Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Discovery of MAO-A Inhibitors as Antidepressant Based on Virtual Screening

Author(s): Wei Xiaopeng*, Jin Zhan, Zheqi Fan, Ying Chen, Weikai Jing, Man Zhang, Chunchun Gan* and Jinrong Yang*

Volume 21, Issue 12, 2024

Published on: 11 September, 2023

Page: [2438 - 2449] Pages: 12

DOI: 10.2174/1570180820666230905112912

Price: $65

Abstract

Aim: Major depression and anxiety have increased significantly worldwide since the 2019 outbreak of COVID-19. The development of highly effective antidepressants with low side effects is attracting researchers.

Methods: Monoamine oxidase A (MAO-A) is a key enzyme that catalyzes the metabolism of norepinephrine (NE), dopamine (DA), and serotonin (5-HT), etc. Elevated level of MAO-A would lead to increased metabolism of its substrates, thereby causing a decrease in the levels of these neurotransmitter monoamines in the brain leading to depression. Consequently, inhibition of MAO-A was thought to be an effective strategy, as this would treat the root cause of depression.

Results and Discussion: Based on the crystal structure of MAO-A, 4 star-hits, as potential MAO-A inhibitors was screened from the compound libraries with central nervous system (CNS) activity by using various computational techniques. Molecular dynamics simulation was used to verify the stability of the ligand- receptor complexes.

Conclusion: Furthermore, the ADMET (absorption, distribution, metabolism, excretion and toxicity properties) of the virtual hits were predicted in order to evaluate their lead-like properties and safety. This work provides ideas for the drugs discovery of antidepressant.

[1]
Smith, K. Mental health: A world of depression. Nature, 2014, 515(7526), 180-181.
[http://dx.doi.org/10.1038/515180a] [PMID: 25391942]
[2]
Reddy, M.S. Depression - the global crisis. Indian J. Psychol. Med., 2012, 34(3), 201-203.
[http://dx.doi.org/10.4103/0253-7176.106011] [PMID: 23436954]
[3]
Pal, R.; Kumar, B.; Swamy, P.M. G.; Chawla, P.A. Design, synthesis of 1,2,4-triazine derivatives as antidepressant and antioxidant agents: In vitro, in vivo and in silico studies. Bioorg. Chem., 2023, 131, 106284.
[http://dx.doi.org/10.1016/j.bioorg.2022.106284] [PMID: 36444791]
[4]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[5]
Almohammed, O.A.; Alsalem, A.A.; Almangour, A.A.; Alotaibi, L.H.; Al Yami, M.S.; Lai, L. Antidepressants and health-related quality of life (HRQoL) for patients with depression: Analysis of the medical expenditure panel survey from the United States. PLoS One, 2022, 17(4), e0265928.
[http://dx.doi.org/10.1371/journal.pone.0265928] [PMID: 35442954]
[6]
Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; Bang-Jensen, B.L.; Bertolacci, G.J.; Bloom, S.S.; Castellano, R.; Castro, E.; Chakrabarti, S.; Chattopadhyay, J.; Cogen, R.M.; Collins, J.K.; Dai, X.; Dangel, W.J.; Dapper, C.; Deen, A.; Erickson, M.; Ewald, S.B.; Flaxman, A.D.; Frostad, J.J.; Fullman, N.; Giles, J.R.; Giref, A.Z.; Guo, G.; He, J.; Helak, M.; Hulland, E.N.; Idrisov, B.; Lindstrom, A.; Linebarger, E.; Lotufo, P.A.; Lozano, R.; Magistro, B.; Malta, D.C.; Månsson, J.C.; Marinho, F.; Mokdad, A.H.; Monasta, L.; Naik, P.; Nomura, S.; O’Halloran, J.K.; Ostroff, S.M.; Pasovic, M.; Penberthy, L.; Reiner, R.C., Jr; Reinke, G.; Ribeiro, A.L.P.; Sholokhov, A.; Sorensen, R.J.D.; Varavikova, E.; Vo, A.T.; Walcott, R.; Watson, S.; Wiysonge, C.S.; Zigler, B.; Hay, S.I.; Vos, T.; Murray, C.J.L.; Whiteford, H.A.; Ferrari, A.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 2021, 398(10312), 1700-1712.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[7]
Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry, 2000, 61(Suppl. 6), 4-6.
[PMID: 10775017]
[8]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[9]
Bhawna, K.; Kumar, A.; Bhatia, M.; Kapoor, A.; Kumar, P.; Kumar, S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem., 2022, 242, 114655.
[http://dx.doi.org/10.1016/j.ejmech.2022.114655] [PMID: 36037788]
[10]
Suryawanshi, M.R.; Kanhed, A.M.; Kulkarni, V.M.; Bhosale, S.H.; Yadav, M.R. Design, synthesis, and computational studies of phenylacetamides as antidepressant agents. Mol. Divers., 2022, 26(6), 3157-3172.
[http://dx.doi.org/10.1007/s11030-021-10374-5] [PMID: 35128584]
[11]
Sahebnasagh, A.; Avan, R.; Saghafi, F.; Mojtahedzadeh, M.; Sadremomtaz, A.; Arasteh, O.; Tanzifi, A.; Faramarzi, F.; Negarandeh, R.; Safdari, M.; Khataminia, M.; Rezai Ghaleno, H.; Habtemariam, S.; Khoshi, A. Pharmacological treatments of COVID-19. Pharmacol. Rep., 2020, 72(6), 1446-1478.
[http://dx.doi.org/10.1007/s43440-020-00152-9] [PMID: 32816200]
[12]
Son, S.Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA, 2008, 105(15), 5739-5744.
[http://dx.doi.org/10.1073/pnas.0710626105] [PMID: 18391214]
[13]
Fadaka, A.O.; Sibuyi, N.R.S.; Martin, D.R.; Klein, A.; Madiehe, A.; Meyer, M. Development of effective therapeutic molecule from natural sources against coronavirus protease. Int. J. Mol. Sci., 2021, 22(17), 9431.
[http://dx.doi.org/10.3390/ijms22179431] [PMID: 34502340]
[14]
Mohan, M.; James, P.; Valsalan, R.; Nazeem, P. Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase. Bioinformation, 2015, 11(9), 426-431.
[http://dx.doi.org/10.6026/97320630011426] [PMID: 26527851]
[15]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[16]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[17]
Pardridge, W.M. Blood–brain barrier delivery. Drug Discov. Today, 2007, 12(1-2), 54-61.
[http://dx.doi.org/10.1016/j.drudis.2006.10.013] [PMID: 17198973]
[18]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[19]
Vlieghe, P.; Khrestchatisky, M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med. Res. Rev., 2013, 33(3), 457-516.
[http://dx.doi.org/10.1002/med.21252] [PMID: 22434495]
[20]
Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P. Knowledge-based, Central Nervous System (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci., 2012, 3(1), 50-68.
[http://dx.doi.org/10.1021/cn200100h] [PMID: 22267984]
[21]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci., 2010, 1(6), 435-449.
[http://dx.doi.org/10.1021/cn100008c] [PMID: 22778837]
[22]
Mao, F.; Ni, W.; Xu, X.; Wang, H.; Wang, J.; Ji, M.; Li, J. Chemical structure-related drug-like criteria of global approved drugs. Molecules, 2016, 21(1), 75.
[http://dx.doi.org/10.3390/molecules21010075] [PMID: 26771590]
[23]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[24]
Wang, D.; Li, Z.; Liu, Y.; Chen, M.; Chen, N.; Zuo, Z.; Kong, D.X. Identification of novel monoamine oxidase selective inhibitors employing a hierarchical ligand-based virtual screening strategy. Future Med. Chem., 2019, 11(8), 801-816.
[http://dx.doi.org/10.4155/fmc-2018-0596] [PMID: 31140884]
[25]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[26]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[http://dx.doi.org/10.1021/cr040426m] [PMID: 16683746]
[27]
Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform., 2019, 20(5), 1878-1912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[28]
Bergström, C.A.S.; Larsson, P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm., 2018, 540(1-2), 185-193.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.044] [PMID: 29421301]
[29]
Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today, 2019, 24(5), 1157-1165.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[30]
Maggiorani, D.; Manzella, N.; Edmondson, D.E.; Mattevi, A.; Parini, A.; Binda, C.; Mialet-Perez, J. Monoamine oxidases, oxidative stress, and altered mitochondrial dynamics in cardiac ageing. Oxid. Med. Cell. Longev., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/3017947] [PMID: 28546851]
[31]
Bardaweel, S.; Aljanabi, R.; Sabbah, D.; Sweidan, K. Design, synthesis, and biological evaluation of novel MAO-A inhibitors targeting lung cancer. Molecules, 2022, 27(9), 2887.
[http://dx.doi.org/10.3390/molecules27092887] [PMID: 35566238]
[32]
Wang, Y.C.; Wang, X.; Yu, J.; Ma, F.; Li, Z.; Zhou, Y.; Zeng, S.; Ma, X.; Li, Y.R.; Neal, A.; Huang, J.; To, A.; Clarke, N.; Memarzadeh, S.; Pellegrini, M.; Yang, L. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun., 2021, 12(1), 3530.
[http://dx.doi.org/10.1038/s41467-021-23164-2] [PMID: 34112755]

© 2025 Bentham Science Publishers | Privacy Policy