Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Mechanochemical and Microwave Multistep Organic Reactions

Author(s): Davor Margetic*

Volume 11, Issue 2, 2024

Published on: 11 September, 2023

Page: [172 - 193] Pages: 22

DOI: 10.2174/2213346110666230830125317

Price: $65

Abstract

The development of more sustainable chemical reactions and processes has been the focus of recent research activities. Advances in the field of organic synthesis have led to the emergence of new methodologies and techniques involving non-conventional energy sources. These include the applications of mechanical energy (mechanochemistry) and microwave radiation (MW) methods. This article reviews the advances in multistep organic synthesis of biologically relevant organic molecules using mechanochemistry and microwave techniques. Among them, various heterocyclic molecules (with nitrogen, oxygen, and sulphur atoms), amides, and peptides have been synthesized by multistep mechanochemical or MW reactions. Performing multiple synthetic steps using more sustainable methods shows cumulative advantages over multistep processes under conventional conditions in terms of reduced solvent use, shorter reaction times, better turnovers, and reaction yields. Simplification of protocols by carrying out two or more reaction steps in the same reaction vessel is another advantage of multistep syntheses.

Graphical Abstract

[1]
Zaharia, C.; Murarasu, I. Environmental impact assessment induced by an industrial unit of basic chemical organic compounds synthesis using the alternative method of global pollution index. Environ. Eng. Manag. J., 2009, 8(1), 107-112.
[http://dx.doi.org/10.30638/eemj.2009.015]
[2]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[3]
Török, B.; Schäfer, C., Eds.; Nontraditional Activation Methods in Green and Sustainable Applications; Elsevier, 2021.
[http://dx.doi.org/10.1016/C2018-0-04332-7]
[4]
de la Hoz, A.; Loupy, A., Eds.; Microwaves in Organic Synthesis; Wiley: Weinheim, 2012.
[http://dx.doi.org/10.1002/9783527651313]
[5]
Margetić, D. Microwave Assisted Cycloaddition Reactions; Nova Science: New York, 2011.
[6]
Margetić, D.; Štrukil, V. Mechanochemical Organic Synthesis; Elsevier: Amsterdam, 2016.
[http://dx.doi.org/10.1016/C2014-0-01621-8]
[7]
Colacino, E.; Ennas, G.; Halasz, I.; Porcheddu, A.; Scano, A., Eds.; Mechanochemistry, A Practical Introduction from Soft to Hard Materials; De Gruyter: Berlin, 2021.
[http://dx.doi.org/10.1515/9783110608335]
[8]
Bento, O.; Luttringer, F.; Mohy El Dine, T.; Pétry, N.; Bantreil, X.; Lamaty, F. Sustainable mechanosynthesis of biologically active molecules. Eur. J. Org. Chem., 2022, 2022(21), e202101516.
[http://dx.doi.org/10.1002/ejoc.202101516]
[9]
Margetić, D. Ball-milling (mechanochemical) synthesis of bioactive heterocycles. In series green syntheis of bioactive heterocycles. In: Solvent-free synthesis of bioactive heterocycles; Banerjee, B., Ed.; De Gruyter: Berlin, 2023.
[10]
Margetić, D. Mechanochemistry as a green method in organic chemistry and its applications Phys. Sci. Rev., 2023.
[http://dx.doi.org/10.1515/psr-2022-0351]
[11]
Wang, C.; Hill, M.; Theard, B.; Mack, J. A solvent-free mechanochemical synthesis of polyaromatic hydrocarbon derivatives. RSC Adv., 2019, 9(48), 27888-27891.
[http://dx.doi.org/10.1039/C9RA04921E] [PMID: 35530502]
[12]
Zhao, Y.; Rocha, S.V.; Swager, T.M. Mechanochemical synthesis of extended iptycenes. J. Am. Chem. Soc., 2016, 138(42), 13834-13837.
[http://dx.doi.org/10.1021/jacs.6b09011] [PMID: 27739667]
[13]
Yu, J.; Hong, Z.; Yang, X.; Jiang, Y.; Jiang, Z.; Su, W. Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: Synthesis of axitinib. Beilstein J. Org. Chem., 2018, 14, 786-795.
[http://dx.doi.org/10.3762/bjoc.14.66] [PMID: 29719575]
[14]
Ardila-Fierro, K.J.; Pich, A.; Spehr, M.; Hernández, J.G.; Bolm, C. Synthesis of acylglycerol derivatives by mechanochemistry. Beilstein J. Org. Chem., 2019, 15, 811-817.
[http://dx.doi.org/10.3762/bjoc.15.78] [PMID: 30992730]
[15]
Portada, T.; Margetić, D.; Štrukil, V. Mechanochemical catalytic transfer hydrogenation of aromatic Nitro derivatives. Molecules., 2018, 23(12), 3163.
[http://dx.doi.org/10.3390/molecules23123163] [PMID: 30513686]
[16]
Mocci, R.; Colacino, E.; Luca, L.D.; Fattuoni, C.; Porcheddu, A.; Delogu, F. The mechanochemical beckmann rearrangement: An eco-efficient cut-and-paste” strategy to design the good old amide bond. ACS Sustain. Chem. Eng., 2021, 9(5), 2100-2114.
[http://dx.doi.org/10.1021/acssuschemeng.0c07254]
[17]
Yeboue, Y.; Rguioueg, N.; Subra, G.; Martinez, J.; Lamaty, F.; Métro, T.X. Gram‐scale synthesis of a hexapeptide by fragment coupling in a ball mill. Eur. J. Org. Chem., 2022, 2022(21), e202100839.
[http://dx.doi.org/10.1002/ejoc.202100839]
[18]
Anselmi, M.; Stavole, P.; Boanini, E.; Bigi, A.; Juaristi, E.; Gentilucci, L. Green synthesis of bioactive oligopeptides promoted by recyclable nanocrystalline hydroxyapatite. Future Med. Chem., 2020, 12(6), 479-491.
[http://dx.doi.org/10.4155/fmc-2019-0320] [PMID: 32064939]
[19]
Canale, V.; Frisi, V.; Bantreil, X.; Lamaty, F.; Zajdel, P. Sustainable synthesis of a potent and selective 5-HT 7 receptor antagonist using a mechanochemical approach. J. Org. Chem., 2020, 85(16), 10958-10965.
[http://dx.doi.org/10.1021/acs.joc.0c01044] [PMID: 32706254]
[20]
Canale, V.; Kotańska, M.; Dziubina, A.; Stefaniak, M.; Siwek, A.; Starowicz, G.; Marciniec, K.; Kasza, P.; Satała, G.; Duszyńska, B.; Bantreil, X.; Lamaty, F.; Bednarski, M.; Sapa, J.; Zajdel, P. Design, sustainable synthesis and biological evaluation of a novel dual α2A/5-HT7 receptor antagonist with antidepressant-like properties. Molecules, 2021, 26(13), 3828.
[http://dx.doi.org/10.3390/molecules26133828] [PMID: 34201675]
[21]
Zhang, J.; Zhang, P.; Shao, L.; Wang, R.; Ma, Y.; Szostak, M. Mechanochemical solvent‐free suzuki–miyaura cross‐coupling of amides via highly chemoselective N−C cleavage. Angew. Chem. Int. Ed., 2022, 61(7), e202114146.
[http://dx.doi.org/10.1002/anie.202114146] [PMID: 34877756]
[22]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Three-component access to pyrroles promoted by the CAN–silver nitrate system under high-speed vibration milling conditions: A generalization of the hantzsch pyrrole synthesis. Chem. Commun., 2013, 49(6), 591-593.
[http://dx.doi.org/10.1039/C2CC38099D] [PMID: 23212352]
[23]
Xu, H.; Liu, H.W.; Chen, K.; Wang, G.W. One-Pot multicomponent mechanosynthesis of polysubstituted trans -2,3-dihydropyrroles and pyrroles from amines, alkyne esters, and Chalcones. J. Org. Chem., 2018, 83(11), 6035-6049.
[http://dx.doi.org/10.1021/acs.joc.8b00665] [PMID: 29745226]
[24]
Gonnet, L.; André-Barrès, C.; Guidetti, B.; Chamayou, A.; Menendez, C.; Baron, M.; Calvet, R.; Baltas, M. Study of the two steps and one-pot two-step mechanochemical synthesis of annulated 1,2,4-Triazoles. ACS Sustain. Chem. Eng., 2020, 8(8), 3114-3125.
[http://dx.doi.org/10.1021/acssuschemeng.9b05886]
[25]
Jiang, L.; Lu, Q.; Huang, Q.; Cheng, Y.; Chu, X. One-pot two-step mechanochemical synthesis of arylsulfonyl 4 H -pyrans. J. Sulfur Chem., 2022, 43(3), 304-313.
[http://dx.doi.org/10.1080/17415993.2022.2032062]
[26]
Piquero, M.; Font, C.; Gullón, N.; López-Alvarado, P.; Menéndez, J.C. One‐pot mechanochemical synthesis of mono‐ and bis‐indolylquinones via solvent‐free multiple bond‐forming processes. ChemSusChem., 2021, 14(21), 4764-4775.
[http://dx.doi.org/10.1002/cssc.202101529] [PMID: 34409746]
[27]
Tyagi, M.; Khurana, D.; Kartha, K.P.R. Solvent-free mechanochemical glycosylation in ball mill. Carbohydr. Res., 2013, 379, 55-59.
[http://dx.doi.org/10.1016/j.carres.2013.06.018] [PMID: 23872787]
[28]
Gómez-Carpintero, J.; Cabrero, C.; Sánchez, J.D.; González, J.F.; Menéndez, J.C. A sequential multistep process for the fully mechanochemical, one-pot synthesis of the antiepileptic drug rufinamide. Green Chem. Lett. Rev., 2022, 15(3), 638-645.
[http://dx.doi.org/10.1080/17518253.2022.2123717]
[29]
Shou, H.; He, Z.; Peng, G.; Su, W.; Yu, J. Two approaches for the synthesis of levo-praziquantel. Org. Biomol. Chem., 2021, 19(20), 4507-4514.
[http://dx.doi.org/10.1039/D1OB00453K] [PMID: 33908985]
[30]
Pang, Y.; Ishiyama, T.; Kubota, K.; Ito, H. Iridium(I)‐catalyzed c−h borylation in air by using mechanochemistry. Chem., 2019, 25(18), 4654-4659.
[http://dx.doi.org/10.1002/chem.201900685] [PMID: 30762271]
[31]
Pérez-Venegas, M.; Juaristi, E. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of pharmaceutical building blocks. Tetrahedron., 2018, 74(44), 6453-6458.
[http://dx.doi.org/10.1016/j.tet.2018.09.029]
[32]
Konnert, L.; Reneaud, B.; de Figueiredo, R.M.; Campagne, J.M.; Lamaty, F.; Martinez, J.; Colacino, E. Mechanochemical preparation of hydantoins from amino esters: Application to the synthesis of the antiepileptic drug phenytoin. J. Org. Chem., 2014, 79(21), 10132-10142.
[http://dx.doi.org/10.1021/jo5017629] [PMID: 25279490]
[33]
Colacino, E.; Porcheddu, A.; Charnay, C.; Delogu, F. From enabling technologies to medicinal mechanochemistry: An eco-friendly access to hydantoin-based active pharmaceutical ingredients. React. Chem. Eng., 2019, 4(7), 1179-1188.
[http://dx.doi.org/10.1039/C9RE00069K]
[34]
Tan, D.; Štrukil, V.; Mottillo, C.; Friščić, T. Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chem. Commun., 2014, 50(40), 5248-5250.
[http://dx.doi.org/10.1039/C3CC47905F] [PMID: 24256886]
[35]
Kaur, N. Synthesis of fused five-membered N,N -heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
[36]
Kaur, N. Applications of microwaves in the synthesis of polycyclic six-membered N,N -Heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
[37]
Alexandre, F.R.; Berecibar, A.; Wrigglesworth, R.; Besson, T. Novel series of 8H-quinazolino[4,3-b]quinazolin-8-ones via two niementowski condensations. Tetrahedron., 2003, 59(9), 1413-1419.
[http://dx.doi.org/10.1016/S0040-4020(03)00053-X]
[38]
Sparks, R.B.; Combs, A.P. Microwave-assisted synthesis of 2,4,5-triaryl-imidazole; a novel thermally induced N-hydroxyimidazole N-O bond cleavage. Org. Lett., 2004, 6(14), 2473-2475.
[http://dx.doi.org/10.1021/ol049124x] [PMID: 15228307]
[39]
Zhang, W.; Tempest, P. Highly efficient microwave-assisted fluorous Ugi and post-condensation reactions for benzimidazoles and quinoxalinones. Tetrahedron Lett., 2004, 45(36), 6757-6760.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.039]
[40]
Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei, M. Microwave-assisted solution-phase synthesis of 1,4,5-trisubstituted pyrazoles. Eur. J. Org. Chem., 2003, 2003(3), 537-541.
[http://dx.doi.org/10.1002/ejoc.200390091]
[41]
Kidwai, M.; Singhal, K.; Rastogi, S.; Singhal, P. A convenient k2CO3 catalysed regioselective synthesis for benzopyrano[4,3-c]pyrazoles in aqueous medium. Heterocycles., 2007, 71(3), 569-576.
[http://dx.doi.org/10.3987/COM-06-10958]
[42]
Sondhi, S.M.; Rani, R. Microwave-mediated one step synthesis of tri- and tetracyclic heterocyclic molecules. Green Chem. Lett. Rev., 2010, 3(2), 115-120.
[http://dx.doi.org/10.1080/17518250903583706]
[43]
Kuo, F.M.; Tseng, M.C.; Yen, Y.H.; Chu, Y.H. Microwave accelerated Pictet–Spengler reactions of tryptophan with ketones directed toward the preparation of 1,1-disubstituted indole alkaloids. Tetrahedron., 2004, 60(52), 12075-12084.
[http://dx.doi.org/10.1016/j.tet.2004.10.025]
[44]
Yeh, W.P.; Chang, W.J.; Sun, M.L.; Sun, C.M. Microwave-assisted traceless synthesis of hydantion-fused β-carboline scaffold. Tetrahedron., 2007, 63(48), 11809-11816.
[http://dx.doi.org/10.1016/j.tet.2007.09.054]
[45]
Liu, S.; Haller, M.A.; Ma, H.; Dalton, L.R.; Jang, S.H.; Jen, A.K.Y. Focused microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores. Adv. Mater., 2003, 15(78), 603-607.
[http://dx.doi.org/10.1002/adma.200304813]
[46]
Zhang, H.; Zhang, G. Rapid microwave-accelerated multi-step synthesis of 2,6-di(naphthalene thioureido carbamino)pyridine. J. Chem. Chem. Eng., 2017, 11(2), 79-81.
[http://dx.doi.org/10.17265/1934-7375/2017.02.007]
[47]
Guillard, J.; Besson, T. Synthesis of novel dioxinobenzothiazole derivatives. Tetrahedron., 1999, 55(16), 5139-5144.
[http://dx.doi.org/10.1016/S0040-4020(99)00175-1]
[48]
Besson, T.; Guillard, J.; Rees, C.W. Multistep synthesis of thiazoloquinazolines under microwave irradiation in solution. Tetrahedron Lett., 2000, 41(7), 1027-1030.
[http://dx.doi.org/10.1016/S0040-4039(99)02221-2]
[49]
Alexandre, F.R.; Berecibar, A.; Wrigglesworth, R.; Besson, T. Efficient synthesis of thiazoloquinazolinone derivatives. Tetrahedron Lett., 2003, 44(24), 4455-4458.
[http://dx.doi.org/10.1016/S0040-4039(03)01026-8]
[50]
Santagada, V.; Perissutti, E.; Fiorino, F.; Vivenzio, B.; Caliendo, G. Microwave enhanced solution synthesis of 1,4-benzodiazepin-5-ones. Tetrahedron Lett., 2001, 42(12), 2397-2400.
[http://dx.doi.org/10.1016/S0040-4039(01)00155-1]
[51]
Lai, J.J.; Salunke, D.B.; Sun, C.M. Multistep microwave-assisted divergent synthesis of indolo-fused pyrazino-/diazepinoquinoxalinones on PEG support. Org. Lett., 2010, 12(10), 2174-2177.
[http://dx.doi.org/10.1021/ol100436r] [PMID: 20420382]
[52]
Fresneda, P.M.; Molina, P.; Delgado, S. A novel approach to the indoloquinoline alkaloids cryptotackieine and cryptosanguinolentine by application of cyclization of o-vinylsubstituted arylheterocumulenes. Tetrahedron., 2001, 57(29), 6197-6202.
[http://dx.doi.org/10.1016/S0040-4020(01)00597-X]
[53]
Kiyota, H.; Dixon, D.J.; Luscombe, C.K.; Hettstedt, S.; Ley, S.V. Synthesis, structure revision, and absolute configuration of (+)-didemniserinolipid B, a serinol marine natural product from a tunicate Didemnum sp. Org. Lett., 2002, 4(19), 3223-3226.
[http://dx.doi.org/10.1021/ol026421y] [PMID: 12227754]
[54]
Holzgrabe, U.; Heller, E. A new synthetic route to compounds of the AFDX-type with affinity to muscarinic M2-receptor. Tetrahedron., 2003, 59(6), 781-787.
[http://dx.doi.org/10.1016/S0040-4020(02)01623-X]
[55]
De Silva, R.A.; Santra, S.; Andreana, P.R. A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones. Org. Lett., 2008, 10(20), 4541-4544.
[http://dx.doi.org/10.1021/ol801841m] [PMID: 18811177]
[56]
Boëns, B.; Faugeras, P.A.; Vergnaud, J.; Lucas, R.; Teste, K.; Zerrouki, R. Iodine-catalyzed one-pot synthesis of unsymmetrical meso-substituted porphyrins. Tetrahedron., 2010, 66(11), 1994-1996.
[http://dx.doi.org/10.1016/j.tet.2010.01.055]
[57]
Chaleix, V.; Sol, V.; Krausz, P. Pseudo porphyrinyl amino acids based on 1,3,5-triazine scaffold: New tools for the synthesis of peptidic porphyrins. Tetrahedron Lett., 2011, 52(23), 2977-2979.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.136]
[58]
Liao, L.; Villemin, D. A rapid and efficient one-pot synthesis of substituted 2-(5H)-furanones under focused microwave irradiations. J. Chem. Res., 2000, 2000(4), 179-181.
[http://dx.doi.org/10.3184/030823400103166869]
[59]
Franco, A.; De, S.; Balu, A.M.; Romero, A.A.; Luque, R. Integrated mechanochemical/microwave-assisted approach for the synthesis of biogenic silica-based catalysts from rice husk waste. ACS Sustain. Chem.& Eng., 2018, 6(9), 11555-11562.
[http://dx.doi.org/10.1021/acssuschemeng.8b01738]
[60]
Solà, R.; Sutcliffe, O.B.; Banks, C.E.; Maciá, B. Ball mill and microwave assisted synthetic routes to fluoxetine. Sustain. Chem. Pharm., 2017, 5, 14-21.
[http://dx.doi.org/10.1016/j.scp.2016.11.003]
[61]
Antol, I.; Glasovac, Z.; Murata, Y.; Hashikawa, Y.; Margetić, D. Consecutive utilization of mechanochemical and microwave methods for the synthesis of boc‐2‐amino‐quinazolin‐4(3 H)‐ones and DFT study of mechanism 6π‐diazaelectrocyclization process. Chem. Select., 2022, 7(13), e202200633.
[http://dx.doi.org/10.1002/slct.202200633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy