Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Deciphering the Role of Peroxisome Proliferator-activated Receptor α and Phosphodiesterase Type 5 Targets in Alzheimer's Disease

Author(s): Parnika M. Sose, Pravin P. Kale and Gaurav M. Doshi*

Volume 23, Issue 8, 2024

Published on: 07 September, 2023

Page: [956 - 970] Pages: 15

DOI: 10.2174/1871527323666230904150841

Price: $65

Abstract

The most prevalent cause of dementia is Alzheimer's disease (AD). Although the global AD rate is on a constant rise, medical research is yet to find a cure for this neurological condition. Current available therapeutic drugs for AD treatment only provide symptomatic alleviation. Therefore, it is essential to establish effective AD treatment strategies in addressing clinical needs. The development of disease-modifying treatments for use in the disease's early stages and the advancement of symptomatic drugs principally used in the disease's later stages are priorities in AD research. Given that the etiology of AD is difficult to comprehend, using a multimodal therapy intervention that targets molecular targets of AD-related degenerative processes is a practical strategy to change the course of AD progression. The current review article discussed PPAR-α (Peroxisome proliferator-activated receptor-α) and PDE5 (Phosphodiesterase type 5) targets with evidence for their preclinical and clinical importance. Furthermore, we support the targets with AD-related processes, functions, and remedial measures. A unique synergistic method for treating AD may involve the beneficial combinatorial targeting of these two receptors. Furthermore, we reviewed different PDE chemical families in this research and identified PDE5 inhibitors as one of the promising AD-related experimental and clinical disease-modifying medications. Lastly, we suggest jointly targeting these two pathways would be more beneficial than monotherapy in AD treatments.

Graphical Abstract

[1]
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s Disease: Mechanisms, genetics, and lessons from other pathologies. Front Neurosci 2019; 13: 164.
[http://dx.doi.org/10.3389/fnins.2019.00164] [PMID: 30872998]
[2]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[3]
Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 2011; 17(5): 514-24.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00177.x] [PMID: 20553310]
[4]
Amenta F, Parnetti L, Gallai V, Wallin A. Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech Ageing Dev 2001; 122(16): 2025-40.
[http://dx.doi.org/10.1016/S0047-6374(01)00310-4] [PMID: 11589920]
[5]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications. Expert Rev Neurother 2008; 8(11): 1703-18.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[6]
Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: Chemoanatomy and neurologic dysfunction. J Chem Neuroanat 2003; 26(4): 233-42.
[http://dx.doi.org/10.1016/S0891-0618(03)00068-1] [PMID: 14729126]
[7]
Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 2005; 380(1-2): 127-32.
[http://dx.doi.org/10.1016/j.neulet.2005.01.031] [PMID: 15854764]
[8]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[9]
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021; 190: 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[10]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[11]
Tayebati SK, Di Tullio MA, Tomassoni D, Amenta F. Neuroprotective effect of treatment with galantamine and choline alphoscerate on brain microanatomy in spontaneously hypertensive rats. J Neurol Sci 2009; 283(1-2): 187-94.
[http://dx.doi.org/10.1016/j.jns.2009.02.349] [PMID: 19304299]
[12]
Catanesi M, d’Angelo M, Antonosante A, et al. Neuroprotective potential of choline alfoscerate against β‐amyloid injury: Involvement of neurotrophic signals. Cell Biol Int 2020; 44(8): 1734-44.
[http://dx.doi.org/10.1002/cbin.11369] [PMID: 32343461]
[13]
Broersen LM, Kuipers AAM, Balvers M, et al. A specific multi-nutrient diet reduces Alzheimer-like pathology in young adult AβPPswe/PS1dE9 mice. J Alzheimers Dis 2012; 33(1): 177-90.
[http://dx.doi.org/10.3233/JAD-2012-112039] [PMID: 22914588]
[14]
de Wilde MC, Penke B, van der Beek EM, Kuipers AAM, Kamphuis PJ, Broersen LM. Neuroprotective effects of a specific multi-nutrient intervention against Aβ42-induced toxicity in rats. J Alzheimers Dis 2011; 27(2): 327-39.
[http://dx.doi.org/10.3233/JAD-2011-110635] [PMID: 21811020]
[15]
Wang L, Pooler AM, Albrecht MA, Wurtman RJ. Dietary uridine-5′-monophosphate supplementation increases potassium-evoked dopamine release and promotes neurite outgrowth in aged rats. J Mol Neurosci 2005; 27(1): 137-46.
[http://dx.doi.org/10.1385/JMN:27:1:137] [PMID: 16055952]
[16]
Sakamoto T, Cansev M, Wurtman RJ. Oral supplementation with docosahexaenoic acid and uridine-5′-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 2007; 1182: 50-9.
[http://dx.doi.org/10.1016/j.brainres.2007.08.089] [PMID: 17950710]
[17]
van Deijk ALF, Broersen LM, Verkuyl JM, Smit AB, Verheijen MHG. High content analysis of hippocampal neuron-astrocyte co-cultures shows a positive effect of fortasyn connect on neuronal survival and postsynaptic maturation. Front Neurosci 2017; 11: 440.
[http://dx.doi.org/10.3389/fnins.2017.00440] [PMID: 28824363]
[18]
Pooler AM, Guez DH, Benedictus R, Wurtman RJ. Uridine enhances neurite outgrowth in nerve growth factor-differentiated pheochromocytoma cells. Neuroscience 2005; 134(1): 207-14.
[http://dx.doi.org/10.1016/j.neuroscience.2005.03.050] [PMID: 15939540]
[19]
Savelkoul P, Lotstra S, Kuipers A, Kamphuis P, Broersen L. P2-043: Combined nutrient supplementation enhances neurite outgrowth and synaptic protein expression in vitro. Alzheimers Dement 2013; 9(S4)
[20]
Cansev M, van Wijk N, Turkyilmaz M, Orhan F, Sijben JWC, Broersen LM. A specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats. Neurobiol Aging 2015; 36(1): 344-51.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.021] [PMID: 25146455]
[21]
van Wijk N, Broersen LM, de Wilde MC, et al. Targeting synaptic dysfunction in Alzheimer’s disease by administering a specific nutrient combination. J Alzheimers Dis 2013; 38(3): 459-79.
[http://dx.doi.org/10.3233/JAD-130998] [PMID: 23985420]
[22]
Hwang SG, Park H. An analysis on prescribing patterns of alzheimer’s dementia treatment and choline alfoscerate using HIRA claims data. Korean J Clin Pharm 2019; 29(1): 1-8.
[http://dx.doi.org/10.24304/kjcp.2019.29.1.1]
[23]
A clinical trial for an evaluation of choline alfoscerate and donepezil for cognitive improvements of patients with cerebrovascular injury in alzheimer patients. Patent NCT02648906, 2021.
[24]
Efficacy and safety of choline alfoscerate in patient with mild to moderate alzheimer's disease (COALA). Patent NCT05383183, 2021.
[25]
Effect of choline alphoscerate on cognitive function in Alzheimer's Dementia (ALFO-AD). Patent NCT03441516, 2021.
[26]
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate metabolism in mitochondria is closely related to alzheimer’s disease. J Alzheimers Dis 2021; 84(2): 557-78.
[http://dx.doi.org/10.3233/JAD-210595] [PMID: 34602474]
[27]
Tampi RR, Dyck CH. Memantine: Efficacy and safety in mild-to-severe Alzheimer’s disease. Neuropsychiatr Dis Treat 2007; 3(2): 245-58.
[http://dx.doi.org/10.2147/nedt.2007.3.2.245] [PMID: 19300557]
[28]
Balázs N, Bereczki D, Kovács T. Cholinesterase inhibitors and memantine for the treatment of Alzheimer and non-Alzheimer dementias. Ideggyogy Sz 2021; 74(11-12): 379-87.
[http://dx.doi.org/10.18071/isz.74.0379] [PMID: 34856086]
[29]
Mizuno S, Iijima R, Ogishima S, et al. AlzPathway: A comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst Biol 2012; 6(1): 52.
[http://dx.doi.org/10.1186/1752-0509-6-52] [PMID: 22647208]
[30]
Schmitt B, Bernhardt T, Moeller HJ, Heuser I. Fr??lich L. Combination therapy in alzheimer???s disease. CNS Drugs 2004; 18(13): 827-44.
[http://dx.doi.org/10.2165/00023210-200418130-00001] [PMID: 15521788]
[31]
Fessel WJ. Concordance of several subcellular interactions initiates alzheimer’s dementia: Their reversal requires combination treatment. Am J Alzheimers Dis Other Demen 2017; 32(3): 166-81.
[32]
Borel V, Gallot D, Marceau G, Sapin V, Blanchon L. Placental implications of peroxisome proliferator-activated receptors in gestation and parturition. PPAR Res 2008; 2008: 1-9.
[http://dx.doi.org/10.1155/2008/758562] [PMID: 18288292]
[33]
Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D. PPARs and the Placenta. Placenta 2007; 28(2-3): 65-76.
[http://dx.doi.org/10.1016/j.placenta.2006.04.009] [PMID: 16834993]
[34]
Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol Psychiatry 2018; 83(9): 761-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.12.014] [PMID: 29502862]
[35]
Chawla A. Control of macrophage activation and function by PPARs. Circ Res 2010; 106(10): 1559-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.216523] [PMID: 20508200]
[36]
Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res 2011; 108(8): 985-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233775] [PMID: 21350215]
[37]
Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr Rev 1999; 20(5): 649-88.
[PMID: 10529898]
[38]
Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J Biol Chem 2000; 275(29): 22293-9.
[http://dx.doi.org/10.1074/jbc.M000248200] [PMID: 10801788]
[39]
Roy A, Pahan K. PPARα signaling in the hippocampus: Crosstalk between fat and memory. J Neuroimmune Pharmacol 2015; 10(1): 30-4.
[http://dx.doi.org/10.1007/s11481-014-9582-9] [PMID: 25575492]
[40]
Melis M, Carta S, Fattore L, et al. Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol Psychiatry 2010; 68(3): 256-64.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.016] [PMID: 20570248]
[41]
Melis M, Scheggi S, Carta G, et al. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors. J Neurosci 2013; 33(14): 6203-11.
[http://dx.doi.org/10.1523/JNEUROSCI.4647-12.2013] [PMID: 23554501]
[42]
Zakrocka I, Targowska-Duda KM, Wnorowski A, et al. Angiotensin II type 1 receptor blockers inhibit KAT II activity in the brain—its possible clinical applications. Neurotox Res 2017; 32(4): 639-48.
[http://dx.doi.org/10.1007/s12640-017-9781-2] [PMID: 28733707]
[43]
Huang HT, Liao CK, Chiu WT, Tzeng SF. Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes. Int J Biochem Cell Biol 2017; 86: 42-53.
[http://dx.doi.org/10.1016/j.biocel.2017.03.008] [PMID: 28323206]
[44]
D’Angelo M, Antonosante A, Castelli V, et al. PPARs and energy metabolism adaptation during neurogenesis and neuronal maturation. Int J Mol Sci 2018; 19(7): 1869.
[http://dx.doi.org/10.3390/ijms19071869] [PMID: 29949869]
[45]
Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272(30): 18779-89.
[http://dx.doi.org/10.1074/jbc.272.30.18779] [PMID: 9228052]
[46]
Elbrecht A, Chen Y, Cullinan CA, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors γ 1 and γ 2. Biochem Biophys Res Commun 1996; 224(2): 431-7.
[http://dx.doi.org/10.1006/bbrc.1996.1044] [PMID: 8702406]
[47]
Benedetti E, Cristiano L, Antonosante A, et al. PPARs in neurodegenerative and neuroinflammatory pathways. Curr Alzheimer Res 2018; 15(4): 336-44.
[http://dx.doi.org/10.2174/1567205014666170517150037] [PMID: 28521669]
[48]
Austin S, St-Pierre J. PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012; 125(21): 4963-71.
[http://dx.doi.org/10.1242/jcs.113662] [PMID: 23277535]
[49]
Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta Mol Cell Res 2011; 1813(7): 1269-78.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[50]
Warden A, Truitt J, Merriman M, et al. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 2016; 6(1): 27618.
[http://dx.doi.org/10.1038/srep27618] [PMID: 27283430]
[51]
Corbett GT, Gonzalez FJ, Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci 2015; 112(27): 8445-50.
[http://dx.doi.org/10.1073/pnas.1504890112] [PMID: 26080426]
[52]
Allinson TMJ, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein? -secretases. J Neurosci Res 2003; 74(3): 342-52.
[http://dx.doi.org/10.1002/jnr.10737] [PMID: 14598310]
[53]
Suh J, Choi SH, Romano DM, et al. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 2013; 80(2): 385-401.
[http://dx.doi.org/10.1016/j.neuron.2013.08.035] [PMID: 24055016]
[54]
Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113(10): 1456-64.
[http://dx.doi.org/10.1172/JCI20864] [PMID: 15146243]
[55]
Colciaghi F, Borroni B, Pastorino L, et al. [α]-Secretase ADAM10 as well as [α]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 2002; 8(2): 67-74.
[http://dx.doi.org/10.1007/BF03402076] [PMID: 12080182]
[56]
Marcello E, Saraceno C, Musardo S, et al. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J Clin Invest 2013; 123(6): 2523-38.
[http://dx.doi.org/10.1172/JCI65401] [PMID: 23676497]
[57]
Blasko I, Jungwirth S, Jellinger K, et al. Effects of medications on plasma amyloid beta (Aβ) 42: Longitudinal data from the VITA cohort. J Psychiatr Res 2008; 42(11): 946-55.
[http://dx.doi.org/10.1016/j.jpsychires.2007.10.010] [PMID: 18155247]
[58]
Vallée A, Lecarpentier Y. Alzheimer Disease: Crosstalk between the canonical wnt/beta-catenin pathway and ppars alpha and gamma. Front Neurosci 2016; 10: 459.
[http://dx.doi.org/10.3389/fnins.2016.00459] [PMID: 27807401]
[59]
Zhang H, Gao Y, Qiao P, Zhao F, Yan Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR‐α/PI3‐K pathway. Int J Dev Neurosci 2014; 38(1): 223-31.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.10.004] [PMID: 25447788]
[60]
Cunnane SC, Courchesne-Loyer A, Vandenberghe C, et al. Can ketones help rescue brain fuel supply in later life? implications for cognitive health during aging and the treatment of Alzheimer’s Disease. Front Mol Neurosci 2016; 9: 53.
[http://dx.doi.org/10.3389/fnmol.2016.00053] [PMID: 27458340]
[61]
Bougarne N, Weyers B, Desmet SJ, et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 2018; 39(5): 760-802.
[http://dx.doi.org/10.1210/er.2018-00064] [PMID: 30020428]
[62]
Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 2017; 136: 75-84.
[http://dx.doi.org/10.1016/j.biochi.2016.12.019] [PMID: 28077274]
[63]
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(10): 5440-4.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[64]
Yao J, Chen S, Mao Z, Cadenas E, Brinton RD. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One 2011; 6(7): e21788.
[http://dx.doi.org/10.1371/journal.pone.0021788] [PMID: 21747957]
[65]
Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009; 6(1): 31.
[http://dx.doi.org/10.1186/1743-7075-6-31] [PMID: 19664276]
[66]
Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49(10): 497-505.
[http://dx.doi.org/10.1007/s000110050622] [PMID: 11089900]
[67]
Bordet R, Ouk T, Petrault O, et al. PPAR: A new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 2006; 34(6): 1341-6.
[http://dx.doi.org/10.1042/BST0341341] [PMID: 17073815]
[68]
Roy A, Jana M, Corbett GT, et al. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep 2013; 4(4): 724-37.
[http://dx.doi.org/10.1016/j.celrep.2013.07.028] [PMID: 23972989]
[69]
D’Agostino G, Cristiano C, Lyons DJ, et al. Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice. Mol Metab 2015; 4(7): 528-36.
[http://dx.doi.org/10.1016/j.molmet.2015.04.005] [PMID: 26137440]
[70]
Bliss TVP, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993; 361(6407): 31-9.
[http://dx.doi.org/10.1038/361031a0] [PMID: 8421494]
[71]
Pierrot N, Ris L, Stancu IC, et al. Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Sci Alliance 2019; 2(2): e201800262.
[http://dx.doi.org/10.26508/lsa.201800262] [PMID: 30894406]
[72]
Chikahisa S, Chida D, Shiuchi T, et al. Enhancement of fear learning in PPARα knockout mice. Behav Brain Res 2019; 359: 664-70.
[http://dx.doi.org/10.1016/j.bbr.2018.09.020] [PMID: 30278189]
[73]
Idowu OK, Oluyomi OO, Faniyan OO, Dosumu OO, Akinola OB. The synergistic ameliorative activity of peroxisome proliferator‐activated receptor‐alpha and gamma agonists, fenofibrate and pioglitazone, on hippocampal neurodegeneration in a rat model of insulin resistance. Ibrain 2022; 8(3): 251-63.
[http://dx.doi.org/10.1002/ibra.12059]
[74]
Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97: 109793.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109793] [PMID: 31669201]
[75]
Lin LF, Jhao YT, Chiu CH, et al. Bezafibrate exerts neuroprotective effects in a rat model of sporadic Alzheimer’s Disease. Pharmaceuticals 2022; 15(2): 109.
[http://dx.doi.org/10.3390/ph15020109] [PMID: 35215222]
[76]
Hakimizadeh E, Zamanian MY, Borisov VV, et al. Gemfibrozil, a lipid‐lowering drug, reduces anxiety, enhances memory, and improves brain oxidative stress in d‐galactose‐induced aging mice. Fundam Clin Pharmacol 2022; 36(3): 501-8.
[http://dx.doi.org/10.1111/fcp.12752] [PMID: 34989025]
[77]
Modulation of Micro-RNA pathways by gemfibrozil in predementia alzheimer disease. Patent NCT02045056, 2021.
[78]
Study Evaluating Potential Interaction Between SAM-531 And Gemfibrozil When Co-Administered. Patent NCT00966966,
[79]
Comery TA, Aschmies S, Haydar S, Hughes Z, Huselton C, Kowal D, et al. P3‐329: SAM‐531, N, N‐dimethyl‐3‐{[3‐(1‐naphthylsulfonyl)‐1H‐indazol‐5‐yl]oxy} propan‐1‐amine, a novel serotonin‐6 receptor antagonist with preclinical pro‐cognitive efficacy. Alzheimers Dement 2010; 6(S4)
[80]
Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci 2005; 25(29): 6887-97.
[http://dx.doi.org/10.1523/JNEUROSCI.5291-04.2005] [PMID: 16033898]
[81]
Ohki K, Yoshida K, Hagiwara M, et al. Nitric oxide induces c-fos gene expression via cyclic AMP response element binding protein (CREB) phosphorylation in rat retinal pigment epithelium. Brain Res 1995; 696(1-2): 140-4.
[http://dx.doi.org/10.1016/0006-8993(95)00914-C] [PMID: 8574661]
[82]
Bon CLM, Garthwaite J. Exogenous nitric oxide causes potentiation of hippocampal synaptic transmission during low-frequency stimulation via the endogenous nitric oxide-cGMP pathway. Eur J Neurosci 2001; 14(4): 585-94.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01680.x] [PMID: 11556884]
[83]
Iqbal K. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA). Molecular Basis of Disease 2005; 1739(2-3): 198-210.
[http://dx.doi.org/10.1016/j.bbadis.2004.09.008]
[84]
Pérez-Torres S, Cortés R, Tolnay M, Probst A, Palacios JM, Mengod G. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp Neurol 2003; 182(2): 322-34.
[http://dx.doi.org/10.1016/S0014-4886(03)00042-6] [PMID: 12895443]
[85]
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer’s disease. Free Radic Biol Med 2022; 193(Pt 2): 657-68.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.022] [PMID: 36400326]
[86]
Baltrons MA, Pedraza CE, Heneka MT, García A. β-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells. Neurobiol Dis 2002; 10(2): 139-49.
[http://dx.doi.org/10.1006/nbdi.2002.0492] [PMID: 12127152]
[87]
Acquarone E, Argyrousi EK, van den Berg M, et al. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14(1): 26.
[http://dx.doi.org/10.1186/s13024-019-0326-4] [PMID: 31248451]
[88]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189-9.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[89]
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: Important signaling modulators and therapeutic targets. Oral Dis 2015; 21(1): e25-50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[90]
Johannessen M, Delghandi MP, Moens U. What turns CREB on? Cell Signal 2004; 16(11): 1211-27.
[http://dx.doi.org/10.1016/j.cellsig.2004.05.001] [PMID: 15337521]
[91]
Riccio A, Alvania RS, Lonze BE, et al. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 2006; 21(2): 283-94.
[http://dx.doi.org/10.1016/j.molcel.2005.12.006] [PMID: 16427017]
[92]
Murphy DD, Segal M. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci 1997; 94(4): 1482-7.
[http://dx.doi.org/10.1073/pnas.94.4.1482] [PMID: 9037079]
[93]
Lu YF, Kandel ER, Hawkins RD. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 1999; 19(23): 10250-61.
[http://dx.doi.org/10.1523/JNEUROSCI.19-23-10250.1999] [PMID: 10575022]
[94]
Ciani E, Guidi S, Bartesaghi R, Contestabile A. Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: Implication for a survival role of nitric oxide. J Neurochem 2002; 82(5): 1282-9.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01080.x] [PMID: 12358775]
[95]
Gudi T, Casteel DE, Vinson C, Boss GR, Pilz RB. NO activation of fos promoter elements requires nuclear translocation of G-kinase I and CREB phosphorylation but is independent of MAP kinase activation. Oncogene 2000; 19(54): 6324-33.
[http://dx.doi.org/10.1038/sj.onc.1204007] [PMID: 11175347]
[96]
Puzzo D, Staniszewski A, Deng SX, et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci 2009; 29(25): 8075-86.
[http://dx.doi.org/10.1523/JNEUROSCI.0864-09.2009] [PMID: 19553447]
[97]
Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D. Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav Brain Res 2013; 240: 11-20.
[http://dx.doi.org/10.1016/j.bbr.2012.10.060] [PMID: 23174209]
[98]
Tong L, Thornton PL, Balazs R, Cotman CW. β -amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival Is not compromised. J Biol Chem 2001; 276(20): 17301-6.
[http://dx.doi.org/10.1074/jbc.M010450200] [PMID: 11278679]
[99]
Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci 2002; 99(20): 13217-21.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[100]
Fiorito J, Deng SX. Targeting the NO/cGMP/CREB Phosphorylation Signaling Pathway in Alzheimer’s Disease. Neurochemical Basis of Brain Function and Dysfunction. IntechOpen 2019.
[101]
Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life 2012; 64(12): 965-70.
[http://dx.doi.org/10.1002/iub.1104] [PMID: 23129425]
[102]
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76(1): 481-511.
[http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444] [PMID: 17376027]
[103]
Domek-Łopacińska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol Neurobiol 2010; 41(2-3): 129-37.
[http://dx.doi.org/10.1007/s12035-010-8104-x] [PMID: 20213343]
[104]
Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol Rev 2011; 91(2): 651-90.
[http://dx.doi.org/10.1152/physrev.00030.2010] [PMID: 21527734]
[105]
Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol 2006; 147(S1): S252-7.
[http://dx.doi.org/10.1038/sj.bjp.0706495] [PMID: 16402111]
[106]
Zhu L, Yang J, Xue X, et al. A novel phosphodiesterase-5 Inhibitor: Yonkenafil modulates neurogenesis, gliosis to improve cognitive function and ameliorates amyloid burden in an APP/PS1 transgenic mice model. Mech Ageing Dev 2015; 150: 34-45.
[http://dx.doi.org/10.1016/j.mad.2015.07.002] [PMID: 26200391]
[107]
Gomez L, Massari ME, Vickers T, et al. Design and synthesis of novel and selective phosphodiesterase 2 (PDE2a) inhibitors for the treatment of memory disorders. J Med Chem 2017; 60(5): 2037-51.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01793] [PMID: 28165743]
[108]
Park SH, Kim JH, Bae SS, et al. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem Biophys Res Commun 2011; 408(4): 602-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.068] [PMID: 21530492]
[109]
Sakurai H, Hanyu H, Sato T, et al. Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer’s disease and cerebrovascular disease: A pilot study. Geriatr Gerontol Int 2013; 13(1): 90-7.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00866.x] [PMID: 22672107]
[110]
Li J, Liu CN, Wei N, et al. Protective effects of BAY 73-6691, a selective inhibitor of phosphodiesterase 9, on amyloid-β peptides-induced oxidative stress in in-vivo and in-vitro models of Alzheimer’s disease. Brain Res 2016; 1642: 327-35.
[http://dx.doi.org/10.1016/j.brainres.2016.04.011] [PMID: 27071547]
[111]
García-Osta A, Cuadrado-Tejedor M, García-Barroso C, Oyarzábal J, Franco R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem Neurosci 2012; 3(11): 832-44.
[http://dx.doi.org/10.1021/cn3000907] [PMID: 23173065]
[112]
Reneerkens OAH, Rutten K, Steinbusch HWM, Blokland A, Prickaerts J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 2009; 202(1-3): 419-43.
[http://dx.doi.org/10.1007/s00213-008-1273-x] [PMID: 18709359]
[113]
Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010; 59(6): 367-74.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004] [PMID: 20493887]
[114]
Gur S, Kadowitz PJ, Serefoglu EC, Hellstrom WJ. PDE5 inhibitor treatment options for urologic and non-urologic indications: 2012 update. Curr Pharm Des 2012; 18(34): 5590-606.
[http://dx.doi.org/10.2174/138161212803307554] [PMID: 22747425]
[115]
Andersson K-E. PDE5 inhibitors - pharmacology and clinical applications 20 years after sildenafil discovery. Br J Pharmacol 2018; 175(13): 2554-65.
[http://dx.doi.org/10.1111/bph.14205] [PMID: 29667180]
[116]
Ugarte A, Gil-Bea F, García-Barroso C, et al. Decreased levels of guanosine 3′,5′-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer’s disease. Neuropathol Appl Neurobiol 2015; 41(4): 471-82.
[http://dx.doi.org/10.1111/nan.12203] [PMID: 25488891]
[117]
Ibrahim MA, Haleem MASA, AbdelWahab SA, Abdel-Aziz AM. Sildenafil ameliorates Alzheimer disease via the modulation of vascular endothelial growth factor and vascular cell adhesion molecule-1 in rats. Hum Exp Toxicol 2021; 40(4): 596-607.
[http://dx.doi.org/10.1177/0960327120960775] [PMID: 32959702]
[118]
Zhang J, Guo J, Zhao X, et al. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res 2013; 250: 230-7.
[http://dx.doi.org/10.1016/j.bbr.2013.05.017] [PMID: 23685322]
[119]
Cuadrado-Tejedor M, Hervias I, Ricobaraza A, et al. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br J Pharmacol 2011; 164(8): 2029-41.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01517.x] [PMID: 21627640]
[120]
Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging 2012; 33(3): 625.e11-20.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.018] [PMID: 21546125]
[121]
Orejana L, Barros-Miñones L, Aguirre N, Puerta E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp Gerontol 2013; 48(6): 565-71.
[http://dx.doi.org/10.1016/j.exger.2013.03.001] [PMID: 23501261]
[122]
Argyrousi EK, Heckman PRA, van Hagen BTJ, Muysers H, van Goethem NP, Prickaerts J. Pro-cognitive effect of upregulating cyclic guanosine monophosphate signalling during memory acquisition or early consolidation is mediated by increased AMPA receptor trafficking. J Psychopharmacol 2020; 34(1): 103-14.
[http://dx.doi.org/10.1177/0269881119885262] [PMID: 31692397]
[123]
García-Barroso C, Ricobaraza A, Pascual-Lucas M, et al. Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 2013; 64: 114-23.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.052] [PMID: 22776546]
[124]
Patil CS, Jain NK, Singh VP, Kulkarni SK. Differential effect of the PDE5 inhibitors, sildenafil and zaprinast, in aging- and lipopolysaccharide-induced cognitive dysfunction in mice. Drug Dev Res 2004; 63(2): 66-75.
[http://dx.doi.org/10.1002/ddr.10398]
[125]
Jin F, Gong QH, Xu YS, et al. Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol 2014; 17(6): 871-81.
[http://dx.doi.org/10.1017/S1461145713001533] [PMID: 24513083]
[126]
Kang BW, Kim F, Cho JY, Kim S, Rhee J, Choung JJ. Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimers Res Ther 2022; 14(1): 92.
[http://dx.doi.org/10.1186/s13195-022-01034-3] [PMID: 35804462]
[127]
Zydena on cognitive function of alzheimer's disease patients. Patent NCT01940952, 2021.
[128]
Perfusion by Arterial Spin Labelling Following Single Dose Tadalafil in Small Vessel Disease (PASTIS) Trial (PASTIS). Patent NCT02450253, 2022.
[129]
Gray SL, Anderson ML, Dublin S, et al. Cumulative use of strong anticholinergics and incident dementia: A prospective cohort study. JAMA Intern Med 2015; 175(3): 401-7.
[http://dx.doi.org/10.1001/jamainternmed.2014.7663] [PMID: 25621434]
[130]
Carrière I, Fourrier-Reglat A, Dartigues JF, et al. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med 2009; 169(14): 1317-24.
[http://dx.doi.org/10.1001/archinternmed.2009.229] [PMID: 19636034]
[131]
Risacher SL, McDonald BC, Tallman EF, et al. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol 2016; 73(6): 721-32.
[http://dx.doi.org/10.1001/jamaneurol.2016.0580] [PMID: 27088965]
[132]
Chuang YF, Elango P, Gonzalez CE, Thambisetty M. Midlife anticholinergic drug use, risk of Alzheimer’s disease, and brain atrophy in community-dwelling older adults. Alzheimers Dement 2017; 3(3): 471-9.
[http://dx.doi.org/10.1016/j.trci.2017.06.004] [PMID: 29067353]
[133]
Moss DE, Perez RG, Kobayashi H. Cholinesterase inhibitor therapy in alzheimer’s disease: The limits and tolerability of irreversible CNS-selective acetylcholinesterase inhibition in primates. J Alzheimers Dis 2016; 55(3): 1285-94.
[http://dx.doi.org/10.3233/JAD-160733] [PMID: 27858711]
[134]
Bohnen NI, Kaufer DI, Hendrickson R, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2005; 76(3): 315-9.
[http://dx.doi.org/10.1136/jnnp.2004.038729] [PMID: 15716518]
[135]
David E. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 2000; 48(3): 391-5.
[136]
Ota T, Shinotoh H, Fukushi K, et al. Estimation of plasma IC50 of donepezil for cerebral acetylcholinesterase inhibition in patients with Alzheimer disease using positron emission tomography. Clin Neuropharmacol 2010; 33(2): 74-8.
[http://dx.doi.org/10.1097/WNF.0b013e3181c71be9] [PMID: 19935404]
[137]
Kadir A, Darreh-Shori T, Almkvist O, et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging 2008; 29(8): 1204-17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.020] [PMID: 17379359]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy