Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Research Progress on hCNT3 Structure/Function and Nucleoside Anticancer Drugs

Author(s): Xinru Yue, Xun Zhang, Derong Zhang, Zhigang Zhang, Lingkai Tang, Zuoxin Ou, Yujie Cao, Jing Li, Ying Li, Li Liang, Wei Liu and Jianping Hu*

Volume 25, Issue 2, 2024

Published on: 05 October, 2023

Page: [120 - 136] Pages: 17

DOI: 10.2174/1389203724666230905110952

Price: $65

Abstract

Membrane protein human concentrative nucleoside transporter 3 (hCNT3) can not only transport extracellular nucleosides into the cell but also transport various nucleoside-derived anticancer drugs to the focus of infection for therapeutic effects. Typical nucleoside anticancer drugs, including fludarabine, cladabine, decitabine, and clofarabine, are recognized by hCNT3 and then delivered to the lesion site for their therapeutic effects. hCNT3 is highly conserved during the evolution from lower to higher vertebrates, which contains scaffold and transport domains in structure and delivers substrates by coupling with Na+ and H+ ions in function. In the process of substrate delivery, the transport domain rises from the lower side of transmembrane 9 (TM9) in the inward conformation to the upper side of the outward conformation, accompanied by the collaborative motion of TM7b/ TM4b and hairpin 1b (HP1b)/ HP2b. With the report of a series of three-dimensional structures of homologous CNTs, the structural characteristics and biological functions of hCNT3 have attracted increasing attention from pharmacists and biologists. Our research group has also recently designed an anticancer lead compound with high hCNT3 transport potential based on the structure of 5-fluorouracil. In this work, the sequence evolution, conservation, molecular structure, cationic chelation, substrate recognition, elevator motion pattern and nucleoside derivative drugs of hCNT3 were reviewed, and the differences in hCNT3 transport mode and nucleoside anticancer drug modification were summarized, aiming to provide theoretical guidance for the subsequent molecular design of novel anticancer drugs targeting hCNT3.

Graphical Abstract

[1]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[2]
Parkinson, F.E.; Damaraju, V.L.; Graham, K.; Yao, S.Y.M.; Baldwin, S.A.; Cass, C.E.; Young, J.D. Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr. Top. Med. Chem., 2011, 11(8), 948-972.
[http://dx.doi.org/10.2174/156802611795347582] [PMID: 21401500]
[3]
Young, J.D.; Yao, S.Y.M.; Baldwin, J.M.; Cass, C.E.; Baldwin, S.A. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med., 2013, 34(2-3), 529-547.
[http://dx.doi.org/10.1016/j.mam.2012.05.007] [PMID: 23506887]
[4]
Wright, N.J.; Lee, S.Y. Toward a molecular basis of cellular nucleoside transport in humans. Chem. Rev., 2021, 121(9), 5336-5358.
[http://dx.doi.org/10.1021/acs.chemrev.0c00644] [PMID: 33232132]
[5]
Molina-Arcas, M.; Casado, F.; Pastor-Anglada, M. Nucleoside transporter proteins. Curr. Vasc. Pharmacol., 2009, 7(4), 426-434.
[http://dx.doi.org/10.2174/157016109789043892] [PMID: 19485885]
[6]
Latek, D. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct. Biol., 2017, 17(1), 8.
[http://dx.doi.org/10.1186/s12900-017-0078-8] [PMID: 28774292]
[7]
Johnson, Z.L.; Lee, J.H.; Lee, K.; Lee, M.; Kwon, D.Y.; Hong, J.; Lee, S.Y. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. eLife, 2014, 3, e03604.
[http://dx.doi.org/10.7554/eLife.03604] [PMID: 25082345]
[8]
Rahman, M.F.; Askwith, C.; Govindarajan, R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J. Biol. Chem., 2017, 292(36), 14775-14785.
[http://dx.doi.org/10.1074/jbc.M117.787952] [PMID: 28729424]
[9]
Pastor-Anglada, M.; Urtasun, N.; Pérez-Torras, S. Intestinal nucleoside transporters: function, expression, and regulation. Compr. Physiol., 2018, 8(3), 1003-1017.
[http://dx.doi.org/10.1002/cphy.c170039] [PMID: 29978890]
[10]
Smith, K.M.; Slugoski, M.D.; Cass, C.E.; Baldwin, S.A.; Karpinski, E.; Young, J.D. Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol. Membr. Biol., 2007, 24(1), 53-64.
[http://dx.doi.org/10.1080/09687860600942534] [PMID: 17453413]
[11]
Errasti-Murugarren, E.; Cano-Soldado, P.; Pastor-Anglada, M.; Casado, F.J. Functional characterization of a nucleoside-derived drug transporter variant (hCNT3C602R) showing altered sodium-binding capacity. Mol. Pharmacol., 2008, 73(2), 379-386.
[http://dx.doi.org/10.1124/mol.107.041848] [PMID: 17993510]
[12]
Yao, S.Y.M.; Young, J.D. Inward- and outward-facing homology modeling of human concentrative nucleoside transporter 3 (hCNT3) predicts an elevator-type transport mechanism. Channels (Austin), 2018, 12(1), 291-298.
[http://dx.doi.org/10.1080/19336950.2018.1506665] [PMID: 30096006]
[13]
Pastor-Anglada, M.; Pérez-Torras, S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front. Pharmacol., 2015, 6, 13.
[http://dx.doi.org/10.3389/fphar.2015.00013] [PMID: 25713533]
[14]
Mizel, S.B.; Wilson, L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry, 1972, 11(14), 2573-2578.
[http://dx.doi.org/10.1021/bi00764a003] [PMID: 5065219]
[15]
Toan, S.V.; To, K.K.W.; Leung, G.P.H.; de Souza, M.O.; Ward, J.L.; Tse, C.M. Genomic organization and functional characterization of the human concentrative nucleoside transporter-3 isoform (hCNT3) expressed in mammalian cells. Pflugers Arch., 2003, 447(2), 195-204.
[http://dx.doi.org/10.1007/s00424-003-1166-0] [PMID: 14504928]
[16]
Smith, K.M.; Slugoski, M.D.; Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Chen, X.Z.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. J. Biol. Chem., 2005, 280(27), 25436-25449.
[http://dx.doi.org/10.1074/jbc.M409454200] [PMID: 15870078]
[17]
Hirschi, M.; Johnson, Z.L.; Lee, S.Y. Visualizing multistep elevator-like transitions of a nucleoside transporter. Nature, 2017, 545(7652), 66-70.
[http://dx.doi.org/10.1038/nature22057] [PMID: 28424521]
[18]
Zhou, Y.; Liao, L.; Wang, C.; Li, J.; Chi, P.; Xiao, Q.; Liu, Q.; Guo, L.; Sun, L.; Deng, D. Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol., 2020, 18(8), e3000790.
[http://dx.doi.org/10.1371/journal.pbio.3000790] [PMID: 32776918]
[19]
Deo, S.V.S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: challenges and opportunities for surgical oncologists. Ann. Surg. Oncol., 2022, 29(11), 6497-6500.
[http://dx.doi.org/10.1245/s10434-022-12151-6] [PMID: 35838905]
[20]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[21]
Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.016] [PMID: 30529089]
[22]
Wang, W.B.; Yang, Y.; Zhao, Y.P.; Zhang, T.P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]
[23]
Bang, Y.J. Capecitabine in gastric cancer. Expert Rev. Anticancer Ther., 2011, 11(12), 1791-1806.
[http://dx.doi.org/10.1586/era.11.172] [PMID: 22117147]
[24]
Symonds, R.P.; Davidson, S.E.; Chan, S.; Reed, N.S.; McMahon, T.; Rai, D.; Harden, S.; Paul, J. SCOTCERV: A phase II trial of docetaxel and gemcitabine as second line chemotherapy in cervical cancer. Gynecol. Oncol., 2011, 123(1), 105-109.
[http://dx.doi.org/10.1016/j.ygyno.2011.06.001] [PMID: 21723596]
[25]
Parker, W.B.; Shaddix, S.C.; Gilbert, K.S.; Shepherd, R.V.; Waud, W.R. Enhancement of the in vivo antitumor activity of clofarabine by 1-β-d-[4-thio-arabinofuranosyl]-cytosine. Cancer Chemother. Pharmacol., 2009, 64(2), 253-261.
[http://dx.doi.org/10.1007/s00280-008-0862-z] [PMID: 19002461]
[26]
Robak, T.; Lech-Maranda, E.; Korycka, A.; Robak, E. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: Mechanism of action and clinical activity. Curr. Med. Chem., 2006, 13(26), 3165-3189.
[http://dx.doi.org/10.2174/092986706778742918] [PMID: 17168705]
[27]
Ritzel, M.W.L.; Ng, A.M.L.; Yao, S.Y.M.; Graham, K.; Loewen, S.K.; Smith, K.M.; Hyde, R.J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: Identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Mol. Membr. Biol., 2001, 18(1), 65-72.
[http://dx.doi.org/10.1080/09687680010026313] [PMID: 11396613]
[28]
Yao, S.Y.; Ng, A.M.; Loewen, S.K.; Cass, C.E.; Baldwin, S.A.; Young, J.D. An ancient prevertebrate Na+ -nucleoside cotransporter (hfCNT) from the Pacific hagfish ( Eptatretus stouti ). Am. J. Physiol. Cell Physiol., 2002, 283(1), C155-C168.
[http://dx.doi.org/10.1152/ajpcell.00587.2001] [PMID: 12055084]
[29]
Errasti-Murugarren, E.; Molina-Arcas, M.; Casado, F.J.; Pastor-Anglada, M. A splice variant of the SLC28A3 gene encodes a novel human concentrative nucleoside transporter-3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB J., 2009, 23(1), 172-182.
[http://dx.doi.org/10.1096/fj.08-113902] [PMID: 18827020]
[30]
Slugoski, M.D.; Smith, K.M.; Mulinta, R.; Ng, A.M.L.; Yao, S.Y.M.; Morrison, E.L.; Lee, Q.O.T.; Zhang, J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. A conformationally mobile cysteine residue (Cys-561) modulates Na+ and H+ activation of human CNT3. J. Biol. Chem., 2008, 283(36), 24922-24934.
[http://dx.doi.org/10.1074/jbc.M801793200] [PMID: 18621735]
[31]
Arimany-Nardi, C.; Claudio-Montero, A.; Viel-Oliva, A.; Schmidtke, P.; Estarellas, C.; Barril, X.; Bidon-Chanal, A.; Pastor-Anglada, M. Identification and characterization of a secondary sodium-binding site and the main selectivity determinants in the human concentrative nucleoside transporter 3. Mol. Pharm., 2017, 14(6), 1980-1987.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00085] [PMID: 28441873]
[32]
Stecula, A.; Schlessinger, A.; Giacomini, K.M.; Sali, A. Human concentrative nucleoside transporter 3 (hCNT3, SLC28A3) forms a cyclic homotrimer. Biochemistry, 2017, 56(27), 3475-3483.
[http://dx.doi.org/10.1021/acs.biochem.7b00339] [PMID: 28661652]
[33]
Drew, D.; Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem., 2016, 85(1), 543-572.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014520] [PMID: 27023848]
[34]
Errasti-Murugarren, E.; Casado, F.J.; Pastor-Anglada, M. Different N-terminal motifs determine plasma membrane targeting of the human concentrative nucleoside transporter 3 in polarized and nonpolarized cells. Mol. Pharmacol., 2010, 78(5), 795-803.
[http://dx.doi.org/10.1124/mol.110.065920] [PMID: 20643903]
[35]
Pastor-Anglada, M.; Cano-soldado, P.; Errasti-murugarren, E.; Casado, F.J. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica, 2008, 38(7-8), 972-994.
[http://dx.doi.org/10.1080/00498250802069096] [PMID: 18668436]
[36]
Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem., 1999, 274(35), 24475-24484.
[http://dx.doi.org/10.1074/jbc.274.35.24475] [PMID: 10455109]
[37]
Slugoski, M.D.; Smith, K.M.; Ng, A.M.L.; Yao, S.Y.M.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Conserved glutamate residues Glu-343 and Glu-519 provide mechanistic insights into cation/nucleoside cotransport by human concentrative nucleoside transporter hCNT3. J. Biol. Chem., 2009, 284(25), 17266-17280.
[http://dx.doi.org/10.1074/jbc.M109.009613] [PMID: 19380587]
[38]
Reyes, N.; Ginter, C.; Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 2009, 462(7275), 880-885.
[http://dx.doi.org/10.1038/nature08616] [PMID: 19924125]
[39]
Lee, C.; Kang, H.J.; von Ballmoos, C.; Newstead, S.; Uzdavinys, P.; Dotson, D.L.; Iwata, S.; Beckstein, O.; Cameron, A.D.; Drew, D. A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013, 501(7468), 573-577.
[http://dx.doi.org/10.1038/nature12484] [PMID: 23995679]
[40]
Garaeva, A.A.; Slotboom, D.J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans., 2020, 48(3), 1227-1241.
[http://dx.doi.org/10.1042/BST20200290] [PMID: 32369548]
[41]
Duan, H.; Zhou, Y.; Shi, X.; Luo, Q.; Gao, J.; Liang, L.; Liu, W.; Peng, L.; Deng, D.; Hu, J. Allosteric and transport modulation of human concentrative nucleoside transporter 3 at the atomic scale. Phys. Chem. Chem. Phys., 2021, 23(44), 25401-25413.
[http://dx.doi.org/10.1039/D1CP03756K] [PMID: 34751688]
[42]
Gorraitz, E.; Pastor-Anglada, M.; Lostao, M.P. Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Arch., 2010, 460(3), 617-632.
[http://dx.doi.org/10.1007/s00424-010-0846-9] [PMID: 20495821]
[43]
Young, J.D. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: A 30-year collaborative odyssey. Biochem. Soc. Trans., 2016, 44(3), 869-876.
[http://dx.doi.org/10.1042/BST20160038] [PMID: 27284054]
[44]
Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol., 1993, 41(S1)(Suppl. 1), 2-6.
[http://dx.doi.org/10.1002/jmv.1890410503] [PMID: 8245887]
[45]
Ross, S.R.; McTavish, D.; Faulds, D. Fludarabine. Drugs, 1993, 45(5), 737-759.
[http://dx.doi.org/10.2165/00003495-199345050-00009] [PMID: 7686467]
[46]
Gandhi, V.; Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 2002, 41(2), 93-103.
[http://dx.doi.org/10.2165/00003088-200241020-00002] [PMID: 11888330]
[47]
Catovsky, D.; Richards, S.; Matutes, E.; Oscier, D.; Dyer, M.J.S.; Bezares, R.F.; Pettitt, A.R.; Hamblin, T.; Milligan, D.W.; Child, J.A.; Hamilton, M.S.; Dearden, C.E.; Smith, A.G.; Bosanquet, A.G.; Davis, Z.; Brito-Babapulle, V.; Else, M.; Wade, R.; Hillmen, P. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): A randomised controlled trial. Lancet, 2007, 370(9583), 230-239.
[http://dx.doi.org/10.1016/S0140-6736(07)61125-8] [PMID: 17658394]
[48]
Christensen, L.F.; Broom, A.D.; Robins, M.J.; Bloch, A. Synthesis and biological activity of selected 2,6-disubstituted(2-deoxy-.alpha.- and -.beta.-D-erythro-pentofuranosyl)purines. J. Med. Chem., 1972, 15(7), 735-739.
[http://dx.doi.org/10.1021/jm00277a010] [PMID: 4625489]
[49]
Liliemark, J. The clinical pharmacokinetics of cladribine. Clin. Pharmacokinet., 1997, 32(2), 120-131.
[http://dx.doi.org/10.2165/00003088-199732020-00003] [PMID: 9068927]
[50]
Bryson, H.M.; Sorkin, E.M. Cladribine. Drugs, 1993, 46(5), 872-894.
[http://dx.doi.org/10.2165/00003495-199346050-00007] [PMID: 7507037]
[51]
Bonate, P.L.; Arthaud, L.; Cantrell, W.R., Jr; Stephenson, K.; Secrist, J.A., III; Weitman, S. Discovery and development of clofarabine: A nucleoside analogue for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 855-863.
[http://dx.doi.org/10.1038/nrd2055] [PMID: 17016426]
[52]
Kantarjian, H.M.; Jeha, S.; Gandhi, V.; Wess, M.; Faderl, S. Clofarabine: Past, present, and future. Leuk. Lymphoma, 2007, 48(10), 1922-1930.
[http://dx.doi.org/10.1080/10428190701545644] [PMID: 17852710]
[53]
King, K.M.; Damaraju, V.L.; Vickers, M.F.; Yao, S.Y.; Lang, T.; Tackaberry, T.E.; Mowles, D.A.; Ng, A.M.L.; Young, J.D.; Cass, C.E. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol. Pharmacol., 2006, 69(1), 346-353.
[http://dx.doi.org/10.1124/mol.105.015768] [PMID: 16234483]
[54]
Zhang, J.; Visser, F.; Vickers, M.F.; Lang, T.; Robins, M.J.; Nielsen, L.P.C.; Nowak, I.; Baldwin, S.A.; Young, J.D.; Cass, C.E. Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Saccharomyces cerevisiae. Mol. Pharmacol., 2003, 64(6), 1512-1520.
[http://dx.doi.org/10.1124/mol.64.6.1512] [PMID: 14645682]
[55]
Reist, E.J.; Goodman, L. Synthesis of 9-β-D-Arabinofuranosylguanine *. Biochemistry, 1964, 3(1), 15-18.
[http://dx.doi.org/10.1021/bi00889a004] [PMID: 14114497]
[56]
Lambe, C.U.; Averett, D.R.; Paff, M.T.; Reardon, J.E.; Wilson, J.G.; Krenitsky, T.A. 2-Amino-6-methoxypurine arabinoside: An agent for T-cell malignancies. Cancer Res., 1995, 55(15), 3352-3356.
[PMID: 7614470]
[57]
Gandhi, V.; Plunkett, W. Clofarabine and nelarabine: Two new purine nucleoside analogs. Curr. Opin. Oncol., 2006, 18(6), 584-590.
[http://dx.doi.org/10.1097/01.cco.0000245326.65152.af] [PMID: 16988579]
[58]
Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet., 2004, 43(9), 595-612.
[http://dx.doi.org/10.2165/00003088-200443090-00003] [PMID: 15217303]
[59]
Jones, S.A.; Murakami, E.; Delaney, W.; Furman, P.; Hu, J. Noncompetitive inhibition of hepatitis B virus reverse transcriptase protein priming and DNA synthesis by the nucleoside analog clevudine. Antimicrob. Agents Chemother., 2013, 57(9), 4181-4189.
[http://dx.doi.org/10.1128/AAC.00599-13] [PMID: 23774432]
[60]
Gallant, J.E.; Deresinski, S. Tenofovir disoproxil fumarate. Clin. Infect. Dis., 2003, 37(7), 944-950.
[http://dx.doi.org/10.1086/378068] [PMID: 13130407]
[61]
Robinson, D.M.; Scott, L.J.; Plosker, G.L. Entecavir. Drugs, 2006, 66(12), 1605-1622.
[http://dx.doi.org/10.2165/00003495-200666120-00009] [PMID: 16956310]
[62]
Keating, G.M. Entecavir. Drugs, 2011, 71(18), 2511-2529.
[http://dx.doi.org/10.2165/11208510-000000000-00000] [PMID: 22141390]
[63]
Chang, T.T.; Gish, R.G.; de Man, R.; Gadano, A.; Sollano, J.; Chao, Y.C.; Lok, A.S.; Han, K.H.; Goodman, Z.; Zhu, J.; Cross, A.; DeHertogh, D.; Wilber, R.; Colonno, R.; Apelian, D. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N. Engl. J. Med., 2006, 354(10), 1001-1010.
[http://dx.doi.org/10.1056/NEJMoa051285] [PMID: 16525137]
[64]
Scott, L.J.; Keating, G.M. Entecavir. Drugs, 2009, 69(8), 1003-1033.
[http://dx.doi.org/10.2165/00003495-200969080-00005] [PMID: 19496629]
[65]
Pískala, A.; Šorm, F. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect. Czech. Chem. Commun., 1964, 29(9), 2060-2076.
[http://dx.doi.org/10.1135/cccc19642060]
[66]
Füller, M.; Klein, M.; Schmidt, E.; Rohde, C.; Göllner, S.; Schulze, I.; Qianli, J.; Berdel, W.; Edemir, B.; Müller-Tidow, C.; Tschanter, P. 5-Azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int. J. Oncol., 2015, 46(3), 1192-1204.
[http://dx.doi.org/10.3892/ijo.2014.2792] [PMID: 25501798]
[67]
Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005, 10(3), 176-182.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[68]
Müller, A.; Florek, M. 5-azacytidine/ Azacitidine. Recent Results Cancer Res., 2010, 184, 159-170.
[http://dx.doi.org/10.1007/978-3-642-01222-8_11] [PMID: 20072837]
[69]
Guo, G.; Li, G.; Liu, D.; Yang, Q.J.; Liu, Y.; Jing, Y.K.; Zhao, L.X. Synthesis and antiproliferative activities of 5-azacytidine analogues in human leukemia cells. Molecules, 2008, 13(7), 1487-1500.
[http://dx.doi.org/10.3390/molecules13071487] [PMID: 18719520]
[70]
Daskalakis, M.; Blagitko-Dorfs, N.; Hackanson, B. Decitabine. Recent Results Cancer Res., 2010, 184, 131-157.
[http://dx.doi.org/10.1007/978-3-642-01222-8_10] [PMID: 20072836]
[71]
Jabbour, E.; Issa, J.P.; Garcia-Manero, G.; Kantarjian, H. Evolution of decitabine development. Cancer, 2008, 112(11), 2341-2351.
[http://dx.doi.org/10.1002/cncr.23463] [PMID: 18398832]
[72]
Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123(1), 8-13.
[http://dx.doi.org/10.1002/ijc.23607] [PMID: 18425818]
[73]
Duschinsky, R.; Pleven, E.; Heidelberger, C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc., 1957, 79(16), 4559-4560.
[http://dx.doi.org/10.1021/ja01573a087]
[74]
Parker, W.B.; Cheng, Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther., 1990, 48(3), 381-395.
[http://dx.doi.org/10.1016/0163-7258(90)90056-8] [PMID: 1707544]
[75]
Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237.
[http://dx.doi.org/10.2165/00003088-198916040-00002] [PMID: 2656050]
[76]
Heggie, G.D.; Sommadossi, J.P.; Cross, D.S.; Huster, W.J.; Diasio, R.B. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res., 1987, 47(8), 2203-2206.
[PMID: 3829006]
[77]
Sommer, H.; Santi, D.V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem. Biophys. Res. Commun., 1974, 57(3), 689-695.
[http://dx.doi.org/10.1016/0006-291X(74)90601-9] [PMID: 4275130]
[78]
Walwick, E.R.; Roberts, W.K.; Dekker, C.A. Cyclisation during the phosphorylation of uridine and cytidine by polyphosphoric acid-A new route to the O-2, 2′-cyclonucleosides. Proc. Chem. Soc. London, 1959, (3), 84-84.
[79]
El-Subbagh, H.I.; Al-Badr, A.A. Cytarabine. Profiles Drug Subst. Excip. Relat. Methodol., 2009, 34, 37-113.
[http://dx.doi.org/10.1016/S1871-5125(09)34002-9] [PMID: 22469172]
[80]
Baker, W.J.; Royer, G.L., Jr; Weiss, R.B. Cytarabine and neurologic toxicity. J. Clin. Oncol., 1991, 9(4), 679-693.
[http://dx.doi.org/10.1200/JCO.1991.9.4.679] [PMID: 1648599]
[81]
Hamada, A.; Kawaguchi, T.; Nakano, M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet., 2002, 41(10), 705-718.
[http://dx.doi.org/10.2165/00003088-200241100-00002] [PMID: 12162758]
[82]
Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12.
[http://dx.doi.org/10.1093/annonc/mdj941] [PMID: 16807468]
[83]
Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17.
[http://dx.doi.org/10.1517/14796694.1.1.7] [PMID: 16555971]
[84]
McLeod, G.X.; Hammer, S.M. Zidovudine: Five years later. Ann. Intern. Med., 1992, 117(6), 487-501.
[http://dx.doi.org/10.7326/0003-4819-117-6-487] [PMID: 1503352]
[85]
Blum, M.R.; Liao, S.H.; Good, S.S.; de Miranda, P. Pharmacokinetics and bioavailability of zidovudine in humans. Am. J. Med., 1988, 85(2A), 189-194.
[PMID: 3165603]
[86]
Child, S.; Montaner, J.; Tsoukas, C.; Fanning, M.; Le, T.; Wall, R.A.; Ruedy, J. Canadian multicenter azidothymidine trial: AZT pharmacokinetics. J. Acquir. Immune Defic. Syndr., 1991, 4(9), 865-870.
[PMID: 1895207]
[87]
Veal, G.J.; Back, D.J. Metabolism of zidovudine. Gen. Pharmacol., 1995, 26(7), 1469-1475.
[http://dx.doi.org/10.1016/0306-3623(95)00047-X] [PMID: 8690233]
[88]
Langtry, H.D.; Campoli-Richards, D.M. Zidovudine. Drugs, 1989, 37(4), 408-450.
[http://dx.doi.org/10.2165/00003495-198937040-00003] [PMID: 2661194]
[89]
Tan, C.K.; Rigal, C.; Mian, A.M.; So, A.G.; Downey, K.M. Inhibition of the RNase H activity of HIV reverse transcriptase by azidothymidylate. Biochemistry, 1991, 30(20), 4831-4835.
[http://dx.doi.org/10.1021/bi00234a001] [PMID: 1709809]
[90]
Hitchcock, M.J.M.; Jaffe, H.S.; Martin, J.C.; Stagg, R.J. Cidofovir, a new agent with potent anti-herpesvirus activity. Antivir. Chem. Chemother., 1996, 7(3), 115-127.
[http://dx.doi.org/10.1177/095632029600700301]
[91]
Cundy, K.C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet., 1999, 36(2), 127-143.
[http://dx.doi.org/10.2165/00003088-199936020-00004] [PMID: 10092959]
[92]
Plosker, G.L.; Noble, S. Cidofovir. Drugs, 1999, 58(2), 325-345.
[http://dx.doi.org/10.2165/00003495-199958020-00015] [PMID: 10473024]
[93]
Clarke, M.L.; Damaraju, V.L.; Zhang, J.; Mowles, D.; Tackaberry, T.; Lang, T.; Smith, K.M.; Young, J.D.; Tomkinson, B.; Cass, C.E. The role of human nucleoside transporters in cellular uptake of 4′-thio-β-D-arabinofuranosylcytosine and β-D-arabinosylcytosine. Mol. Pharmacol., 2006, 70(1), 303-310.
[http://dx.doi.org/10.1124/mol.105.021543] [PMID: 16617163]
[94]
Reigner, B.; Blesch, K.; Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet., 2001, 40(2), 85-104.
[http://dx.doi.org/10.2165/00003088-200140020-00002] [PMID: 11286326]
[95]
Wagstaff, A.J.; Ibbotson, T.; Goa, K.L. Capecitabine. Drugs, 2003, 63(2), 217-236.
[http://dx.doi.org/10.2165/00003495-200363020-00009] [PMID: 12515569]
[96]
Mikhail, S.E.; Sun, J.F.; Marshall, J.L. Safety of capecitabine: A review. Expert Opin. Drug Saf., 2010, 9(5), 831-841.
[http://dx.doi.org/10.1517/14740338.2010.511610] [PMID: 20722491]
[97]
Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy