Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Long Non-coding RNAs Influence Aging Process of Sciatic Nerves in SD Rats

Author(s): Rui Kuang, Yi Zhang, Guanggeng Wu, Zhaowei Zhu, Shuqia Xu, Xiangxia Liu*, Yangbin Xu* and Yunxiang Luo*

Volume 27, Issue 14, 2024

Published on: 07 September, 2023

Page: [2140 - 2150] Pages: 11

DOI: 10.2174/1386207326666230907115800

Price: $65

Abstract

Objectives: To investigate the long non-coding RNAs (lncRNAs) changes in the sciatic nerve (SN) in Sprague Dawley (SD) rats during aging.

Methods: Eighteen healthy SD rats were selected at the age of 1 month (1M) and 24 months (24M) and SNs were collected. High-throughput transcriptome sequencing and bioinformatics analysis were performed. Protein-protein interaction (PPI) networks and competing endogenous RNA (ceRNA) networks were established according to differentially expressed genes (DEGs).

Result: As the length of lncRNAs increased, its proportion to the total number of lncRNAs decreased. A total of 4079 DElncRNAs were identified in Con vs. 24M. GO analysis was primarily clustered in nerve and lipid metabolism, extracellular matrix, and vascularization-related fields. There were 17 nodes in the PPI network of the target genes of up-regulating genes including Itgb2, Lox, Col11a1, Wnt5a, Kras, etc. Using quantitative RT-PCR, microarray sequencing accuracy was validated. There were 169 nodes constructing the PPI network of down-regulated target genes, mainly including Col1a1, Hmgcs1, Hmgcr. CeRNA interaction networks were constructed.

Conclusion: Lipid metabolism, angiogenesis, and ECM fields might play an important role in the senescence process in SNs. Col3a1, Serpinh1, Hmgcr, and Fdps could be candidates for nerve aging research.

Graphical Abstract

[1]
Schellnegger, M.; Lin, A.C.; Hammer, N.; Kamolz, L.P. Physical activity on telomere length as a biomarker for aging: A systematic review. Sports Med. Open, 2022, 8(1), 111.
[http://dx.doi.org/10.1186/s40798-022-00503-1] [PMID: 36057868]
[2]
Sardella-Silva, G.; Mietto, B.S.; Ribeiro-Resende, V.T. Four seasons for schwann cell biology, revisiting key periods: Development, homeostasis, repair, and aging. Biomolecules, 2021, 11(12), 1887.
[http://dx.doi.org/10.3390/biom11121887] [PMID: 34944531]
[3]
Verdier, V.; Csárdi, G.; de Preux-Charles, A.S.; Médard, J.J.; Smit, A.B.; Verheijen, M.H.G.; Bergmann, S.; Chrast, R. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways. Glia, 2012, 60(5), 751-760.
[http://dx.doi.org/10.1002/glia.22305] [PMID: 22337502]
[4]
Hamilton, R.; Walsh, M.; Singh, R.; Rodriguez, K.; Gao, X.; Rahman, M.M.; Chaudhuri, A.; Bhattacharya, A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J. Neurol. Sci., 2016, 370, 47-52.
[http://dx.doi.org/10.1016/j.jns.2016.09.021] [PMID: 27772785]
[5]
Schneider-Poetsch, T.; Yoshida, M. Along the central dogma-controlling gene expression with small molecules. Annu. Rev. Biochem., 2018, 87(1), 391-420.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033923] [PMID: 29727582]
[6]
Glasgow, S.M.; Deneen, B. lnc’edin to myelin. Neuron, 2017, 93(2), 252-254.
[http://dx.doi.org/10.1016/j.neuron.2017.01.002] [PMID: 28103473]
[7]
Scheib, J.; Höke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol., 2013, 9(12), 668-676.
[http://dx.doi.org/10.1038/nrneurol.2013.227] [PMID: 24217518]
[8]
Djuanda, D.; He, B.; Liu, X.; Xu, S.; Zhang, Y.; Xu, Y.; Zhu, Z. Comprehensive analysis of age-related changes in lipid metabolism and myelin sheath formation in sciatic nerves. J. Mol. Neurosci., 2021, 71(11), 2310-2323.
[http://dx.doi.org/10.1007/s12031-020-01768-5] [PMID: 33492614]
[9]
Liu, JH.; Tang, Q.; Liu, XX.; Qi, J.; Zeng, RX.; Zhu, ZW.; He, B.; Xu, YB. Analysis of transcriptome sequencing of sciatic nerves in sprague-dawley rats of different ages. Neural Regen Res, 2018, 13(12), 2182-2190.
[http://dx.doi.org/ 10.4103/1673-5374.241469] [PMID: 30323151] [PMCID: PMC6199923]
[10]
Melcangi, R.C.; Azcoitia, I.; Ballabio, M.; Cavarretta, I.; Gonzalez, L.C.; Leonelli, E.; Magnaghi, V.; Veiga, S.; Garcia-Segura, L.M. Neuroactive steroids influence peripheral myelination: A promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Prog. Neurobiol., 2003, 71(1), 57-66.
[http://dx.doi.org/10.1016/j.pneurobio.2003.09.003] [PMID: 14611868]
[11]
Wang, Y.J.; Zhou, C.J.; Shi, Q.; Smith, N.; Li, T.F. Aging delays the regeneration process following sciatic nerve injury in rats. J. Neurotrauma, 2007, 24(5), 885-894.
[http://dx.doi.org/10.1089/neu.2006.0156] [PMID: 17518542]
[12]
Fuertes-Alvarez, S.; Izeta, A. Terminal schwann cell aging: Implications for age-associated neuromuscular dysfunction. Aging Dis., 2021, 12(2), 494-514.
[http://dx.doi.org/10.14336/AD.2020.0708] [PMID: 33815879]
[13]
Painter, M.W. Aging Schwann cells: Mechanisms, implications, future directions. Curr. Opin. Neurobiol., 2017, 47, 203-208.
[http://dx.doi.org/10.1016/j.conb.2017.10.022] [PMID: 29161640]
[14]
Saio, S.; Konishi, K.; Hohjoh, H.; Tamura, Y.; Masutani, T.; Iddamalgoda, A.; Ichihashi, M.; Hasegawa, H.; Mizutani, K. Extracellular environment-controlled angiogenesis, and potential application for peripheral nerve regeneration. Int. J. Mol. Sci., 2021, 22(20), 11169.
[http://dx.doi.org/10.3390/ijms222011169] [PMID: 34681829]
[15]
Jessen, K.R.; Mirsky, R.; Lloyd, A.C. Schwann cells: Development and role in nerve repair. Cold Spring Harb. Perspect. Biol., 2015, 7(7), a020487.
[http://dx.doi.org/10.1101/cshperspect.a020487] [PMID: 25957303]
[16]
Siqueira Mietto, B.; Kroner, A.; Girolami, E.I.; Santos-Nogueira, E.; Zhang, J.; David, S. Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J. Neurosci., 2015, 35(50), 16431-16442.
[http://dx.doi.org/10.1523/JNEUROSCI.2119-15.2015] [PMID: 26674868]
[17]
Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; Wicher, G.K.; Mitter, R.; Greensmith, L.; Behrens, A.; Raivich, G.; Mirsky, R.; Jessen, K.R. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron, 2012, 75(4), 633-647.
[http://dx.doi.org/10.1016/j.neuron.2012.06.021] [PMID: 22920255]
[18]
Fontana, X.; Hristova, M.; Da Costa, C.; Patodia, S.; Thei, L.; Makwana, M.; Spencer-Dene, B.; Latouche, M.; Mirsky, R.; Jessen, K.R.; Klein, R.; Raivich, G.; Behrens, A. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol., 2012, 198(1), 127-141.
[http://dx.doi.org/10.1083/jcb.201205025] [PMID: 22753894]
[19]
Painter, M.W.; Brosius Lutz, A.; Cheng, Y.C.; Latremoliere, A.; Duong, K.; Miller, C.M.; Posada, S.; Cobos, E.J.; Zhang, A.X.; Wagers, A.J.; Havton, L.A.; Barres, B.; Omura, T.; Woolf, C.J. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron, 2014, 83(2), 331-343.
[http://dx.doi.org/10.1016/j.neuron.2014.06.016] [PMID: 25033179]
[20]
Liu, M.; Li, P.; Jia, Y.; Cui, Q.; Zhang, K.; Jiang, J. Role of non-coding RNAs in axon regeneration after peripheral nerve injury. Int. J. Biol. Sci., 2022, 18(8), 3435-3446.
[http://dx.doi.org/10.7150/ijbs.70290] [PMID: 35637962]
[21]
Hashemi, M.; Nadafzadeh, N.; Imani, M.H.; Rajabi, R.; Ziaolhagh, S.; Bayanzadeh, S.D.; Norouzi, R.; Rafiei, R.; Koohpar, Z.K.; Raei, B.; Zandieh, M.A.; Salimimoghadam, S.; Entezari, M.; Taheriazam, A.; Alexiou, A.; Papadakis, M.; Tan, S.C. Targeting and regulation of autophagy in hepatocellular carcinoma: Revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun. Signal., 2023, 21(1), 32.
[http://dx.doi.org/10.1186/s12964-023-01053-z] [PMID: 36759819]
[22]
Moghbeli, M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell. Mol. Biol. Lett., 2021, 26(1), 13.
[http://dx.doi.org/10.1186/s11658-021-00257-w] [PMID: 33827418]
[23]
Zhang, Y.; Zhu, Z.; Liu, X.; Xu, S.; Zhang, Y.; Xu, Y.; He, B. Integrated analysis of long noncoding RNAs and mRNA expression profiles reveals the potential role of lncRNAs in early stage of post-peripheral nerve injury in Sprague-Dawley rats. Aging , 2021, 13(10), 13909-13925.
[http://dx.doi.org/10.18632/aging.202989] [PMID: 33971626]
[24]
Zhang, J.; Liu, Y.; Lu, L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci., 2018, 207, 227-233.
[http://dx.doi.org/10.1016/j.lfs.2018.06.011] [PMID: 29894714]
[25]
Zhou, S.; Ding, F.; Gu, X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci. Bull., 2016, 32(3), 253-264.
[http://dx.doi.org/10.1007/s12264-016-0028-7] [PMID: 27037691]
[26]
Du, S.; Wu, S.; Feng, X.; Wang, B.; Xia, S.; Liang, L.; Zhang, L.; Govindarajalu, G.; Bunk, A.; Kadakia, F.; Mao, Q.; Guo, X.; Zhao, H.; Berkman, T.; Liu, T.; Li, H.; Stillman, J.; Bekker, A.; Davidson, S.; Tao, Y.X. A nerve injury-specific long noncoding RNA promotes neuropathic pain by increasing Ccl2 expression. J. Clin. Invest., 2022, 132(13), e153563.
[http://dx.doi.org/10.1172/JCI153563] [PMID: 35775484]
[27]
Wang, D.; Zheng, T.; Ge, X.; Xu, J.; Feng, L.; Jiang, C.; Tao, J.; Chen, Y.; Liu, X.; Yu, B.; Zhou, S.; Zhu, J. Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Exp. Neurol., 2022, 352, 114025.
[http://dx.doi.org/10.1016/j.expneurol.2022.114025] [PMID: 35227685]
[28]
Yin, G.; Lin, Y.; Wang, P.; Zhou, J.; Lin, H. Upregulated lncARAT in Schwann cells promotes axonal regeneration by recruiting and activating proregenerative macrophages. Mol. Med., 2022, 28(1), 76.
[http://dx.doi.org/10.1186/s10020-022-00501-9] [PMID: 35768768]
[29]
Cantuti-Castelvetri, L.; Fitzner, D.; Bosch-Queralt, M.; Weil, M.T.; Su, M.; Sen, P.; Ruhwedel, T.; Mitkovski, M.; Trendelenburg, G.; Lütjohann, D.; Möbius, W.; Simons, M. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 2018, 359(6376), 684-688.
[http://dx.doi.org/10.1126/science.aan4183] [PMID: 29301957]
[30]
Faizy, T.D.; Thaler, C.; Broocks, G.; Flottmann, F.; Leischner, H.; Kniep, H.; Nawabi, J.; Schön, G.; Stellmann, J.P.; Kemmling, A.; Reddy, R.; Heit, J.J.; Fiehler, J.; Kumar, D.; Hanning, U. The myelin water fraction serves as a marker for age-related myelin alterations in the cerebral white matter - A multiparametric MRI aging study. Front. Neurosci., 2020, 14, 136.
[http://dx.doi.org/10.3389/fnins.2020.00136] [PMID: 32153358]
[31]
Esquisatto, M.A.M.; de Aro, A.A.; Fêo, H.B.; Gomes, L. Changes in the connective tissue sheath of Wistar rat nerve with aging. Ann. Anat., 2014, 196(6), 441-448.
[http://dx.doi.org/10.1016/j.aanat.2014.08.005] [PMID: 25282682]
[32]
Clements, M.P.; Byrne, E.; Camarillo Guerrero, L.F.; Cattin, A.L.; Zakka, L.; Ashraf, A.; Burden, J.J.; Khadayate, S.; Lloyd, A.C.; Marguerat, S.; Parrinello, S. The wound microenvironment reprograms schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron, 2017, 96(1), 98-114.e7.
[http://dx.doi.org/10.1016/j.neuron.2017.09.008] [PMID: 28957681]
[33]
Luo, Y.; Pan, H.; Jiang, J.; Zhao, C.; Zhang, J.; Chen, P.; Lin, X.; Fan, S. Desktop-stereolithography 3D printing of a polyporous extracellular matrix bioink for bone defect regeneration. Front. Bioeng. Biotechnol., 2020, 8, 589094.
[http://dx.doi.org/10.3389/fbioe.2020.589094] [PMID: 33240866]
[34]
Kornfeld, T.; Vogt, P.M.; Radtke, C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien. Med. Wochenschr., 2019, 169(9-10), 240-251.
[http://dx.doi.org/10.1007/s10354-018-0675-6] [PMID: 30547373]
[35]
Li, X.; Zhang, X.; Hao, M.; Wang, D.; Jiang, Z.; Sun, L.; Gao, Y.; Jin, Y.; Lei, P.; Zhuo, Y. The application of collagen in the repair of peripheral nerve defect. Front. Bioeng. Biotechnol., 2022, 10, 973301.
[http://dx.doi.org/10.3389/fbioe.2022.973301] [PMID: 36213073]
[36]
Hopf, A.; Schaefer, D.J.; Kalbermatten, D.F.; Guzman, R.; Madduri, S. Schwann cell-like cells: Origin and usability for repair and regeneration of the peripheral and central nervous system. Cells, 2020, 9(9), 1990.
[http://dx.doi.org/10.3390/cells9091990] [PMID: 32872454]
[37]
Widgerow, A.D.; Salibian, A.A.; Lalezari, S.; Evans, G.R.D. Neuromodulatory nerve regeneration: Adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J. Neurosci. Res., 2013, 91(12), 1517-1524.
[http://dx.doi.org/10.1002/jnr.23284] [PMID: 24105674]
[38]
Gregory, H.; Phillips, J.B. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochem. Int., 2021, 143, 104953.
[http://dx.doi.org/10.1016/j.neuint.2020.104953] [PMID: 33388359]
[39]
Fujimaki, H; Uchida, K; Inoue, G; Miyagi, M; Nemoto, N; Saku, T; Isobe, Y; Inage, K; Matsushita, O; Yagishita, S; Sato, J; Takano, S; Sakuma, Y; Ohtori, S; Takahashi, K; Takaso, M Oriented collagen tubes combined with basic fibroblast growth factor promote peripheral nerve regeneration in a 15mm sciatic nerve defect rat model. J. Biomed. Mater. Res. A, 2017, 105(1), 8-14.
[http://dx.doi.org/10.1002/jbm.a.35866]
[40]
Koopmans, G.; Hasse, B.; Sinis, N. Chapter 19: The role of collagen in peripheral nerve repair. Int. Rev. Neurobiol., 2009, 87, 363-379.
[http://dx.doi.org/10.1016/S0074-7742(09)87019-0] [PMID: 19682648]
[41]
Tian, W.M.; Hou, S.P.; Ma, J.; Zhang, C.L.; Xu, Q.Y.; Lee, I.S.; Li, H.D.; Spector, M.; Cui, F.Z. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng., 2005, 11(3-4), 513-525.
[http://dx.doi.org/10.1089/ten.2005.11.513] [PMID: 15869430]
[42]
Song, S.; Wang, X.; Wang, T.; Yu, Q.; Hou, Z.; Zhu, Z.; Li, R. Additive manufacturing of nerve guidance conduits for regeneration of injured peripheral nerves. Front. Bioeng. Biotechnol., 2020, 8, 590596.
[http://dx.doi.org/10.3389/fbioe.2020.590596] [PMID: 33102468]
[43]
Peng, Y.; Li, K.Y.; Chen, Y.F.; Li, X.J.; Zhu, S.; Zhang, Z.Y.; Wang, X.; Duan, L.N.; Luo, Z.J.; Du, J.J.; Wang, J.C. Beagle sciatic nerve regeneration across a 30 mm defect bridged by chitosan/PGA artificial nerve grafts. Injury, 2018, 49(8), 1477-1484.
[http://dx.doi.org/10.1016/j.injury.2018.03.023] [PMID: 29921534]
[44]
Cattin, A.L.; Burden, J.J.; Van Emmenis, L.; Mackenzie, F.E.; Hoving, J.J.A.; Garcia Calavia, N.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; Jamecna, D.; Napoli, I.; Parrinello, S.; Enver, T.; Ruhrberg, C.; Lloyd, A.C. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell, 2015, 162(5), 1127-1139.
[http://dx.doi.org/10.1016/j.cell.2015.07.021] [PMID: 26279190]
[45]
Malheiro, A.; Seijas-Gamardo, A.; Harichandan, A.; Mota, C.; Wieringa, P.; Moroni, L. Development of an in vitro biomimetic peripheral neurovascular platform. ACS Appl. Mater. Interfaces, 2022, 14(28), 31567-31585.
[http://dx.doi.org/10.1021/acsami.2c03861] [PMID: 35815638]
[46]
He, B.; Pang, V.; Liu, X.; Xu, S.; Zhang, Y.; Djuanda, D.; Wu, G.; Xu, Y.; Zhu, Z. Interactions among nerve regeneration, angiogenesis, and the immune response immediately after sciatic nerve crush injury in sprague-dawley rats. Front. Cell. Neurosci., 2021, 15, 717209.
[http://dx.doi.org/10.3389/fncel.2021.717209] [PMID: 34671243]
[47]
Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014, 35(24), 6143-6156.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.064] [PMID: 24818883]
[48]
Wariyar, S.S.; Brown, A.D.; Tian, T.; Pottorf, T.S.; Ward, P.J. Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury. Exp. Neurol., 2022, 353, 114029.
[http://dx.doi.org/10.1016/j.expneurol.2022.114029] [PMID: 35259353]
[49]
Pola, R.; Aprahamian, T.R.; Bosch-Marcé, M.; Curry, C.; Gaetani, E.; Flex, A.; Smith, R.C.; Isner, J.M.; Losordo, D.W. Age-dependent VEGF expression and intraneural neovascularization during regeneration of peripheral nerves. Neurobiol. Aging, 2004, 25(10), 1361-1368.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.02.028] [PMID: 15465634]
[50]
Wang, Y.; Li, Y.; Huang, Z.; Yang, B.; Mu, N.; Yang, Z.; Deng, M.; Liao, X.; Yin, G.; Nie, Y.; Chen, T.; Ma, H. Gene delivery of chitosan-graft-polyethyleneimine vectors loaded on scaffolds for nerve regeneration. Carbohydr. Polym., 2022, 290, 119499.
[http://dx.doi.org/10.1016/j.carbpol.2022.119499] [PMID: 35550777]
[51]
Mehta, K.; Behl, T.; Kumar, A.; Uddin, M.S.; Zengin, G.; Arora, S. Deciphering the neuroprotective role of glucagon-like peptide-1 agonists in diabetic neuropathy: Current perspective and future directions. Curr. Protein Pept. Sci., 2021, 22(1), 4-18.
[http://dx.doi.org/10.2174/1389203721999201208195901] [PMID: 33292149]
[52]
Sun, J.; Li, N.; Xu, M.; Li, L.; Chen, J.L.; Chen, Y.; Xu, J.G.; Wang, T.H. Mechanism of gene network in the treatment of intracerebral hemorrhage by natural plant drugs in Lutong granules. PLoS One, 2022, 17(11), e0274639.
[http://dx.doi.org/10.1371/journal.pone.0274639] [PMID: 36441671]
[53]
Chikkannaiah, M.; Reyes, I. New diagnostic and therapeutic modalities in neuromuscular disorders in children. Curr. Probl. Pediatr. Adolesc. Health Care, 2021, 51(7), 101033.
[http://dx.doi.org/10.1016/j.cppeds.2021.101033] [PMID: 34281812]
[54]
Stratton, J.A.; Eaton, S.; Rosin, N.L.; Jawad, S.; Holmes, A.; Yoon, G.; Midha, R.; Biernaskie, J. Macrophages and associated ligands in the aged injured nerve: A defective dynamic that contributes to reduced axonal regrowth. Front. Aging Neurosci., 2020, 12, 174.
[http://dx.doi.org/10.3389/fnagi.2020.00174] [PMID: 32595489]
[55]
Scheib, J.L.; Höke, A. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiol. Aging, 2016, 45, 1-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.05.004] [PMID: 27459920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy