Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

New Molecular Complexes of Glycyrrhizic Acid Monoammonium Salt (Glycyram) with Fluoroquinolone Antibiotics

Author(s): Leonid A. Yakovishin*, Sergey V. Bukharov, Vasily M. Babaev, Elena V. Nikitina and Elena S. Bulatova

Volume 20, Issue 2, 2024

Published on: 04 September, 2023

Article ID: e310823220526 Pages: 11

DOI: 10.2174/1573407219666230831091213

Price: $65

Abstract

Aims: The study aimed to search of new molecular complexes of licorice saponin with fluoroquinolone antibiotics and to explore their pharmaceutical potential.

Background: Molecular complexation of triterpene glycosides with pharmaceutical substances reduces side effects and therapeutic doses, increases bioavailability and stability, and expands the spectrum of biological activity of drugs. Glycyrrhizic acid is the major triterpene glycoside of licorice. Molecular complexes of monoammonium salt of glycyrrhizic acid (glycyram, GC) with fluoroquinolone antibiotics have not been described.

Objectives: This study is devoted to the preparation and analysis of molecular complexes of GC with fluoroquinolones, and investigation of their antimicrobial activity.

Methods: Complexation was studied via FT-IR spectroscopy, UV-Vis spectroscopy and mass spectrometry methods.

Results: Molecular complexes of GC with fluoroquinolone antibiotics, along with their benzylated derivatives, were obtained for the first time.

Conclusion: The complexes composition was defined as 1:1. Intermolecular hydrogen bonds are formed during complexation. In addition, stability constants of 105 М-1 order were calculated. Some complexes are comparable in antimicrobial activity with individual antibiotics ciprofloxacin (CP) and moxifloxacin (Moc) or surpass them in relation to a number of bacteria. These molecular complexes could be potential low-dose drugs with antimicrobial activity.

Graphical Abstract

[1]
Yakovlev, V.P. Antimicrobial drugs of the fluoroquinolone group. Consilium Medicum, 2012, 14(4), 8-14.
[2]
Mashkovskii, M.D. Drugs; Torsing: Kharkov, 1997, Vol. 2, .
[3]
Charushin, V.N.; Nosova, E.V.; Lipunova, G.N.; Chupakhin, O.N. Fluoroquinolones: Synthesis and Application; Fizmatlit: Moscow, 2014.
[4]
Xu, P.; Chen, H.; Xu, J.; Wu, M.; Zhu, X.; Wang, F.; Chen, S.; Xu, J. Moxifloxacin is an effective and safe candidate agent for tuberculosis treatment: A meta-analysis. Int. J. Infect. Dis., 2017, 60, 35-41.
[http://dx.doi.org/10.1016/j.ijid.2017.05.003] [PMID: 28495364]
[5]
Tang, H.J.; Wang, J.H.; Lai, C.C. Lefamulin vs moxifloxacin for community-acquired bacterial pneumonia. Medicine, 2020, 99(29), e21223.
[http://dx.doi.org/10.1097/MD.0000000000021223] [PMID: 32702892]
[6]
Mah, F.S. Fourth-generation fluoroquinolones: New topical agents in the war on ocular bacterial infections. Curr. Opin. Ophthalmol., 2004, 15(4), 316-320.
[http://dx.doi.org/10.1097/00055735-200408000-00007] [PMID: 15232471]
[7]
Marciniec, K.; Beberok, A.; Pęcak, P.; Boryczka, S.; Wrześniok, D. Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: Preliminary in silico analysis. Pharmacol. Rep., 2020, 72(6), 1553-1561.
[http://dx.doi.org/10.1007/s43440-020-00169-0] [PMID: 33063271]
[8]
Karampela, I.; Dalamaga, M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? Arch. Med. Res., 2020, 51(7), 741-742.
[http://dx.doi.org/10.1016/j.arcmed.2020.06.004] [PMID: 32546446]
[9]
Yacouba, A.; Olowo-okere, A.; Yunusa, I. Repurposing of antibiotics for clinical management of COVID-19: A narrative review. Ann. Clin. Microbiol. Antimicrob., 2021, 20(1), 37.
[http://dx.doi.org/10.1186/s12941-021-00444-9] [PMID: 34020659]
[10]
Sharma, P.; Chaudhary, M.; Sharma, A.; Piplani, M.; Rajak, H.; Prakash, O. Insight view on possible role of fluoroquinolones in cancer therapy. Curr. Top. Med. Chem., 2013, 13(16), 2076-2096.
[http://dx.doi.org/10.2174/15680266113139990133] [PMID: 23895089]
[11]
Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother., 2019, 111, 934-946.
[http://dx.doi.org/10.1016/j.biopha.2018.12.119] [PMID: 30841473]
[12]
Postnikov, S.S. Tolerance to fluoroquinolones. Lechebnoye delo, 2004, 2, 31-36.
[13]
Postnikov, S.S.; Semykin, S.Y.; Nazhimov, V.P.; Kamenev, A.I. Chondrotoxicity of fluoroquinolones in children: yes or no? Safety and Risk of Pharmacotherapy, 2015, 2, 40-47.
[14]
Zang, W.; Li, D.; Gao, L.; Gao, S.; Hao, P.; Bian, H. The antibacterial potential of ciprofloxacin hybrids against Staphylococcus aureus. Curr. Top. Med. Chem., 2022, 22(12), 1020-1034.
[http://dx.doi.org/10.2174/1568026622666220317162132] [PMID: 35301951]
[15]
Saadeh, H.; Mubarak, M. Hybrid drugs as potential combatants against drug-resistant microbes: A review. Curr. Top. Med. Chem., 2017, 17(8), 895-906.
[http://dx.doi.org/10.2174/1568026616666160927155251] [PMID: 27697051]
[16]
Ibrahim, N.M.; Fahim, S.H.; Hassan, M.; Farag, A.E.; Georgey, H.H. Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. Eur. J. Med. Chem., 2022, 228, 114021.
[http://dx.doi.org/10.1016/j.ejmech.2021.114021] [PMID: 34871841]
[17]
Chen, R.; Xue, H.; Xu, Y.; Ma, T.; Liu, Y.; Zhang, J.; Shi, X.; Guo, D. Moxifloxacin derivatives with potential antibacterial activity against methicillin- resistant Staphylococcus aureus (MRSA). Curr. Top. Med. Chem., 2021, 21(27), 2474-2482.
[http://dx.doi.org/10.2174/1568026621666211013125551] [PMID: 34645377]
[18]
Tolstikov, G.A.; Baltina, L.A.; Grankina, V.P.; Kondratenko, R.M.; Tolstikova, T.G. Licorice: Biodiversity, Chemistry, and Application in Medicine; Geo: Novosibirsk, 2007.
[19]
Tolstikova, T.; Khvostov, M.; Bryzgalov, A. The complexes of drugs with carbohydrate-containing plant metabolites as pharmacologically promising agents. Mini Rev. Med. Chem., 2009, 9(11), 1317-1328.
[http://dx.doi.org/10.2174/138955709789878123] [PMID: 19929808]
[20]
Yakovishin, L.A.; Grishkovets, V.I. Ivy and licorice triterpene glycosides: Promising molecular containers for some drugs and biomolecules. In: Studies in Natural Products Chemistry; Attaur-Rahman, , Ed.; Elsevier Science B.V.: Amsterdam, 2018; 55, pp. 351-383.
[http://dx.doi.org/10.1016/B978-0-444-64068-0.00011-5]
[21]
Yakovishin, L.A. Molecular complex of glycyrrhizic acid monoammonium salt with cholesterol. Curr. Bioact. Compd., 2020, 16(7), 1042-1048.
[http://dx.doi.org/10.2174/1573407215666191007111603]
[22]
Yakovishin, L.A.; Grishkovets, V.I.; Korzh, E.N. Molecular complexes of monoammonium glycyrrhizinate with alpha-hederin and hederasaponin C. Lett. Org. Chem., 2015, 12(2), 109-114.
[http://dx.doi.org/10.2174/1570178612666141230234729]
[23]
Yakovishin, L.A.; Ratnikov, V.D.; Bazhan, P.I.; Zaitsev, G.P. New molecular complex of ammonium glycyrrhizate with rutin. Chimica Techno Acta, 2022, 9(1), 20229101.
[http://dx.doi.org/10.15826/chimtech.2022.9.1.01]
[24]
Tolstikov, G.A.; Baltina, L.A.; Murinov, Y.I.; Davydova, V.A.; Tolstikova, T.G.; Bondarev, A.I.; Zarudin, F.S.; Lazareva, D.N. Complexes of β-glycyrrhizinic acid with nonsteroidal antiinflammatory drugs as novel transport forms. Pharm. Chem. J., 1991, 25(2), 105-109.
[http://dx.doi.org/10.1007/BF00766566]
[25]
Kondratenko, R.M.; Baltina, L.A.; Mustafina, S.R.; Ismagilova, A.F.; Zarudii, F.S.; Davydova, V.A.; Bazekin, G.V.; Suleimanova, G.F.; Tolstikov, G.A. Complex compounds of glycyrrhizic acid with antimicrobial drugs. Pharm. Chem. J., 2003, 37(9), 485-488.
[http://dx.doi.org/10.1023/B:PHAC.0000008250.02124.d6]
[26]
Yakovishin, L.A.; Grishkovets, V.I.; Klimenko, A.V.; Degtyar, A.D.; Kuchmenko, E.B. Molecular complexes of ivy and licorice triterpene glycosides with doxorubicin. Pharm. Chem. J., 2014, 48(6), 391-394.
[http://dx.doi.org/10.1007/s11094-014-1117-4]
[27]
Yakovishin, L.A.; Grishkovets, V.I.; Korzh, E.N.; Vetrova, E.V.; Borisenko, N.I. Physico-chemical characteristic and biological activity of the supramolecular complex of glycyram with b-cyclodextrin. Macroheterocycles., 2015, 8(1), 94-98.
[http://dx.doi.org/10.6060/mhc141139y]
[28]
Yakovishin, L.A. Molecular complex of salicylic acid with glycyram. AIP Conf. Proc., 2020, 2280, 050057.
[http://dx.doi.org/10.1063/5.0018047]
[29]
Yakovishin, L.A. Possibility of molecular complexation of ammonium glycyrrhizate with cholesterol in aqueous ethanol. AIP Conf. Proc., 2021, 2388, 040020.
[http://dx.doi.org/10.1063/5.0068326]
[30]
Yakovishin, L.A.; Korzh, E.N.; Klimenko, A.V.; Degtyar, A.D. Spectrophotometry of the supramolecular complexes of ivy and licorice triterpene glycosides with laevomycetin (chloramphenicol). Ukr. Bioorg. Acta, 2013, 11(1), 33-36.
[31]
Salnitskaya, M.A.; Pasiuga, V.N.; Magda, I.Y.; Yakovishin, L.A.; Grishkovets, V.I.; Shckorbatov, Y.G. Effect of some triterpene glycosides applied in vitro on chromatin state in human cells. Curr. Bioact. Compd., 2014, 10(1), 37-43.
[http://dx.doi.org/10.2174/157340721001140725000118]
[32]
Niu, T.; Yang, J.; Zhang, L.; Cheng, X.; Li, K.; Zhou, G. Research advances on anticancer effect of licorice. Curr. Bioact. Compd., 2009, 5(3), 234-242.
[http://dx.doi.org/10.2174/157340709789054803]
[33]
Baltina, L.A.; Kondratenko, R.M.; Bulgakov, A.K. Synthesis and anti-microbial activity of benzylidenhydrazides of glycyrrethic acid. Russ. J. Bioorganic Chem., 2020, 46(2), 246-251.
[http://dx.doi.org/10.1134/S1068162020020065]
[34]
Zhou, X.; Zhao, L.; Liu, X.; Li, X.; Jia, F.; Zhang, Y.; Wang, Y. Antimycobacterial and synergistic effects of 18β-glycyrrhetinic acid or glycyrrhetinic acid-30-piperazine in combination with isoniazid, rifampicin or streptomycin against Mycobacterium bovis. Phytother. Res., 2012, 26(2), 253-258.
[http://dx.doi.org/10.1002/ptr.3536] [PMID: 21656601]
[35]
Borisenko, S.N.; Vetrova, E.V.; Lekar, A.V.; Filonova, O.V.; Maksimenko, E.; Borisenko, N. Study of molecular complexation of glycyr-rhizic acid with chloramphenicol by electrospray ionization mass spectrometry. J. Nat. Sci. Biol. Med., 2015, 6(3), 40.
[http://dx.doi.org/10.4103/0976-9668.166070] [PMID: 26604617]
[36]
Vetrova, E.V.; Lekar’, A.V.; Filonova, O.V.; Borisenko, S.N.; Maksimenko, E.V.; Borisenko, N.I. Mass spectrometry of self organizing supramolecular structures of glycyrrhetic acid and levomycetin. Chem. Nat. Compd., 2015, 51(3), 500-504.
[http://dx.doi.org/10.1007/s10600-015-1324-6]
[37]
Bukharov, S.V.; Tagasheva, R.G.; Litvinov, I.A.; Nikitina, E.V.; Bulatova, E.S.; Burilov, A.R.; Gibadullina, E.M. Synthesis and antibacterial activity of fluoroquinolones with sterically hindered phenolic moieties. Russ. Chem. Bull., 2022, 71(3), 508-516.
[http://dx.doi.org/10.1007/s11172-022-3441-2]
[38]
Babko, A.K. Physico-chemical Analysis of Complex Compounds in the Solutions; Izd-vo AN USSR: Kiev, 1955.
[39]
Mironov, A.N. Manual on Conducting Preclinical Studies of Medicines; Grif and K: Moscow P. 1;, 2012.
[40]
Shtyrlin, N.V.; Vafina, R.M.; Pugachev, M.V.; Khaziev, R.M.; Nikitina, E.V.; Zeldi, M.I.; Iksanova, A.G.; Shtyrlin, Y.G. Synthesis and biological activity of quaternary phosphonium salts based on 3-hydroxypyridine and 4-deoxypyridoxine. Russ. Chem. Bull., 2016, 65(2), 537-545.
[http://dx.doi.org/10.1007/s11172-016-1334-y]
[41]
Nikitina, E.V.; Zeldi, M.I.; Pugachev, M.V.; Sapozhnikov, S.V.; Shtyrlin, N.V.; Kuznetsova, S.V.; Evtygin, V.E.; Bogachev, M.I.; Kayumov, A.R.; Shtyrlin, Y.G. Antibacterial effects of quaternary bisphosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: A single base hitting two distinct targets? World J. Microbiol. Biotechnol., 2016, 32(1), 5.
[http://dx.doi.org/10.1007/s11274-015-1969-0] [PMID: 26712620]
[42]
Thorsteinsson, T.; Loftsson, T.; Masson, M. Soft antibacterial agents. Curr. Med. Chem., 2003, 10(13), 1129-1136.
[http://dx.doi.org/10.2174/0929867033457520] [PMID: 12678806]
[43]
Merchel Piovesan Pereira, B.; Tagkopoulos, I. Benzalkonium chlorides: uses, regulatory status, and microbial resistance. Appl. Environ. Microbiol., 2019, 85(13), e00377-e19.
[http://dx.doi.org/10.1128/AEM.00377-19] [PMID: 31028024]
[44]
Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microbiol., 2018, 84(17), e01201-18.
[http://dx.doi.org/10.1128/AEM.01201-18] [PMID: 29959242]
[45]
Mayorova, A.V.; Syisuev, B.B.; Hanalieva, I.A.; Vihrova, I.V. Modern assortment, properties and perspectives of medical dressings improvement of wound treatment. Pharm. Pharmacol., 2018, 6(1), 4-32.
[http://dx.doi.org/10.19163/2307-9266-2018-6-1-4-32]
[46]
Avanesov, A.M.; Kalantarov, G.K. The effects of antiseptics miramistin and chlorhexidine on oral cavity of patients with chronic generalized catarrhal gingivitis. RUDN J. Med., 2013, 3, 68-72.
[47]
Grishin, M.N. [Use of antiseptic myramistin in the multimodality treatment of nonspecific suppurative pleuropulmonary diseases]. Probl. Tuberk., 1998, 1(1), 40-41.
[PMID: 9553434]
[48]
Chromova, N.U.; Malekin, S.I.; Kutkin, A.V.; Zhidkov, M.E. Preparative method for the synthesis and antimicrobal activity of miramistine. Chem. Chem. Technol., 2018, 1(1), 4-8.
[http://dx.doi.org/10.54468/25876724_2018_1_4]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy