Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Novel Natural Killer Cell-related Gene Signature for Improving the Prediction of Prognosis and Immunotherapy Response in Bladder Cancer

Author(s): Xudong Ma, Xifeng Wei, Guanghua Yang, Shuai Li and Ranlu Liu*

Volume 27, Issue 8, 2024

Published on: 13 September, 2023

Page: [1205 - 1221] Pages: 17

DOI: 10.2174/1386207326666230831164358

Price: $65

Abstract

Background: Bladder cancer (BLCA) is a commonly diagnosed cancer worldwide that exhibits high rates of recurrence and metastasis. Immunotherapy is increasingly being recognised in the clinical management of bladder cancer. In addition, the prospect of developing Natural Killer (NK) cell-related immunotherapy is promising in BLCA.

Methods: We established and verified a prognostic signature based on NK cell-related gene expression. We then calculated the NKscore of BLCA samples and correlated it with the clinical outcomes, molecular subtypes of BLCA, tumour microenvironment (TME), and predicted efficacy of immune checkpoint inhibitors (ICI) and chemotherapy drugs to thoroughly explore the implications of the NKscore. Finally, the role of the NK signature gene HECTD1 in BLCA was verified by Quantitative Real-time PCR, Cell Counting Kit-8 Assay (CCK-8), Transwell Assay and Colony Formation Experiment.

Results: We analysed NK cell-associated genes and identified six genes with significant prognostic relevance. A high NK score significantly represents a worse prognosis. NKscore was significantly correlated with seven types of classical molecular subtype classifications of BLCA. In addition, NKscore positively correlates with NK-related immune checkpoints, suggesting that emerging NK cell immune checkpoint inhibitors, such as monalizumab, may have potential therapeutic promise for patients with high NKscore. The results of the T cell inflamed score (TIS) and tumour immune dysfunction exclusion (TIDE) score confirmed the suitability of immunotherapy for patients with a high NK score. Likewise, patients with a high NK score may be more suitable for several significant chemotherapeutic drugs. Functional experiments showed that the knockdown of HECTD1 significantly attenuated the proliferation, migration, and invasion ability of tumour cells.

Conclusion: To sum up, the capability of our signature to predict prognosis and immunotherapy response was robust. Hopefully, these results will provide new insights for BLCA research and patient immunotherapy.

Graphical Abstract

[1]
Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder Cancer. JAMA, 2020, 324(19), 1980-1991.
[http://dx.doi.org/10.1001/jama.2020.17598] [PMID: 33201207]
[2]
Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M.M.; Grivas, P.; Joseph, R.W.; Galsky, M.D.; Fleming, M.T.; Petrylak, D.P.; Perez-Gracia, J.L.; Burris, H.A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G.M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G.D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920.
[http://dx.doi.org/10.1016/S0140-6736(16)00561-4] [PMID: 26952546]
[3]
Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; Rouanne, M.; Thalmann, G.N.; Veskimäe, E.; Ribal, M.J.; van der Heijden, A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol., 2021, 79(1), 82-104.
[http://dx.doi.org/10.1016/j.eururo.2020.03.055] [PMID: 32360052]
[4]
Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[5]
Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell–cancer cycle: Advances and new challenges in NK cell–based immunotherapies. Nat. Immunol., 2020, 21(8), 835-847.
[http://dx.doi.org/10.1038/s41590-020-0728-z] [PMID: 32690952]
[6]
Guillerey, C.; Huntington, N.D.; Smyth, M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol., 2016, 17(9), 1025-1036.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[7]
Hodgins, J.J.; Khan, S.T.; Park, M.M.; Auer, R.C.; Ardolino, M. Killers 2.0: NK cell therapies at the forefront of cancer control. J. Clin. Invest., 2019, 129(9), 3499-3510.
[http://dx.doi.org/10.1172/JCI129338] [PMID: 31478911]
[8]
Ferreira-Teixeira, M.; Paiva-Oliveira, D.; Parada, B.; Alves, V.; Sousa, V.; Chijioke, O.; Münz, C.; Reis, F.; Rodrigues-Santos, P.; Gomes, C. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemo resistant bladder cancer stem-like cells. BMC Med., 2016, 14(1), 163.
[http://dx.doi.org/10.1186/s12916-016-0715-2] [PMID: 27769244]
[9]
Sun, H.; Huang, Q.; Huang, M.; Wen, H.; Lin, R.; Zheng, M.; Qu, K.; Li, K.; Wei, H.; Xiao, W.; Sun, R.; Tian, Z.; Sun, C. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology, 2019, 70(1), 168-183.
[http://dx.doi.org/10.1002/hep.30347] [PMID: 30411378]
[10]
Chauvin, J.M.; Ka, M.; Pagliano, O.; Menna, C.; Ding, Q.; DeBlasio, R.; Sanders, C.; Hou, J.; Li, X.Y.; Ferrone, S.; Davar, D.; Kirkwood, J.M.; Johnston, R.J.; Korman, A.J.; Smyth, M.J.; Zarour, H.M. IL15 stimulation with TIGIT blockade reverses CD155-mediated NK-cell dysfunction in melanoma. Clin. Cancer Res., 2020, 26(20), 5520-5533.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0575] [PMID: 32591463]
[11]
Khatua, S.; Cooper, L.J.N.; Sandberg, D.I.; Ketonen, L.; John son, J.M.; Rytting, M.E.; Liu, D.D.; Meador, H.; Trikha, P.; Nakkula, R.J.; Behbehani, G.K.; Ragoonanan, D.; Gupta, S.; Kotrotsou, A.; Idris, T.; Shpall, E.J.; Rezvani, K.; Colen, R.; Zaky, W.; Lee, D.A.; Gopalakrishnan, V. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro-oncol., 2020, 22(8), 1214-1225.
[http://dx.doi.org/10.1093/neuonc/noaa047] [PMID: 32152626]
[12]
McWilliams, E.M.; Mele, J.M.; Cheney, C.; Timmerman, E.A.; Fiazuddin, F.; Strattan, E.J.; Mo, X.; Byrd, J.C.; Muthusamy, N.; Awan, F.T. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. OncoImmunology, 2016, 5(10), e1226720.
[http://dx.doi.org/10.1080/2162402X.2016.1226720] [PMID: 27853650]
[13]
Zhang, S.; Liu, W.; Hu, B.; Wang, P.; Lv, X.; Chen, S.; Shao, Z. Prognostic significance of tumor-infiltrating natural killer cells in solid tumors: A systematic review and meta-analysis. Front. Immunol., 2020, 11, 1242.
[http://dx.doi.org/10.3389/fimmu.2020.01242] [PMID: 32714321]
[14]
Alderdice, M.; Dunne, P.D.; Cole, A.J.; O’Reilly, P.G.; McArt, D.G.; Bingham, V.; Fuchs, M.A.; McQuaid, S.; Loughrey, M.B.; Murray, G.I.; Samuel, L.M.; Lawler, M.; Wilson, R.H.; Salto-Tellez, M.; Coyle, V.M. Natural killer-like signature observed post therapy in locally advanced rectal cancer is a determinant of pathological response and improved survival. Mod. Pathol., 2017, 30(9), 1287-1298.
[http://dx.doi.org/10.1038/modpathol.2017.47] [PMID: 28621318]
[15]
Li, C.; Liu, F.; Sun, L.; Liu, Z.; Zeng, Y. Natural killer cell-related gene signature predicts malignancy of glioma and the survival of patients. BMC Cancer, 2022, 22(1), 230.
[http://dx.doi.org/10.1186/s12885-022-09230-y] [PMID: 35236310]
[16]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch,; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[17]
Gaudet, P.; Škunca, N.; Hu, J.C.; Dessimoz, C. Primer on the gene ontology. Methods Mol. Biol., 2017, 1446, 25-37.
[http://dx.doi.org/10.1007/978-1-4939-3743-1_3] [PMID: 27812933]
[18]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[19]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[20]
Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.L.; Melquist, J.; Bondaruk, J.; Majewski, T.; Zhang, S.; Pretzsch, S.; Baggerly, K.; Siefker-Radtke, A.; Czerniak, B.; Dinney, C.P.N.; McConkey, D.J. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell, 2014, 25(2), 152-165.
[http://dx.doi.org/10.1016/j.ccr.2014.01.009] [PMID: 24525232]
[21]
Damrauer, J.S.; Hoadley, K.A.; Chism, D.D.; Fan, C.; Tiganelli, C.J.; Wobker, S.E.; Yeh, J.J.; Milowsky, M.I.; Iyer, G.; Parker, J.S.; Kim, W.Y. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl. Acad. Sci., 2014, 111(8), 3110-3115.
[http://dx.doi.org/10.1073/pnas.1318376111] [PMID: 24520177]
[22]
Mo, Q.; Nikolos, F.; Chen, F.; Tramel, Z.; Lee, Y.C.; Hayashi, K.; Xiao, J.; Shen, J.; Chan, K.S. Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas. J. Natl. Cancer Inst., 2018, 110(5), 448-459.
[http://dx.doi.org/10.1093/jnci/djx243] [PMID: 29342309]
[23]
Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; Castro, M.A.A.; Fontugne, J.; Eriksson, P.; Mo, Q.; Kardos, J.; Zlotta, A.; Hartmann, A.; Dinney, C.P.; Bellmunt, J.; Powles, T.; Malats, N.; Chan, K.S.; Kim, W.Y.; McConkey, D.J.; Black, P.C.; Dyrskjøt, L.; Höglund, M.; Lerner, S.P.; Real, F.X.; Radvanyi, F.; Aine, M.; Al-Ahmadie, H.; Allory, Y.; Bellmunt, J.; Bernard-Pierrot, I.; Black, P.C.; Castro, M.A.A.; Chan, K.S.; Choi, W.; Czerniak, B.; Dinney, C.P.; Dyrskjøt, L.; Eriksson, P.; Fontugne, J.; Gibb, E.A.; Groeneveld, C.S.; Hartmann, A.; Hoadley, K.A.; Höglund, M.; Kamoun, A.; Kardos, J.; Kim, J.; Kim, W.Y.; Kwiatkowski, D.J.; Lebret, T.; Lerner, S.P.; Liedberg, F.; Malats, N.; McConkey, D.J.; Mo, Q.; Powles, T.; Radvanyi, F.; Real, F.X.; de Reyniès, A.; Robertson, A.G.; Siefker-Radtke, A.; Sirab, N.; Seiler, R.; Sjödahl, G.; Taber, A.; Weinstein, J.; Zlotta, A. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol., 2020, 77(4), 420-433.
[http://dx.doi.org/10.1016/j.eururo.2019.09.006] [PMID: 31563503]
[24]
Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; Castro, M.A.A.; Gibb, E.A.; Kanchi, R.S.; Gordenin, D.A.; Shukla, S.A.; Sanchez-Vega, F.; Hansel, D.E.; Czerniak, B.A.; Reuter, V.E.; Su, X.; de Sa Carvalho, B.; Chagas, V.S.; Mungall, K.L.; Sadeghi, S.; Pedamallu, C.S.; Lu, Y.; Klimczak, L.J.; Zhang, J.; Choo, C.; Ojesina, A.I.; Bullman, S.; Leraas, K.M.; Lichtenberg, T.M.; Wu, C.J.; Schultz, N.; Getz, G.; Meyerson, M.; Mills, G.B.; McConkey, D.J.; Weinstein, J.N.; Kwiatkowski, D.J.; Lerner, S.P. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cancer Cell, 2018, 174(4), 1033.
[PMID: 30096301]
[25]
Rebouissou, S.; Bernard-Pierrot, I.; de Reyniès, A.; Lepage, M.L.; Krucker, C.; Chapeaublanc, E.; Hérault, A.; Kamoun, A.; Caillault, A.; Letouzé, E.; Elarouci, N.; Neuzillet, Y.; Denoux, Y.; Molinié, V.; Vordos, D.; Laplanche, A.; Maillé, P.; Soyeux, P.; Ofualuka, K.; Reyal, F.; Biton, A.; Sibony, M.; Paoletti, X.; Southgate, J.; Benhamou, S.; Lebret, T.; Allory, Y.; Radvanyi, F. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci. Transl. Med., 2014, 6(244), 244ra91.
[http://dx.doi.org/10.1126/scitranslmed.3008970] [PMID: 25009231]
[26]
Sjödahl, G.; Lauss, M.; Lövgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Fernö, M.; Ringnér, M.; Månsson, W.; Liedberg, F.; Lindgren, D.; Höglund, M. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res., 2012, 18(12), 3377-3386.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0077-T] [PMID: 22553347]
[27]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[28]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[29]
Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; Bruneval, P.; Fridman, W.H.; Becker, C.; Pagès, F.; Speicher, M.R.; Trajanoski, Z.; Galon, J. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 2013, 39(4), 782-795.
[http://dx.doi.org/10.1016/j.immuni.2013.10.003] [PMID: 24138885]
[30]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[31]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[32]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[33]
Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; Piha-Paul, S.A.; Yearley, J.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest., 2017, 127(8), 2930-2940.
[http://dx.doi.org/10.1172/JCI91190] [PMID: 28650338]
[34]
Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med., 2020, 12(1), 21.
[http://dx.doi.org/10.1186/s13073-020-0721-z] [PMID: 32102694]
[35]
Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468.
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[36]
Gao, J.; Zheng, Q.; Xin, N.; Wang, W.; Zhao, C. CD 155, an onco‐immunologic molecule in human tumors. Cancer Sci., 2017, 108(10), 1934-1938.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[37]
Lupo, K.B.; Matosevic, S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J. Hematol. Oncol., 2020, 13(1), 76.
[http://dx.doi.org/10.1186/s13045-020-00913-2] [PMID: 32532329]
[38]
Kearney, C.J.; Ramsbottom, K.M.; Voskoboinik, I.; Darcy, P.K.; Oliaro, J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Onco Immunology, 2016, 5(8), e1196308.
[http://dx.doi.org/10.1080/2162402X.2016.1196308] [PMID: 27622064]
[39]
Zhang, J.; Zhu, Y.; Wang, Q.; Kong, Y.; Sheng, H.; Guo, J.; Xu, J.; Dai, B. Poliovirus receptor CD155 is up-regulated in muscle-invasive bladder cancer and predicts poor prognosis. Urol. Oncol., 2020, 38(2), 41.e11-41.e18.
[http://dx.doi.org/10.1016/j.urolonc.2019.07.006] [PMID: 31383549]
[40]
Luo, C.; Ye, W.; Hu, J.; Othmane, B.; Li, H.; Chen, J.; Zu, X. A poliovirus receptor (CD155)-related risk signature predicts the prognosis of bladder cancer. Front. Oncol., 2021, 11, 660273.
[http://dx.doi.org/10.3389/fonc.2021.660273] [PMID: 34150627]
[41]
Li, X.; Zhou, Q.; Sunkara, M.; Kutys, M.L.; Wu, Z.; Rychahou, P.; Morris, A.J.; Zhu, H.; Evers, B.M.; Huang, C. Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I γ by HECTD1 regulates focal adhesion dynamics and cell migration. J. Cell Sci., 2013, 126(Pt 12), 2617-2628.
[PMID: 23572508]
[42]
Bennett, L.; Madders, E.C.E.T.; Parsons, J.L. HECTD1 promotes base excision repair in nucleosomes through chromatin remodelling. Nucleic Acids Res., 2020, 48(3), 1301-1313.
[http://dx.doi.org/10.1093/nar/gkz1129] [PMID: 31799632]
[43]
de Curtis, I. The Rac3 GTPase in neuronal development, neurodevelopmental disorders, and cancer. Cells, 2019, 8(9), 1063.
[http://dx.doi.org/10.3390/cells8091063] [PMID: 31514269]
[44]
Sun, S.; Wang, Y.; Wang, J.; Bi, J. Wnt pathway-related three mRNA clinical outcome signature in bladder urothelial carcinoma: computational biology and experimental analyses. J. Transl. Med., 2021, 19(1), 409.
[http://dx.doi.org/10.1186/s12967-021-03061-4] [PMID: 34579753]
[45]
Zhu, W.L.; Hossain, M.S.; Guo, D.Y.; Liu, S.; Tong, H.; Khakpoor, A.; Casey, P.J.; Wang, M. A role for Rac3 GTPase in the regulation of autophagy. J. Biol. Chem., 2011, 286(40), 35291-35298.
[http://dx.doi.org/10.1074/jbc.M111.280990] [PMID: 21852230]
[46]
Rao, A.; Luo, C.; Hogan, P.G. Transcription factors of the nfat family:Regulation and function. Annu. Rev. Immunol., 1997, 15(1), 707-747.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.707] [PMID: 9143705]
[47]
Peng, S.L.; Gerth, A.J.; Ranger, A.M.; Glimcher, L.H. NFATc1 and NFATc2 together control both T and B cell acti-vation and differentiation. Immunity, 2001, 14(1), 13-20.
[http://dx.doi.org/10.1016/S1074-7613(01)00085-1] [PMID: 11163226]
[48]
Heim, L.; Friedrich, J.; Engelhardt, M.; Trufa, D.I.; Geppert, C.I.; Rieker, R.J.; Sirbu, H.; Finotto, S. NFATc1 promotes antitumoral effector functions and memory CD8+ T-cell differentiation during non–small cell lung cancer development. Cancer Res., 2018, 78(13), 3619-3633.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3297] [PMID: 29691251]
[49]
Tsai, F.Y.; Keller, G.; Kuo, F.C.; Weiss, M.; Chen, J.; Rosenblatt, M.; Alt, F.W.; Orkin, S.H. An early haematopoietic defect in micelacking the transcription factor GATA-2. Nature, 1994, 371(6494), 221-226.
[http://dx.doi.org/10.1038/371221a0] [PMID: 8078582]
[50]
Katerndahl, C.D.S.; Rogers, O.R.S.; Day, R.B.; Cai, M.A.; Rooney, T.P.; Helton, N.M.; Hoock, M.; Ramakrishnan, S.M.; Nonavinkere Srivatsan, S.; Wartman, L.D.; Miller, C.A.; Ley, T.J. Tumor suppressor function of Gata2 in acute promyelocytic leukemia. Blood, 2021, 138(13), 1148-1161.
[http://dx.doi.org/10.1182/blood.2021011758] [PMID: 34125173]
[51]
Mace, E.M.; Hsu, A.P.; Monaco-Shawver, L.; Makedonas, G.; Rosen, J.B.; Dropulic, L.; Cohen, J.I.; Frenkel, E.P.; Bagwell, J.C.; Sullivan, J.L.; Biron, C.A.; Spalding, C.; Zerbe, C.S.; Uzel, G.; Holland, S.M.; Orange, J.S. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56bright subset. Blood, 2013, 121(14), 2669-2677.
[http://dx.doi.org/10.1182/blood-2012-09-453969] [PMID: 23365458]
[52]
Dell’Angelica, E.C. The building BLOC(k)s of lysosomes and related organelles. Curr. Opin. Cell Biol., 2004, 16(4), 458-464.
[http://dx.doi.org/10.1016/j.ceb.2004.05.001] [PMID: 15261680]
[53]
Morgan, N.V.; Pasha, S.; Johnson, C.A.; Ainsworth, J.R.; Eady, R.A.J.; Dawood, B.; McKeown, C.; Trembath, R.C.; Wilde, J.; Watson, S.P.; Maher, E.R. A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky-Pudlak syndrome (HPS8). Am. J. Hum. Genet., 2006, 78(1), 160-166.
[http://dx.doi.org/10.1086/499338] [PMID: 16385460]
[54]
Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; Seo, H.K.; Nishiyama, H.; Konety, B.R.; Li, H.; Nam, K.; Kapadia, E.; Frenkl, T.; de Wit, R. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol., 2021, 22(7), 919-930.
[http://dx.doi.org/10.1016/S1470-2045(21)00147-9] [PMID: 34051177]
[55]
Li, M.O.; Wolf, N.; Raulet, D.H.; Akkari, L.; Pittet, M.J.; Ro-driguez, P.C.; Kaplan, R.N.; Munitz, A.; Zhang, Z.; Cheng, S.; Bhardwaj, N. Innate immune cells in the tumor microenvironment. Cancer Cell, 2021, 39(6), 725-729.
[http://dx.doi.org/10.1016/j.ccell.2021.05.016] [PMID: 34129817]
[56]
Ranti, D.; Bieber, C.; Wang, Y.S.; Sfakianos, J.P.; Horowitz, A. Natural killer cells: Unlocking new treatments for bladder cancer. Trends Cancer, 2022, 8(8), 698-710.
[http://dx.doi.org/10.1016/j.trecan.2022.03.007] [PMID: 35581130]
[57]
Rosenberg, J.; Huang, J. CD8+ T cells and NK cells: Parallel and complementary soldiers of immunotherapy. Curr. Opin. Chem. Eng., 2018, 19, 9-20.
[http://dx.doi.org/10.1016/j.coche.2017.11.006] [PMID: 29623254]
[58]
Tsujihashi, H.; Matsuda, H.; Uejima, S.; Akiyama, T.; Kurita, T. Role of natural killer cells in bladder tumor. Eur. Urol., 1989, 16(6), 444-449.
[http://dx.doi.org/10.1159/000471637] [PMID: 2591428]
[59]
Moretta, A.; Biassoni, R.; Bottino, C.; Pende, D.; Vitale, M.; Poggi, A.; Mingari, M.C.; Moretta, L. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol. Rev., 1997, 155(1), 105-117.
[http://dx.doi.org/10.1111/j.1600-065X.1997.tb00943.x] [PMID: 9059886]
[60]
Buckle, I.; Guillerey, C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer. Cancers., 2021, 13(17), 4263.
[http://dx.doi.org/10.3390/cancers13174263] [PMID: 34503073]
[61]
Khan, M.; Arooj, S.; Wang, H. NK cell-based immune check point inhibition. Front. Immunol., 2020, 11, 167.
[http://dx.doi.org/10.3389/fimmu.2020.00167] [PMID: 32117298]
[62]
Galot, R.; Le Tourneau, C.; Saada-Bouzid, E.; Daste, A.; Even, C.; Debruyne, P.; Henry, S.; Zanetta, S.; Rutten, A.; Licitra, L.; Canon, J.L.; Kaminsky, M.C.; Specenier, P.; Rottey, S.; Guigay, J.; Kong, A.; Tinhofer, I.; Borcoman, E.; Dirix, L.; Raveloarivahy, T.; Fortpied, C.; Vanlancker, M.; Morfouace, M.; Govaerts, A.S.; Machiels, J.P. A phase II study of monalizumab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck: The I1 cohort of the EORTC-HNCG-1559 UPSTREAM trial. Eur. J. Cancer, 2021, 158, 17-26.
[http://dx.doi.org/10.1016/j.ejca.2021.09.003] [PMID: 34638090]
[63]
Ruggeri, L.; Urbani, E.; André, P.; Mancusi, A.; Tosti, A.; Topini, F.; Bléry, M.; Animobono, L.; Romagné, F.; Wagtmann, N.; Velardi, A. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica, 2016, 101(5), 626-633.
[http://dx.doi.org/10.3324/haematol.2015.135301] [PMID: 26721894]
[64]
Jandus, C.; Boligan, K.F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R.E.; Baerlocher, G.M.; Simon, H.U.; Romero, P.; Münz, C.; von Gunten, S. Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance. J. Clin. Invest., 2014, 124(4), 1810-1820.
[http://dx.doi.org/10.1172/JCI65899] [PMID: 24569453]
[65]
Matlung, H.L.; Szilagyi, K.; Barclay, N.A.; van den Berg, T.K. The CD47-SIRPα signaling axis as an innate immune check point in cancer. Immunol. Rev., 2017, 276(1), 145-164.
[http://dx.doi.org/10.1111/imr.12527] [PMID: 28258703]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy