Liang, X.; Liu, P.; Zhao, Y.; Chu, Z.; Dang, Y. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PLoS One, 2015, 10(6), e0128068.
[http://dx.doi.org/10.1371/journal.pone.0128068] [PMID: 26030405]
[386]
Pogorelov, V.M.; Nomura, J.; Kim, J.; Kannan, G.; Ayhan, Y.; Yang, C.; Taniguchi, Y.; Abazyan, B.; Valentine, H.; Krasnova, I.N.; Kamiya, A.; Cadet, J.L.; Wong, D.F.; Pletnikov, M.V. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology, 2012, 62(3), 1242-1251.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.003] [PMID: 21315744]
[387]
Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5099-5104.
[http://dx.doi.org/10.1073/pnas.0307921101] [PMID: 15044694]
[388]
Winner, B.; Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2015, 7(4), a021287.
[http://dx.doi.org/10.1101/cshperspect.a021287] [PMID: 25833845]
[389]
Marxreiter, F.; Regensburger, M.; Winkler, J. Adult neurogenesis in Parkinson’s disease. Cell. Mol. Life Sci., 2013, 70(3), 459-473.
[http://dx.doi.org/10.1007/s00018-012-1062-x] [PMID: 22766974]
[390]
Regensburger, M.; Prots, I.; Winner, B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/454696] [PMID: 25110593]
[391]
Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Caille, I.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7(7), 726-735.
[http://dx.doi.org/10.1038/nn1265] [PMID: 15195095]
[392]
Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol., 2010, 9(12), 1200-1213.
[http://dx.doi.org/10.1016/S1474-4422(10)70212-X] [PMID: 20880750]
[393]
Shen, Y.; Huang, J.; Liu, L.; Xu, X.; Han, C.; Zhang, G.; Jiang, H.; Li, J.; Lin, Z.; Xiong, N.; Wang, T. A compendium of preparation and application of stem cells in Parkinson’s disease: Current status and future prospects. Front. Aging Neurosci., 2016, 8, 117.
[http://dx.doi.org/10.3389/fnagi.2016.00117] [PMID: 27303288]
[394]
Carlesimo, G.A.; Piras, F.; Assogna, F.; Pontieri, F.E.; Caltagirone, C.; Spalletta, G. Hippocampal abnormalities and memory deficits in Parkinson disease: A multimodal imaging study. Neurology, 2012, 78(24), 1939-1945.
[http://dx.doi.org/10.1212/WNL.0b013e318259e1c5] [PMID: 22649213]
[395]
Churchyard, A.; Lees, A.J. The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson’s disease. Neurology, 1997, 49(6), 1570-1576.
[http://dx.doi.org/10.1212/WNL.49.6.1570] [PMID: 9409348]
[396]
Winner, B.; Regensburger, M.; Schreglmann, S.; Boyer, L.; Prots, I.; Rockenstein, E.; Mante, M.; Zhao, C.; Winkler, J.; Masliah, E.; Gage, F.H. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J. Neurosci., 2012, 32(47), 16906-16916.
[http://dx.doi.org/10.1523/JNEUROSCI.2723-12.2012] [PMID: 23175842]
[397]
Ferri, A.L.M.; Cavallaro, M.; Braida, D.; Di Cristofano, A.; Canta, A.; Vezzani, A.; Ottolenghi, S.; Pandolfi, P.P.; Sala, M.; DeBiasi, S.; Nicolis, S.K. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 2004, 131(15), 3805-3819.
[http://dx.doi.org/10.1242/dev.01204] [PMID: 15240551]
[398]
Schlachetzki, J.C.M.; Grimm, T.; Schlachetzki, Z.; Ben Abdallah, N.M.B.; Ettle, B.; Vöhringer, P.; Ferger, B.; Winner, B.; Nuber, S.; Winkler, J. Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein. J. Neurosci. Res., 2016, 94(1), 62-73.
[http://dx.doi.org/10.1002/jnr.23677] [PMID: 26451750]
[399]
Schreglmann, S.R.; Regensburger, M.; Rockenstein, E.; Masliah, E.; Xiang, W.; Winkler, J.; Winner, B. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS One, 2015, 10(5), e0126261.
[http://dx.doi.org/10.1371/journal.pone.0126261] [PMID: 25961568]
[400]
Crews, L.; Mizuno, H.; Desplats, P.; Rockenstein, E.; Adame, A.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci., 2008, 28(16), 4250-4260.
[http://dx.doi.org/10.1523/JNEUROSCI.0066-08.2008] [PMID: 18417705]
[401]
Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci., 2006, 7(2), 93-102.
[http://dx.doi.org/10.1038/nrn1847] [PMID: 16429119]
[402]
Greenberg, D.A.; Jin, K. Turning neurogenesis up a Notch. Nat. Med., 2006, 12(8), 884-885.
[http://dx.doi.org/10.1038/nm0806-884] [PMID: 16892029]
[403]
Breunig, J.J.; Silbereis, J.; Vaccarino, F.M.; Šestan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20558-20563.
[http://dx.doi.org/10.1073/pnas.0710156104] [PMID: 18077357]
[404]
Mason, H.A.; Rakowiecki, S.M.; Gridley, T.; Fishell, G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev. Neurosci., 2006, 28(1-2), 49-57.
[http://dx.doi.org/10.1159/000090752] [PMID: 16508303]
[405]
Baker, S.A.; Baker, K.A.; Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci., 2004, 20(2), 575-579.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03486.x] [PMID: 15233767]
[406]
Desplats, P.; Spencer, B.; Crews, L.; Pathel, P.; Morvinski-Friedmann, D.; Kosberg, K.; Roberts, S.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J. Biol. Chem., 2012, 287(38), 31691-31702.
[http://dx.doi.org/10.1074/jbc.M112.354522] [PMID: 22833673]
[407]
Venkatesan, A.; Uzasci, L.; Chen, Z.; Rajbhandari, L.; Anderson, C.; Lee, M.H.; Bianchet, M.A.; Cotter, R.; Song, H.; Nath, A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol. Brain, 2011, 4(1), 28.
[http://dx.doi.org/10.1186/1756-6606-4-28] [PMID: 21708025]
[408]
Galinato, M.H.; Takashima, Y.; Fannon, M.J.; Quach, L.W.; Morales Silva, R.J.; Mysore, K.K.; Terranova, M.J.; Dutta, R.R.; Ostrom, R.W.; Somkuwar, S.S.; Mandyam, C.D. Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J. Neurosci., 2018, 38(8), 2029-2042.
[http://dx.doi.org/10.1523/JNEUROSCI.2011-17.2018] [PMID: 29363584]
[409]
Grimes, D.A.; Han, F.; Panisset, M.; Racacho, L.; Xiao, F.; Zou, R.; Westaff, K.; Bulman, D.E. Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov. Disord., 2006, 21(7), 906-909.
[http://dx.doi.org/10.1002/mds.20820] [PMID: 16532445]
[410]
Shim, J.W.; Park, C.H.; Bae, Y.C.; Bae, J.Y.; Chung, S.; Chang, M.Y.; Koh, H.C.; Lee, H.S.; Hwang, S.J.; Lee, K.H.; Lee, Y.S.; Choi, C.Y.; Lee, S.H. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells, 2007, 25(5), 1252-1262.
[http://dx.doi.org/10.1634/stemcells.2006-0274] [PMID: 17234994]
[411]
Smith, G.A.; Rocha, E.M.; Rooney, T.; Barneoud, P.; McLean, J.R.; Beagan, J.; Osborn, T.; Coimbra, M.; Luo, Y.; Hallett, P.J.; Isacson, O.A. Nurr1 agonist causes neuroprotection in a Parkinson’s disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One, 2015, 10(3), e0121072.
[http://dx.doi.org/10.1371/journal.pone.0121072] [PMID: 25815475]
[412]
Argyrofthalmidou, M.; Spathis, A.D.; Maniati, M.; Poula, A.; Katsianou, M.A.; Sotiriou, E.; Manousaki, M.; Perier, C.; Papapanagiotou, I.; Papadopoulou-Daifoti, Z.; Pitychoutis, P.M.; Alexakos, P.; Vila, M.; Stefanis, L.; Vassilatis, D.K. Nurr1 repression mediates cardinal features of Parkinson’s disease in α-synuclein transgenic mice. Hum. Mol. Genet., 2021, 30(16), 1469-1483.
[http://dx.doi.org/10.1093/hmg/ddab118] [PMID: 33902111]
[413]
Akiyama, K.; Isao, T.; Ide, S.; Ishikawa, M.; Saito, A. mRNA expression of the Nurr1 and NGFI-B nuclear receptor families following acute and chronic administration of methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(8), 1957-1966.
[http://dx.doi.org/10.1016/j.pnpbp.2008.09.021] [PMID: 18930103]
[414]
Luo, Y.; Wang, Y.; Kuang, S.Y.; Chiang, Y.H.; Hoffer, B. Decreased level of Nurr1 in heterozygous young adult mice leads to exacerbated acute and long-term toxicity after repeated methamphetamine exposure. PLoS One, 2010, 5(12), e15193.
[http://dx.doi.org/10.1371/journal.pone.0015193] [PMID: 21151937]
[415]
Ferrer, I.; Blanco, R. N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res. Mol. Brain Res., 2000, 77(2), 270-276.
[http://dx.doi.org/10.1016/S0169-328X(00)00062-0] [PMID: 10837922]
[416]
Thiriet, N.; Jayanthi, S.; McCoy, M.; Ladenheim, B.; Lud Cadet, J. Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Brain Res. Mol. Brain Res., 2001, 90(2), 202-204.
[http://dx.doi.org/10.1016/S0169-328X(01)00093-6] [PMID: 11406298]
[417]
West, A.B.; Kapatos, G.; O’Farrell, C.; Gonzalez-de-Chavez, F.; Chiu, K.; Farrer, M.J.; Maidment, N.T. N-myc regulates parkin expression. J. Biol. Chem., 2004, 279(28), 28896-28902.
[http://dx.doi.org/10.1074/jbc.M400126200] [PMID: 15078880]
[418]
Xie, T.; Tong, L.; Barrett, T.; Yuan, J.; Hatzidimitriou, G.; McCann, U.D.; Becker, K.G.; Donovan, D.M.; Ricaurte, G.A. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci., 2002, 22(1), 274-283.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00274.2002] [PMID: 11756511]
[419]
Li, J.; Dani, J.A.; Le, W. The role of transcription factor Pitx3 in dopamine neuron development and Parkinson’s disease. Curr. Top. Med. Chem., 2009, 9(10), 855-859.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2872921
[PMID: 19754401]
[420]
Krasnova, I.N.; Ladenheim, B.; Hodges, A.B.; Volkow, N.D.; Cadet, J.L. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One, 2011, 6(4), e19179.
[http://dx.doi.org/10.1371/journal.pone.0019179] [PMID: 21547080]
[421]
Clark, J.; Silvaggi, J.M.; Kiselak, T.; Zheng, K.; Clore, E.L.; Dai, Y.; Bass, C.E.; Simon, D.K. Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One, 2012, 7(11), e48925.
[http://dx.doi.org/10.1371/journal.pone.0048925] [PMID: 23145024]
[422]
Blaudin de Thé, F.X.; Rekaik, H.; Prochiantz, A.; Fuchs, J.; Joshi, R.L. Neuroprotective transcription factors in animal models of Parkinson disease. Neural Plast., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/6097107] [PMID: 26881122]
[423]
Park, S.W.; He, Z.; Shen, X.; Roman, R.J.; Ma, T. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of μ-opioid receptor knockout mice. Int. J. Neurosci., 2012, 122(6), 305-313.
[http://dx.doi.org/10.3109/00207454.2011.652319] [PMID: 22329540]
[424]
Chauhan, H.; Killinger, B.; Miller, C.; Moszczynska, A. Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int. J. Mol. Sci., 2014, 15(4), 5884-5906.
[http://dx.doi.org/10.3390/ijms15045884] [PMID: 24717411]
[425]
Mukda, S.; Vimolratana, O.; Govitrapong, P. Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci. Lett., 2011, 488(2), 154-157.
[http://dx.doi.org/10.1016/j.neulet.2010.11.019] [PMID: 21078367]
[426]
Pifl, C.; Rajput, A.; Reither, H.; Blesa, J.; Cavada, C.; Obeso, J.A.; Rajput, A.H.; Hornykiewicz, O. Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J. Neurosci., 2014, 34(24), 8210-8218.
[http://dx.doi.org/10.1523/JNEUROSCI.5456-13.2014] [PMID: 24920625]
[427]
Lohr, K.M.; Stout, K.A.; Dunn, A.R.; Wang, M.; Salahpour, A.; Guillot, T.S.; Miller, G.W. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem. Neurosci., 2015, 6(5), 790-799.
[http://dx.doi.org/10.1021/acschemneuro.5b00010] [PMID: 25746685]
[428]
Joksimovic, M.; Awatramani, R. Wnt/-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J. Mol. Cell Biol., 2014, 6(1), 27-33.
[http://dx.doi.org/10.1093/jmcb/mjt043] [PMID: 24287202]
[429]
L’Episcopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Serapide, M.F.; Pluchino, S.; Marchetti, B. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells, 2014, 32(8), 2147-2163.
[http://dx.doi.org/10.1002/stem.1708] [PMID: 24648001]
[430]
Arenas, E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease. J. Mol. Cell Biol., 2014, 6(1), 42-53.
[http://dx.doi.org/10.1093/jmcb/mju001] [PMID: 24431302]
[431]
Sharma, A.; Hu, X.T.; Napier, T.C.; Al-Harthi, L. Methamphetamine and HIV-1 Tat down regulate β-catenin signaling: implications for methampetamine abuse and HIV-1 co-morbidity. J. Neuroimmune Pharmacol., 2011, 6(4), 597-607.
[http://dx.doi.org/10.1007/s11481-011-9295-2] [PMID: 21744004]
[432]
Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 2006, 25(57), 7469-7481.
[http://dx.doi.org/10.1038/sj.onc.1210054] [PMID: 17143291]
[433]
Scott, E.L.; Brann, D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res., 2013, 1514, 63-74.
[http://dx.doi.org/10.1016/j.brainres.2012.12.015] [PMID: 23261660]
[434]
Chen, J.J.; Marsh, L. Anxiety in Parkinson’s disease: identification and management. Ther. Adv. Neurol. Disord., 2014, 7(1), 52-59.
[http://dx.doi.org/10.1177/1756285613495723] [PMID: 24409202]
[435]
Revest, J-M.; Dupret, D.; Koehl, M.; Funk-Reiter, C.; Grosjean, N.; Piazza, P-V.; Abrous, D.N. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry, 2009, 14(10), 959-967.
[http://dx.doi.org/10.1038/mp.2009.15] [PMID: 19255582]
[436]
Yun, S.; Donovan, M.H.; Ross, M.N.; Richardson, D.R.; Reister, R.; Farnbauch, L.A.; Fischer, S.J.; Riethmacher, D.; Gershenfeld, H.K.; Lagace, D.C.; Eisch, A.J. Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult nestin-CreERT2/diphtheria toxin fragment A transgenic mice. PLoS One, 2016, 11(1), e0147256.
[http://dx.doi.org/10.1371/journal.pone.0147256] [PMID: 26795203]
[437]
Vila, M.; Jackson-Lewis, V.; Vukosavic, S.; Djaldetti, R.; Liberatore, G.; Offen, D.; Korsmeyer, S.J.; Przedborski, S. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2837-2842.
[http://dx.doi.org/10.1073/pnas.051633998] [PMID: 11226327]
[438]
Hill, A.S.; Sahay, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, 40(10), 2368-2378.
[http://dx.doi.org/10.1038/npp.2015.85] [PMID: 25833129]
[439]
Huckans, M.; Wilhelm, C.J.; Phillips, T.J.; Huang, E.T.; Hudson, R.; Loftis, J.M. Parallel effects of methamphetamine on anxiety and CCL3 in humans and a genetic mouse model of high methamphetamine intake. Neuropsychobiology, 2017, 75(4), 169-177.
[http://dx.doi.org/10.1159/000485129] [PMID: 29402784]
[440]
Chetsawang, J.; Suwanjang, W.; Pirompul, N.; Govitrapong, P.; Chetsawang, B. Calpastatin reduces methamphetamine-induced induction in c-Jun phosphorylation, Bax and cell death in neuroblastoma SH-SY5Y cells. Neurosci. Lett., 2012, 506(1), 7-11.
[http://dx.doi.org/10.1016/j.neulet.2011.10.021] [PMID: 22027180]
[441]
Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.010] [PMID: 26453926]
[442]
Kahroba, H.; Ramezani, B.; Maadi, H.; Sadeghi, M.R.; Jaberie, H.; Ramezani, F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res. Rev., 2021, 65, 101211.
[http://dx.doi.org/10.1016/j.arr.2020.101211] [PMID: 33186670]
[443]
Meng, X.; Zhang, C.; Guo, Y.; Han, Y.; Wang, C.; Chu, H.; Kong, L.; Ma, H. TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8787156] [PMID: 32351675]
[444]
Ekthuwapranee, K.; Sotthibundhu, A.; Govitrapong, P. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J. Pineal Res., 2015, 58(4), 418-428.
[http://dx.doi.org/10.1111/jpi.12225] [PMID: 25752339]
[445]
Ho, D.H.; Seol, W.; Son, I. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle, 2019, 18(4), 467-475.
[http://dx.doi.org/10.1080/15384101.2019.1577666] [PMID: 30712480]
[446]
Baptista, S.; Lasgi, C.; Benstaali, C.; Milhazes, N.; Borges, F.; Fontes-Ribeiro, C.; Agasse, F.; Silva, A.P. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res. (Amst.), 2014, 13(2), 329-341.
[http://dx.doi.org/10.1016/j.scr.2014.08.003] [PMID: 25201326]
[447]
Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[448]
Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The microbiota-gut-brain axis in psychiatric disorders. Int. J. Mol. Sci., 2022, 23(19), 11245.
[http://dx.doi.org/10.3390/ijms231911245] [PMID: 36232548]
[449]
Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840.
[http://dx.doi.org/10.1016/j.phrs.2021.105840] [PMID: 34450312]
[450]
Mayer, E.A.; Nance, K.; Chen, S. The gut-brain axis. Annu. Rev. Med., 2022, 73(1), 439-453.
[http://dx.doi.org/10.1146/annurev-med-042320-014032] [PMID: 34669431]
[451]
Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593.
[http://dx.doi.org/10.1093/brain/awab156] [PMID: 33856024]
[452]
Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat. Rev. Neurol., 2022, 18(8), 476-495.
[http://dx.doi.org/10.1038/s41582-022-00681-2] [PMID: 35750883]
[453]
Dogra, N.; Mani, R.J.; Katare, D.P. The gut-brain axis: Two ways signaling in Parkinson’s disease. Cell. Mol. Neurobiol., 2022, 42(2), 315-332.
[http://dx.doi.org/10.1007/s10571-021-01066-7] [PMID: 33649989]
[454]
Kim, S.; Kwon, S.H.; Kam, T.I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; Shen, C.; Lee, H.; Kulkarni, S.; Pasricha, P.J.; Lee, G.; Pomper, M.G.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron, 2019, 103(4), 627-641.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.05.035] [PMID: 31255487]
[455]
Kakoty, V. K C, S.; Dubey, S.K.; Yang, C.H.; Kesharwani, P.; Taliyan, R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci. Lett., 2021, 753, 135865.
[http://dx.doi.org/10.1016/j.neulet.2021.135865] [PMID: 33812929]
[456]
Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The gut-brain axis and its relation to Parkinson’s disease: A review. Front. Aging Neurosci., 2022, 13, 782082.
[http://dx.doi.org/10.3389/fnagi.2021.782082] [PMID: 35069178]
[457]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[458]
Sun, M.F.; Zhu, Y.L.; Zhou, Z.L.; Jia, X.B.; Xu, Y.D.; Yang, Q.; Cui, C.; Shen, Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun., 2018, 70, 48-60.
[http://dx.doi.org/10.1016/j.bbi.2018.02.005] [PMID: 29471030]
[459]
Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines, 2022, 10(2), 436.
[http://dx.doi.org/10.3390/biomedicines10020436] [PMID: 35203645]
[460]
Qin, C.; Hu, J.; Wan, Y.; Cai, M.; Wang, Z.; Peng, Z.; Liao, Y.; Li, D.; Yao, P.; Liu, L.; Rong, S.; Bao, W.; Xu, G.; Yang, W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 106, 110093.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110093] [PMID: 32898589]
[461]
Simpson, S.; Mclellan, R.; Wellmeyer, E.; Matalon, F.; George, O. Drugs and bugs: The gut-brain axis and substance use disorders. J. Neuroimmune Pharmacol., 2022, 17(1-2), 33-61.
[http://dx.doi.org/10.1007/s11481-021-10022-7] [PMID: 34694571]
[462]
Wang, Z.; Hou, C.; Chen, L.; Zhang, M.; Luo, W. Potential roles of the gut microbiota in the manifestations of drug use disorders. Front. Psychiatry, 2022, 13, 1046804.
[http://dx.doi.org/10.3389/fpsyt.2022.1046804] [PMID: 36590616]
[463]
Angoa-Pérez, M.; Zagorac, B.; Winters, A.D.; Greenberg, J.M.; Ahmad, M.; Theis, K.R.; Kuhn, D.M. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One, 2020, 15(1), e0227774.
[http://dx.doi.org/10.1371/journal.pone.0227774] [PMID: 31978078]
[464]
Forouzan, S.; Hoffman, K.L.; Kosten, T.A. Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology (Berl.), 2021, 238(1), 281-292.
[http://dx.doi.org/10.1007/s00213-020-05681-y] [PMID: 33097978]
[465]
Chen, L.J.; Zhi, X.; Zhang, K.K.; Wang, L.B.; Li, J.H.; Liu, J.L.; Xu, L.L.; Yoshida, J.S.; Xie, X.L.; Wang, Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem. Toxicol., 2021, 148, 111946.
[http://dx.doi.org/10.1016/j.fct.2020.111946] [PMID: 33359793]
[466]
Li, Y.; Kong, D.; Bi, K.; Luo, H. Related effects of methamphetamine on the intestinal barrier via cytokines, and potential mechanisms by which methamphetamine may occur on the brain-gut axis. Front. Med. (Lausanne), 2022, 9, 783121.
[http://dx.doi.org/10.3389/fmed.2022.783121] [PMID: 35620725]
[467]
Flack, A.; Persons, A.L.; Kousik, S.M.; Celeste Napier, T.; Moszczynska, A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur. J. Neurosci., 2017, 46(3), 1918-1932.
[http://dx.doi.org/10.1111/ejn.13630] [PMID: 28661099]
[468]
Shen, T.; Yue, Y.; He, T.; Huang, C.; Qu, B.; Lv, W.; Lai, H.Y. The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front. Aging Neurosci., 2021, 13, 636545.
[http://dx.doi.org/10.3389/fnagi.2021.636545] [PMID: 33643026]
[469]
Davidson, M.; Mayer, M.; Habib, A.; Rashidi, N.; Filippone, R.T.; Fraser, S.; Prakash, M.D.; Sinnayah, P.; Tangalakis, K.; Mathai, M.L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine induces systemic inflammation and anxiety: The role of the gut-immune-brain axis. Int. J. Mol. Sci., 2022, 23(19), 11224.
[http://dx.doi.org/10.3390/ijms231911224] [PMID: 36232524]
[470]
Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci., 2018, 19(6), 1689.
[http://dx.doi.org/10.3390/ijms19061689] [PMID: 29882798]
[471]
Vargas, A.M.; Rivera-Rodriguez, D.E.; Martinez, L.R. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol. Immunol., 2020, 121, 159-166.
[http://dx.doi.org/10.1016/j.molimm.2020.03.013] [PMID: 32222586]
[472]
Pellegrini, C.; Antonioli, L.; Calderone, V.; Colucci, R.; Fornai, M.; Blandizzi, C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog. Neurobiol., 2020, 191, 101806.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101806] [PMID: 32473843]
[473]
Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinson’s disease. Front. Aging Neurosci., 2022, 14, 957705.
[http://dx.doi.org/10.3389/fnagi.2022.957705] [PMID: 36313019]
[474]
Xu, E.; Liu, J.; Liu, H.; Wang, X.; Xiong, H. Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1β production in microglia. J. Neuroimmune Pharmacol., 2018, 13(2), 237-253.
[http://dx.doi.org/10.1007/s11481-018-9780-y] [PMID: 29492824]
[475]
Zhao, J.; Shen, S.; Dai, Y.; Chen, F.; Wang, K. Methamphetamine induces intestinal inflammatory injury via nod-like receptor 3 protein (NLRP3) inflammasome overexpression in vitro and in vivo. Med. Sci. Monit., 2019, 25, 8515-8526.
[http://dx.doi.org/10.12659/MSM.920190] [PMID: 31712546]
[476]
Sun, J.; Chen, F.; Chen, C.; Zhang, Z.; Zhang, Z.; Tian, W.; Yu, J.; Wang, K. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. Ann. Transl. Med., 2020, 8(24), 1669.
[http://dx.doi.org/10.21037/atm-20-7741] [PMID: 33490181]
[477]
Loosen, S.H.; Yaqubi, K.; May, P.; Konrad, M.; Gollop, C.; Luedde, T.; Kostev, K.; Roderburg, C. Association between inflammatory bowel disease and subsequent development of restless legs syndrome and Parkinson’s disease: A retrospective cohort study of 35,988 primary care patients in Germany. Life (Basel), 2023, 13(4), 897.
[http://dx.doi.org/10.3390/life13040897] [PMID: 37109426]
[478]
Guilarte, T.R. Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicology, 2001, 22(6), 725-731.
[http://dx.doi.org/10.1016/S0161-813X(01)00046-8] [PMID: 11829406]
[479]
Wilson, J.M.; Kalasinsky, K.S.; Levey, A.I.; Bergeron, C.; Reiber, G.; Anthony, R.M.; Schmunk, G.A.; Shannak, K.; Haycock, J.W.; Kish, S.J. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat. Med., 1996, 2(6), 699-703.
[http://dx.doi.org/10.1038/nm0696-699] [PMID: 8640565]
[480]
Volkow, N.D.; Chang, L.; Wang, G.J.; Fowler, J.S.; Leonido-Yee, M.; Franceschi, D.; Sedler, M.J.; Gatley, S.J.; Hitzemann, R.; Ding, Y.S.; Logan, J.; Wong, C.; Miller, E.N. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry, 2001, 158(3), 377-382.
[http://dx.doi.org/10.1176/appi.ajp.158.3.377] [PMID: 11229977]
[481]
Jan, R.K.; Kydd, R.R.; Russell, B.R. Functional and structural brain changes associated with methamphetamine abuse. Brain Sci., 2012, 2(4), 434-482.
[http://dx.doi.org/10.3390/brainsci2040434] [PMID: 24961256]
[482]
Granado, N.; Ares-Santos, S.; Moratalla, R. Methamphetamine and Parkinson’s disease. Parkinsons Dis., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/308052] [PMID: 23476887]
[483]
Callaghan, R.C.; Cunningham, J.K.; Sajeev, G.; Kish, S.J. Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Mov. Disord., 2010, 25(14), 2333-2339.
[http://dx.doi.org/10.1002/mds.23263] [PMID: 20737543]
[484]
Callaghan, R.C.; Cunningham, J.K.; Sykes, J.; Kish, S.J. Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend., 2012, 120(1-3), 35-40.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.06.013] [PMID: 21794992]
[485]
Curtin, K.; Fleckenstein, A.E.; Robison, R.J.; Crookston, M.J.; Smith, K.R.; Hanson, G.R. Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: A population-based assessment. Drug Alcohol Depend., 2015, 146, 30-38.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.10.027] [PMID: 25479916]
[486]
Rumpf, J.J.; Albers, J.; Fricke, C.; Mueller, W.; Classen, J. Structural abnormality of substantia nigra induced by methamphetamine abuse. Mov. Disord., 2017, 32(12), 1784-1788.
[http://dx.doi.org/10.1002/mds.27205] [PMID: 29082542]
[487]
Tang, K.A.; Liang, H.; Lin, Y.; Zhang, C.; Tang, W.K.; Chu, W.C.; Ungvari, G.S. Persistent parkinsonism after high dose intravenous methamphetamine: A case report. Neurol. Asia, 2017, 22(1), 77-80.
[488]
Matthew, B.J.; Gedzior, J.S. Drug-induced parkinsonism following chronic methamphetamine use by a patient on haloperidol decanoate. Int. J. Psychiatry Med., 2015, 50(4), 405-411.
[http://dx.doi.org/10.1177/0091217415612736] [PMID: 26526398]
[489]
Yancey, J. Drug-induced Parkinsonism in a Patient with methamphetamine abuse. Neurology, 2016, 86(16 Supplement), P4.317..
[490]
Fabbrini, G.; Abbruzzese, G.; Marconi, S.; Zappia, M. Selegiline. Clin. Neuropharmacol., 2012, 35(3), 134-140.
[http://dx.doi.org/10.1097/WNF.0b013e318255838b] [PMID: 22592509]
[491]
Tulloch, I.K.; Afanador, L.; Baker, L.; Ordonez, D.; Payne, H.; Mexhitaj, I.; Olivares, E.; Chowdhury, A.; Angulo, J.A. Methamphetamine induces low levels of neurogenesis in striatal neuron subpopulations and differential motor performance. Neurotox. Res., 2014, 26(2), 115-129.
[http://dx.doi.org/10.1007/s12640-014-9456-1] [PMID: 24549503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy