Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Phytochemical, Pharmacological Profile and Biotechnology Approaches in the Production of Coriandrum sativum Linn.

Author(s): Sonia Singh*, Khushi Sharma, Manisha Goswami and Himanshu Sharma

Volume 27, Issue 11, 2023

Published on: 21 September, 2023

Page: [893 - 913] Pages: 21

DOI: 10.2174/1385272827666230907112523

Price: $65

Abstract

The plant coriander, family umbelliferae, has applications in both the culinary and traditional medical fields. It has a wide variety of phytochemicals, including polyphenols, vitamins, and many phytosterols. These phytoconstituents are responsible for the pharmacological activities of coriander, which include anticancer, anti-inflammatory, anti-diabetic, and analgesic actions. The following online resources were utilised to conduct an electronic search of the available literature: PubMed, Scopus, Google Scholar and ScienceDirect. Studies in traditional breeding techniques resulted in the production of new species over time. In this light, it is of the utmost need to carry out fundamental research on contemporary breeding programmes to ascertain coriander's quantity and quality performance. Through the use of genome sequencing technology and various molecular markers, researchers were able to examine the genetic diversity and population structure of the coriander plant. As a result of these studies, coriander breeding made some significant strides forward. The objective of this manuscript is to provide attention on the significant role that advances in biotechnology play in the breeding of coriander and to further evaluate and discuss the effectiveness of C. sativum in the treatment of several diseases. In addition to this, the manuscript includes a discussion of the phytoconstituents that may be found in coriander seed and that have been collected from all over the world. In light of this information, the application of biotechnological methods has the potential to improve coriander breeding.

Next »
Graphical Abstract

[1]
Diederichsen, A. Coriander: Coriandrum sativum L; Bioversity International, 1996.
[2]
Shelef, L.A. HERBS| Herbs of the umbelliferae in encyclopedia of food sciences and nutrition; Caballero, B., Ed.; , 2003, pp. 3090-3098.
[http://dx.doi.org/10.1016/B0-12-227055-X/00594-0]
[3]
Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 2015, 103, 9-26.
[http://dx.doi.org/10.1016/j.fitote.2015.03.012] [PMID: 25776008]
[4]
Singletary, K. Coriander: Overview of potential health benefits. Nutr. Today, 2016, 51(3), 151-161.
[http://dx.doi.org/10.1097/NT.0000000000000159]
[5]
Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res. Int., 2018, 105, 305-323.
[http://dx.doi.org/10.1016/j.foodres.2017.11.019] [PMID: 29433220]
[6]
Iyengar, M.A. Study of crude drugs, 20th ed; Manipal Power press: Manipal, Karnataka, 2004.
[7]
Iyengar, M.A.; Nayak, S.G.K. Anatomy of crude drugs; Manipal Power press: Manipal, Karnataka, 1991.
[8]
Pino, J.A.; Rosado, A.; Fuentes, V. Chemical composition of the seed oil of Coriandrum sativum L. from Cuba. J. Essent. Oil Res., 1996, 8(1), 97-98.
[http://dx.doi.org/10.1080/10412905.1996.9700565]
[9]
Ravi, R.; Prakash, M.; Bhat, K.K. Aroma characterization of coriander (Coriandrum sativum L.) oil samples. Eur. Food Res. Technol., 2007, 225(3-4), 367-374.
[http://dx.doi.org/10.1007/s00217-006-0425-7]
[10]
Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C.; Zulkifly, H.H.; Kifli, N.; Loy, M.J.; Sarker, M.M.R.; Al-Worafi, Y.M.; Goh, B.H.; Thuraisingam, S.; Goh, H.P. Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules, 2021, 27(1), 209.
[http://dx.doi.org/10.3390/molecules27010209] [PMID: 35011441]
[11]
Emam, G.M.; Heydari, H.G. Sedative-hypnotic activity of extracts and essential oil of coriander seeds. Iran. J. Med. Sci., 2006, 31(1), 22-27.
[12]
Silva, F.; Ferreira, S.; Queiroz, J.A.; Domingues, F.C. Coriander (Coriandrum sativum L.) essential oil: Its antibacterial activity and mode of action evaluated by flow cytometry. J. Med. Microbiol., 2011, 60(10), 1479-1486.
[http://dx.doi.org/10.1099/jmm.0.034157-0] [PMID: 21862758]
[13]
Zamindar, N.; Sadrarhami, M.; Doudi, M. Antifungal activity of coriander (Coriandrum sativum L.) essential oil in tomato sauce. J. Food Meas. Charact., 2016, 10(3), 589-594.
[http://dx.doi.org/10.1007/s11694-016-9341-0]
[14]
de Almeida, M.E.; Mancini, F.J.; Barbosa, G.N. Characterization of antioxidant compounds in aqueous coriander extract (Coriandrum sativum L.). Lebensm. Wiss. Technol., 2005, 38(1), 15-19.
[http://dx.doi.org/10.1016/j.lwt.2004.03.011]
[15]
Duarte, A.; Ferreira, S.; Silva, F.; Domingues, F.C. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine, 2012, 19(3-4), 236-238.
[http://dx.doi.org/10.1016/j.phymed.2011.11.010] [PMID: 22240078]
[16]
Chaudhry, N.M.; Tariq, P. Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak. J. Pharm. Sci., 2006, 19(3), 214-218.
[PMID: 16935829]
[17]
Jabeen, Q.; Bashir, S.; Lyoussi, B.; Gilani, A.H. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. J. Ethnopharmacol., 2009, 122(1), 123-130.
[http://dx.doi.org/10.1016/j.jep.2008.12.016] [PMID: 19146935]
[18]
Freires, I.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One, 2014, 9(6), e99086.
[http://dx.doi.org/10.1371/journal.pone.0099086] [PMID: 24901768]
[19]
Uma, B; Prabhakar, K; Rajendran, S; Sarayu, YL Antimicrobial activity and phytochemical analysis of Coriander sativum against infectious diarrhea. Ethnobot. leafl., 2009, 2009(5), 4.
[20]
Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem., 2008, 56(16), 7316-7320.
[http://dx.doi.org/10.1021/jf800780f] [PMID: 18605734]
[21]
Suneetha, W.J.; Krishnakantha, T.P. Antiplatelet activity of coriander and curry leaf spices. Pharm. Biol., 2005, 43(3), 230-233.
[http://dx.doi.org/10.1080/13880200590928807]
[22]
Mahendra, P.; Bisht, S. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models. Indian J. Pharmacol., 2011, 43(5), 574-577.
[http://dx.doi.org/10.4103/0253-7613.84975] [PMID: 22022003]
[23]
Latha, K.; Rammohan, B.; Sunanda, B.P.; Maheswari, M.S.; Mohan, S.K. Evaluation of anxiolytic activity of aqueous extract of Coriandrum sativum Linn. in mice: A preliminary experimental study. Pharmacognosy Res., 2015, 7(5s)(Suppl. 1), S47-S51.
[PMID: 26109787]
[24]
Harsha, S.N.; Anilakumar, K.R. Effects of Coriandrum sativum extract on exploratory behaviour pattern and locomotor activity in mice: An experimental study. Int. J. Green Pharm., 2012, 6(2)
[25]
Mani, V.; Parle, M. Memory-enhancing activity of Coriandrum sativum in rats. Pharmacologyonline, 2009, 2, 827-839.
[26]
Reuter, J.; Huyke, C.; Casetti, F.; Theek, C.; Frank, U.; Augustin, M.; Schempp, C. Anti-inflammatory potential of a lipolotion containing coriander oil in the ultraviolet erythema test. J. Dtsch. Dermatol. Ges., 2008, 0(0), 080326230128326.
[http://dx.doi.org/10.1111/j.1610-0387.2008.06704.x] [PMID: 18371049]
[27]
Nunes, C.R.; Barreto, A.M. Menezes de, F.P.S.; Leandro da Cruz, L.; de Souza, P.M.; de Moraes, P.L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules, 2020, 25(16), 3726.
[http://dx.doi.org/10.3390/molecules25163726] [PMID: 32824133]
[28]
Heidari, B.; Sajjadi, S.E.; Minaiyan, M. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid-induced acute colitis in rats. Avicenna J. Phytomed., 2016, 6(2), 205-214.
[PMID: 27222834]
[29]
Yuan, R.; Liu, Z.; Zhao, J.; Wang, Q.Q.; Zuo, A.; Huang, L.; Gao, H.; Xu, Q.; Khan, I.A.; Yang, S. Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. J. Funct. Foods, 2020, 73, 104145.
[http://dx.doi.org/10.1016/j.jff.2020.104145]
[30]
Deepa, B.; Acharya, S.; Holla, R. Evaluation of antiarthritic activity of coriander seed essential oil in Wistar albino rats. Res J Pharm Technol, 2020, 13(2), 761-766.
[http://dx.doi.org/10.5958/0974-360X.2020.00144.4]
[31]
Munkholm, P. Review article: The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment. Pharmacol. Ther., 2003, 18(S2), 1-5.
[http://dx.doi.org/10.1046/j.1365-2036.18.s2.2.x] [PMID: 12950413]
[32]
Luo, Q.; Cai, Y.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci., 2004, 76(2), 137-149.
[http://dx.doi.org/10.1016/j.lfs.2004.04.056] [PMID: 15519360]
[33]
Hernández, O.M.; Fraga, J.M.G.; Jiménez, A.I.; Jiménez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chem., 2005, 93(3), 449-458.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.036]
[34]
Tang, E.L.H.; Rajarajeswaran, J.; Fung, S.Y.; Kanthimathi, M.S. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med., 2013, 13(1), 347.
[http://dx.doi.org/10.1186/1472-6882-13-347] [PMID: 24517259]
[35]
Nithya, T.G.; Sumalatha, D. Evaluation of in vitro anti-oxidant and anticancer activity of Coriandrum sativum against human colon cancer HT-29 cell lines. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 421-424.
[36]
Ravizza, R.; Gariboldi, M.B.; Molteni, R.; Monti, E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol. Rep., 2008, 20(3), 625-630.
[PMID: 18695915]
[37]
Iwasaki, K.; Zheng, Y.W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; Isoda, H.; Matsui, H.; Ohkohchi, N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol., 2016, 22(44), 9765-9774.
[http://dx.doi.org/10.3748/wjg.v22.i44.9765] [PMID: 27956800]
[38]
Miller, M. Dyslipidemia and cardiovascular risk: The importance of early prevention. QJM, 2009, 102(9), 657-667.
[http://dx.doi.org/10.1093/qjmed/hcp065] [PMID: 19498039]
[39]
Dhanapakiam, P.; Joseph, J.M.; Ramaswamy, V.K.; Moorthi, M.; Kumar, A.S. The cholesterol lowering property of coriander seeds (Coriandrum sativum): Mechanism of action. J. Environ. Biol., 2008, 29(1), 53-56.
[PMID: 18831331]
[40]
Ramadan, M.F.; Amer, M.M.A.; Awad, A.E.S. Coriander (Coriandrum sativum L.) seed oil improves plasma lipid profile in rats fed a diet containing cholesterol. Eur. Food Res. Technol., 2008, 227(4), 1173-1182.
[http://dx.doi.org/10.1007/s00217-008-0833-y]
[41]
Chithra, V.; Leelamma, S. Coriandrum sativum - effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. J. Ethnopharmacol., 2000, 71(3), 457-463.
[http://dx.doi.org/10.1016/S0378-8741(00)00182-3] [PMID: 10940583]
[42]
Cioanca, O.; Hritcu, L.; Mihasan, M.; Hancianu, M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer’s disease. Physiol. Behav., 2013, 120, 193-202.
[http://dx.doi.org/10.1016/j.physbeh.2013.08.006] [PMID: 23958472]
[43]
Cioanca, O.; Hritcu, L.; Mihasan, M.; Trifan, A.; Hancianu, M. Inhalation of coriander volatile oil increased anxiolytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer’s disease. Physiol. Behav., 2014, 131, 68-74.
[http://dx.doi.org/10.1016/j.physbeh.2014.04.021] [PMID: 24747275]
[44]
Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; Wang, D. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res., 2013, 180(1), e47-e54.
[http://dx.doi.org/10.1016/j.jss.2012.10.050] [PMID: 23228323]
[45]
Ma, J.; Xu, H.; Wu, J.; Qu, C.; Sun, F.; Xu, S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int. Immunopharmacol., 2015, 29(2), 708-713.
[http://dx.doi.org/10.1016/j.intimp.2015.09.005] [PMID: 26432179]
[46]
Sabogal-Guáqueta, A.M.; Osorio, E.; Cardona-Gómez, G.P. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology, 2016, 102, 111-120.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.002] [PMID: 26549854]
[47]
Zhu, Y.J.; Zeng, T.; Zhu, Y.B.; Yu, S.F.; Wang, Q.S.; Zhang, L.P.; Guo, X.; Xie, K.Q. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem. Res., 2008, 33(11), 2310-2317.
[http://dx.doi.org/10.1007/s11064-008-9730-9] [PMID: 18470611]
[48]
Sumizawa, T.; Igisu, H. Apoptosis induced by acrylamide in SH-SY5Y cells. Arch. Toxicol., 2007, 81(4), 279-282.
[http://dx.doi.org/10.1007/s00204-006-0145-6] [PMID: 16932918]
[49]
Mehri, S.; Meshki, M.A.; Hosseinzadeh, H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem. Toxicol., 2015, 38(2), 162-166.
[http://dx.doi.org/10.3109/01480545.2014.919585] [PMID: 24844946]
[50]
Gray, A.M.; Flatt, P.R. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br. J. Nutr., 1999, 81(3), 203-209.
[http://dx.doi.org/10.1017/S0007114599000392] [PMID: 10434846]
[51]
Chithra, V.; Leelamma, S. Coriandrum sativum - mechanism of hypoglycemic action. Food Chem., 1999, 67(3), 229-231.
[http://dx.doi.org/10.1016/S0308-8146(99)00113-2]
[52]
Aissaoui, A.; Zizi, S.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol., 2011, 137(1), 652-661.
[http://dx.doi.org/10.1016/j.jep.2011.06.019] [PMID: 21718774]
[53]
Eidi, M.; Eidi, A.; Saeidi, A.; Molanaei, S.; Sadeghipour, A.; Bahar, M.; Bahar, K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother. Res., 2009, 23(3), 404-406.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[54]
Gallagher, A.M.; Flatt, P.R.; Duffy, G.; Abdel-Wahab, Y.H.A. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr. Res., 2003, 23(3), 413-424.
[http://dx.doi.org/10.1016/S0271-5317(02)00533-X]
[55]
Mechchate, H.; Es-Safi, I.; Amaghnouje, A.; Boukhira, S.; Alotaibi, A. A.; Al-Zharani, M.; A Nasr, F.; M Noman, O.; Conte, R.; Amal, E.H.E.Y.; Bekkari, H.; Bousta, D. Antioxidant, anti-inflammatory and antidiabetic proprieties of LC-MS/MS identified polyphenols from coriander seeds. Molecules, 2021, 26(2), 487.
[http://dx.doi.org/10.3390/molecules26020487] [PMID: 33477662]
[56]
Dhyani, N.; Parveen, A.; Siddiqi, A.; Hussain, M.E.; Fahim, M. Cardioprotective Efficacy of Coriandrum sativum (L.) seed extract in heart failure rats through modulation of endothelin receptors and antioxidant potential. J. Diet. Suppl., 2020, 17(1), 13-26.
[http://dx.doi.org/10.1080/19390211.2018.1481483] [PMID: 30299180]
[57]
Patel, D.K.; Desai, S.N.; Gandhi, H.P.; Devkar, R.V.; Ramachandran, A.V. Cardio protective effect of Coriandrum sativum L. on isoproterenol induced myocardial necrosis in rats. Food Chem. Toxicol., 2012, 50(9), 3120-3125.
[http://dx.doi.org/10.1016/j.fct.2012.06.033] [PMID: 22750725]
[58]
Shin, E.J.; Jeong, J.H.; Chung, Y.H.; Kim, W.K.; Ko, K.H.; Bach, J.H.; Hong, J.S.; Yoneda, Y.; Kim, H.C. Role of oxidative stress in epileptic seizures. Neurochem. Int., 2011, 59(2), 122-137.
[http://dx.doi.org/10.1016/j.neuint.2011.03.025] [PMID: 21672578]
[59]
Sudha, K.; Rao, A.V.; Rao, A. Oxidative stress and antioxidants in epilepsy. Clin. Chim. Acta, 2001, 303(1-2), 19-24.
[http://dx.doi.org/10.1016/S0009-8981(00)00337-5] [PMID: 11163018]
[60]
Aguiar, C.C.; Almeida, A.B.; Araújo, P.V.; Abreu, R.N.; Chaves, E.M.; Vale, O.C.; Macêdo, D.S.; Woods, D.J.; Fonteles, M.M.; Vasconcelos, S.M. Oxidative stress and epilepsy: Literature review. Oxid. Med. Cell. Longev., 2012, 2012, 795259.
[http://dx.doi.org/10.1155/2012/795259]
[61]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[62]
Anaeigoudari, A.; Hosseini, M.; Karami, R.; Vafaee, F.; Mohammadpour, T.; Ghorbani, A.; Sadeghnia, H.R. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats. Avicenna J. Phytomed., 2016, 6(2), 223-235.
[PMID: 27222836]
[63]
Karami, R.; Hosseini, M.; Mohammadpour, T.; Ghorbani, A.; Sadeghnia, H.R.; Rakhshandeh, H.; Vafaee, F.; Esmaeilizadeh, M. Effects of hydroalcoholic extract of Coriandrum sativum on oxidative damage in pentylenetetrazole-induced seizures in rats. Iran. J. Neurol., 2015, 14(2), 59-66.
[PMID: 26056549]
[64]
White, H.S.; Smith, M.D.; Wilcox, K.S. Mechanisms of action of antiepileptic drugs. Int. Rev. Neurobiol., 2007, 81, 85-110.
[http://dx.doi.org/10.1016/S0074-7742(06)81006-8] [PMID: 17433919]
[65]
Vatanparast, J.; Bazleh, S.; Janahmadi, M. The effects of linalool on the excitability of central neurons of snail Caucasotachea atrolabiata. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2017, 192, 33-39.
[http://dx.doi.org/10.1016/j.cbpc.2016.12.004] [PMID: 27939722]
[66]
Elisabetsky, E.; Silva Brum, L.F.; Souza, D.O. Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine, 1999, 6(2), 107-113.
[http://dx.doi.org/10.1016/S0944-7113(99)80044-0] [PMID: 10374249]
[67]
Yilmaz, A.; Yilmaz, H.; Turan, S.; Çeli̇k, A.; Nadeem, M.A.; Demi̇rel, F.; Demi̇rel, S.; Eren, B.; Emi̇rali̇oğlu, O.; Arslan, M. Biotechnological advancements in coriander (Coriandrum sativum L.). Eur. J. Sci. Technol., 2022, (35), 203-220.
[http://dx.doi.org/10.31590/ejosat.1072325]
[68]
Sifola, M.I.; Barbieri, G. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hortic., 2006, 108(4), 408-413.
[http://dx.doi.org/10.1016/j.scienta.2006.02.002]
[69]
Gharib, F.A.; Moussa, L.A.; Massoud, O.N. Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int. J. Agric. Biol., 2008, 10(4), 381-387.
[70]
Inan, M.; Kirici, S.; Giray, E.S.; Turk, M.; Taghikhani, H. Determination of suitable coriander (Coriandrum sativum L.) cultivars for eastern mediterranean region. Turk. J. Field Crops, 2014, 19(1), 1-6.
[http://dx.doi.org/10.17557/tjfc.05577]
[71]
Katar, D.; Kara, N.; Katar, N. Yields and quality performances of coriander (Coriandrum sativum L.) genotypes under different ecological conditions. Turk. J. Field Crops, 2016, 21(1), 78.
[http://dx.doi.org/10.17557/tjfc.77478]
[72]
Verma, P.; Solanki, R.K.; Meghwal, H.P.; Tak, Y. Variable expression of anthocyanin in flower and stem of coriander (Coriandrum sativum L.): Breeding implications. Int. J. Chem. Stud., 2021, 9(1), 1180-1183.
[http://dx.doi.org/10.22271/chemi.2021.v9.i1q.11384]
[73]
Preeti, V.; Vibha, D.; Punia, S.S.; Minakshi, D.; Mashiat, A. White flower coriander (Coriandrum sativum L.): Yet to be explored. Ann. Biol., 2014, 30(1), 162-165.
[74]
Romanenko, L.G. Inheritance of white coloration of the corolla in coriander. 5 Vsesoyuznyĭ simpozium" Osnovnye napravleniya nauchnykh issledovaniĭ po intensifikatsii ėfiromaslichnogo proizvodstva. In: Kishinev, 17-19 sentyabrya, 1990: Tezisy dokladov; , 1990; p. 41-42.
[75]
Pruthi, J.S. Minor spices and condiments: crop management and post-harvest technology; Directorate of Information and Publications of Agriculture; Indian Council of Agricultural Research, 2001.
[76]
Bhowmik, P.C. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot., 2003, 22(4), 661-671.
[http://dx.doi.org/10.1016/S0261-2194(02)00242-9]
[77]
Baloch, A.W.; Soomro, A.M.; Javed, M.A.; Bughio, H.R.; Bughio, M.S.; Mohammed, T.; Mastoi, N.N. Development of high yielding rice mutant variety through gamma rays irradiation. Nucleus, 2002, 39(3-4), 227-232.
[78]
Javed, M.A.; Siddiqui, M.A.; Khan, M.K.R.; Khatri, A.; Khan, I.A.; Dahar, N.A.; Khanzada, M.H.; Khan, R. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation. Asian J. Plant Sci., 2003, 2(2), 192-195.
[http://dx.doi.org/10.3923/ajps.2003.192.195]
[79]
Sutarto, I.; Agisimanto, D.; Supriyanto, A. Development of promising seedless citrus mutants through gamma irradiation. Induced plant mutations in the genomics era; Food and Agriculture Organization of the United Nations: Rome, 2009, pp. 306-308.
[80]
Mba, C.; Shu, Q.Y. Gamma irradiation. In: Plant mutation breeding and biotechnology; CABI: Wallingford, UK, 2012; pp. 91-98.
[http://dx.doi.org/10.1079/9781780640853.0091]
[81]
Bhosale, R.S.; More, A.D. Effect of gamma radiation on seed germination, seedling height and seedling injury in Withania somnifera (L.). Dunal. Int. J. Life Sci., 2014, 2(3), 226-228.
[82]
Kozgar, M.I.; Khan, S.; Wani, M.R. Variability and correlations studies for total iron and manganese contents of chickpea (Cicer arietinum L.) high yielding mutants. Am. J. Food Technol., 2012, 7(7), 437-444.
[http://dx.doi.org/10.3923/ajft.2012.437.444]
[83]
Krishnan, A.; Guiderdoni, E.; An, G.; Hsing, Y.C.; Han, C.; Lee, M.C.; Yu, S.M.; Upadhyaya, N.; Ramachandran, S.; Zhang, Q.; Sundaresan, V.; Hirochika, H.; Leung, H.; Pereira, A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol., 2009, 149(1), 165-170.
[http://dx.doi.org/10.1104/pp.108.128918] [PMID: 19126710]
[84]
Datta, A.K.; Sengupta, K. Induced viable macromutants in coriander (Coriandrum sativum L.). Indian J. Genet. Plant Breed., 2002, 62(03), 273-274.
[85]
Chaudhary, P.; Ramkrishna, K. An analysis of polygenic variation in the M4 families of coriander (Coriandrum sativum L.). Indian J. Genet. Plant Breed., 2003, 63(02), 181-182.
[86]
Kumar, A. Role of ethyl methane sulphonate on the germination of Coriandrum sativum L. Int. J. Mendel., 2005, 22, 29.
[87]
Latif, H.H.; Abdalla, M.A.; Farag, S.A. Radio-stimulation of phytohormons and bioactive components of coriander seedlings. Turkish J. Biochem., 2011, 36(3)
[88]
Karishma, L. Genomic damage induced by individual and combination treatment of gamma rays and ethyl methane sulphonate in Coriandrum sativum. Int. J. Botany. Res., 2013, 79, 85.
[89]
Kalidasu, G.; Suryakumari, S.; Sarada, C.; Rajani, A.; Rao, N.H.; Pandravada, S.R.; Naidu, L.N. Exploiting genetic divergence for crop improvement in coriander (Coriandrum sativum L.): A neglected and underutilized crop. Indian J. Plant. Genet. Resour., 2015, 28(2), 222-228.
[http://dx.doi.org/10.5958/0976-1926.2015.00026.1]
[90]
Kumar, G.; Pandey, A. Heavy metal induced genomic distortion in root meristems of coriander (Coriandrum sativum L.). Int. Res. J. Plant Sci., 2015, 4(5), 47-53.
[91]
Kumar, G.; Pandey, A. Ethyl methane sulphonate induced changes in cyto-morphological and biochemical aspects of Coriandrum sativum L. J. Saudi Soc. Agric. Sci., 2019, 18(4), 469-475.
[http://dx.doi.org/10.1016/j.jssas.2018.03.003]
[92]
Salve, K.M.; More, A.D. Biochemical investigation of Tall and Dwarf mutants in Coriander. Int. J. Res. Anal. Rev., 2019, 6, 2348-1269.
[93]
Hua, Y.; Woehler, A.; Kahms, M.; Haucke, V.; Neher, E.; Klingauf, J. Blocking endocytosis enhances short-term synaptic depression under conditions of normal availability of vesicles. Neuron, 2013, 80(2), 343-349.
[http://dx.doi.org/10.1016/j.neuron.2013.08.010] [PMID: 24139039]
[94]
Pramanik, A.; Datta, A.K.; Gupta, S.; Ghosh, B.; Das, D.; Kumbhakar, D.V. Cadmium sulfide nanoparticles and gamma irradiations induced desynapsis with associated phenotypic marker trait in Coriandrum sativum L. (Apiaceae). Cytologia, 2018, 83(3), 307-310.
[http://dx.doi.org/10.1508/cytologia.83.307]
[95]
Pramanik, A.; Datta, A.K.; Gupta, S.; Ghosh, B. Copper oxide nanoparticles induced fertile desynaptic mutant line in Coriandrum sativum L. (Apiaceae). Cytologia, 2018, 83(1), 103-107.
[http://dx.doi.org/10.1508/cytologia.83.103]
[96]
Pramanik, A.; Datta, A.K.; Gupta, S.; Ghosh, B.; Das, D.; Kumbhakar, D.V.; Hore, M. Gamma irradiation sensitivity in Coriandrum sativum L. (coriander). Cytologia, 2018, 83(4), 381-385.
[http://dx.doi.org/10.1508/cytologia.83.381]
[97]
Dhanalakshmi, K.; Arulmozhiyan, R.; Chitra, K.; Sivabalan, K.C.; Vijayakumari, K.K. Sensitivity analysis in coriander (Coriandrum sativum L.). J. Pharmacogn. Phytochem., 2019, SP2, 990-993.
[98]
Murthy, H.N.; Hahn, E.J.; Paek, K.Y. Recurrent somatic embryogenesis and plant regeneration in Coriandrum sativum L. Sci. Hortic., 2008, 118(2), 168-171.
[http://dx.doi.org/10.1016/j.scienta.2008.05.037]
[99]
Jayanthi, M.; Mandal, P.K. Plant regeneration through somatic embryogenesis and rapd analysis of regenerated plants in Tylophora indica (Burm. F. Merrill.). In Vitro Cell. Dev. Biol. Plant, 2001, 37(5), 576-580.
[http://dx.doi.org/10.1007/s11627-001-0101-3]
[100]
Ali, M.; Mujib, A.; Tonk, D.; Zafar, N. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L. Protoplasma, 2017, 254(1), 343-352.
[http://dx.doi.org/10.1007/s00709-016-0954-2] [PMID: 26910351]
[101]
Ali, M.; Mujib, A.; Zafar, N.; Tonk, D. Somatic embryogenesis, biochemical alterations and synthetic seed development in two varieties of coriander (Coriandrum sativum L.). Adv. Hortic. Sci., 2018, 32(2), 239-248.
[102]
Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol., 2008, 147(3), 969-977.
[http://dx.doi.org/10.1104/pp.108.118232] [PMID: 18612074]
[103]
Gale, M.D.; Miller, T.E. The introduction of alien genetic variation in wheat. In: Wheat breeding; Springer: Dordrecht, 1987; pp. 173-210.
[http://dx.doi.org/10.1007/978-94-009-3131-2_7]
[104]
Gupta, P.K.; Rustgi, S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Genomics, 2004, 4(3), 139-162.
[http://dx.doi.org/10.1007/s10142-004-0107-0] [PMID: 15095058]
[105]
Ali, F.; Nadeem, M.A.; Habyarimana, E.; Yılmaz, A.; Nawaz, M.A.; Khalil, I.H.; Ercişli, S.; Chung, G.; Chaudhary, H.J.; Baloch, F.S. Molecular characterization of genetic diversity and similarity centers of safflower accessions with ISSR markers. Rev. Bras. Bot., 2020, 43(1), 109-121.
[http://dx.doi.org/10.1007/s40415-019-00574-7]
[106]
Nadeem, M.A.; Aasim, M.; Kırıcı, S.; Karık, Ü.; Nawaz, M.A.; Yılmaz, A.; Maral, H.; Khawar, K.M.; Baloch, F.S. Laurel (Laurus nobilis L.): A less-known medicinal plant to the world with diffusion, genomics, phenomics, and metabolomics for genetic improvement. In: Biotechnological approaches for medicinal and aromatic plants; Springer, 2018; pp. 631-653.
[107]
Reiter, R.S.; Williams, J.G.; Feldmann, K.A.; Rafalski, J.A.; Tingey, S.V.; Scolnik, P.A. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci., 1992, 89(4), 1477-1481.
[http://dx.doi.org/10.1073/pnas.89.4.1477] [PMID: 1346933]
[108]
Shidfar, M.; Keskin, S.; Khah, E.M.; Petropoulos, S.; Ozdemir, F.A.; Gokcen, I.S. RAPD markers reveal genetic variation between Cichorium spinosum L. and Taraxacum sp.: A substantial medicinal plants of Greece. Prog. Nutr., 2018, 20, 153-159.
[109]
Bhutta, W.M.; Hanif, M. Identification of RAPD markers linked to salinity tolerance in wheat. Afr. J. Biotechnol., 2013, 12(17)
[110]
Jordano, P.; Godoy, J.A. RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol. Ecol., 2000, 9(9), 1293-1305.
[http://dx.doi.org/10.1046/j.1365-294x.2000.01009.x] [PMID: 10972769]
[111]
Omidbaigi, R.; Rahimi, S.; Naghavi, M.R. Evaluation of molecular and essential oil diversity of coriander (Coriandrum sativum L.) landraces from Iran. J. Essent. Oil-Bear. Plants, 2009, 12(1), 46-54.
[http://dx.doi.org/10.1080/0972060X.2009.10643690]
[112]
Nisha, P.; Jakhar, M.L.; Malik, C.P. A comparative analysis of RAPD and ISSR markers for studying genetic diversity among Coriander (Coriandrum sativum L.) varieties. Phytomorphology, 2013, 63(1/2), 1-9.
[113]
Tomar-Rukam, S.; Kulkarni, G.U.; Parakhia, M.V.; Thakkar, J.R.; Rathod, V.M.; Solanki, R.K.; Golakiya, B.A. Genetic diversity analysis in coriander (Coriandrum sativum) genotypes through morphological and molecular characterization. Res. J. Biotechnol., 2014, 9, 1-1.
[114]
Singh, S.K.; Kakani, R.K.; Meena, R.S.; Pancholy, A.; Pathak, R.; Raturi, A. Studies on genetic divergence among Indian varieties of a spice herb, Coriandrum sativum. J. Environ. Biol., 2012, 33(4), 781-789.
[PMID: 23360008]
[115]
Kazemeini, F.; Asri, Y.; Mostafavi, G.; Kalvandi, R.; Mehregan, I. Assessment of genetic diversity, population structure and morphological analyses in an Iranian endemic species Rhabdosciadium aucheri Boiss. (Apiaceae) using ISSR markers. Biologia., 2021, 76(2), 441-451.
[http://dx.doi.org/10.2478/s11756-020-00637-1]
[116]
Mustafina, F.U.; Kim, E.H.; Son, S.W.; Turginov, O.T.; Chang, K.S.; Choi, K. Assessment of genetic diversity of Prangos fedtschenkoi (Apiaceae) and its conservation status based on ISSR markers. Korean J. Plant Taxon., 2017, 47(1), 11-22.
[http://dx.doi.org/10.11110/kjpt.2017.47.1.11]
[117]
Salami, M.; Rahimmalek, M.; Ehtemam, M.H. Genetic variability of outcross and selfed fennel based on morphological and ISSR markers. Agr. Sci. Tech., 2017, 19, 157-172.
[118]
Rostami-Ahmadvandi, H.; Cheghamirza, K.; Kahrizi, D.; Bahraminejad, S. Comparison of morpho-agronomic traits versus RAPD and ISSR markers in order to evaluate genetic diversity among Cuminum cyminum L. accessions. Aust. J. Crop Sci., 2013, 7(3), 361-367.
[119]
Ghosh, S.; Ganga, M.; Soorianathasundaram, K.; Kumar, A. Molecular characterization of jasmine genotypes using RAPD and ISSR markers. Indian J. Hortic., 2020, 77(1), 149-157.
[http://dx.doi.org/10.5958/0974-0112.2020.00016.X]
[120]
Melo, R.A.; Resende, L.V.; Menezes, D.; Beck, A.P.A.; Costa, J.C.; Coutinho, A.E.; Nascimento, A.V.S. Genetic similarity between coriander genotypes using ISSR markers. Hortic. Bras., 2011, 29(4), 526-530.
[http://dx.doi.org/10.1590/S0102-05362011000400014]
[121]
López, P.A.; Widrlechner, M.P.; Simon, P.W.; Rai, S.; Boylston, T.D.; Isbell, T.A.; Bailey, T.B.; Gardner, C.A.; Wilson, L.A. Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet. Resour. Crop Evol., 2008, 55(2), 247-275.
[http://dx.doi.org/10.1007/s10722-007-9232-7]
[122]
Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet., 2010, 121(8), 1419-1430.
[http://dx.doi.org/10.1007/s00122-010-1398-2] [PMID: 20623102]
[123]
Alp, F.M.; Gebologlu, M.D. Two different molecular markers (SSR & IPBS) assessment on Coriandrum sativum L. with capillary electrophoresis. Fresenius Environ. Bull., 2017, 26(7), 4568-4573.
[124]
Giridhar, K. Use of male gametocide: An alternative to cumbersome emasculation in coriander (Coriandrum sativum L.). J. Hortic. For.A, 2009, 1(7), 126-132.
[125]
Coriander Export from India. Data, price & analysis of Coriander export (connect2india.com) India: coriander seed production volume by state 2022. 2022. Available from: https://connect2india.com/global/Coriander-export-from-india/1
[126]
Murti, Y.; Semwal, B.C.; Goyal, A.; Mishra, P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med., 2021, 7(1), 28-44.
[http://dx.doi.org/10.2174/2215083805666190617144652]
[127]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Singh, S. Lead phytomolecules for gastroprotective drug development. In: Advances in Traditional Medicine; , 2022; p. 1-8.
[http://dx.doi.org/10.1007/s13596-022-00633-7]
[128]
Pandey, S.N.; Singh, G.; Semwal, B.C.; Gupta, G.; Alharbi, K.S.; Almalki, W.H.; Albratty, M.; Najmi, A.; Meraya, A.M. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer’s disease. J. Food Biochem., 2022, 46(12), e14426.
[http://dx.doi.org/10.1111/jfbc.14426] [PMID: 36169224]
[129]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy