Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Evaluation of Hydrazide-hydrazone and 4-thiazolidinone Derivatives of Etodolac as Potential Anticancer Agents in Leukemia Cells

Author(s): Pinar Mega Tiber*, Sera Averbek, Sevgi Koçyiğit Sevinç, Olca Kilinç, Pelin Çikla Süzgün, S. Güniz Küçükgüzel and Oya Orun

Volume 21, Issue 12, 2024

Published on: 26 September, 2023

Page: [2396 - 2406] Pages: 11

DOI: 10.2174/1570180820666230829093322

Price: $65

Abstract

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs), which are commonly used for their anti-inflammatory and analgesic properties, have also been found to prevent cancer. (±)(R,S) Etodolac is an NSAID that belongs to the class of cyclooxygenase-2 inhibitors. Various derivatives of etodolac are synthesized to boost its anti-proliferative action and lessen its potential negative effects. In our earlier studies, some novel derivatives of etodolac exhibited stronger cytotoxic effects on prostate cell lines and had similar effects on leukemia cells in pre-screening experiments.

Objective: Using the K562 leukemia cell line as a model, we sought to investigate the anti-cancer properties of a hydrazide-hydrazone derivative (SGK-205) and a 4-thiazolidinone derivative of etodolac (SGK- 216).

Materials and Methods: In the current investigation, SGK-205 and SGK-216 compounds were administered to K562 cells for 24 and 48 hours at concentrations of 10, 25, 50, 75 and 100 μM. Cell viability was assessed using the MTT test, and apoptosis by Annexin V-PI staining and mitochondrial membrane potential assays, together with mRNA expressions of apoptotic proteins. The levels of the proteins, HER2 and COX2, were also examined to evaluate COX2 inhibitory capacity.

Results: In K562 cells, there was a definite dose-dependent response to SGK-205 and SGK-216 compounds. Results from MTT viability tests, together with mitochondrial membrane potential measurements and Annexin V-PI staining, revealed that SGK-216 and SGK-205 significantly outperformed etodolac in terms of their apoptotic and anti-proliferative activities. The concentration range of 10-20 μM for both chemicals was sufficient to start biological responses. Apoptosis was also investigated through the expressions of pro- and anti-apoptotic proteins. Additionally, gene expression research demonstrated SGK- 205 to be a beneficial substitute to etodolac in lowering COX-2 and human epidermal growth factor receptor- 2 (HER2) expression.

Conclusion: Our data indicated both derivatives to have higher anti-proliferative and apoptotic effects compared to etodolac. An overall assessment highlighting apoptotic induction potential, acceptable toxicity levels, a consistent dose-response relationship, and COX2 inhibitory actions, in particular, indicated SGK-205 as a viable novel therapeutic.

[1]
Harris, R.E. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell. Biochem., 2007, 42, 93-126.
[http://dx.doi.org/10.1007/1-4020-5688-5_4] [PMID: 17612047]
[2]
Wu, K.; Nie, Y.; Guo, C.; Chen, Y.; Ding, J.; Fan, D. Molecular basis of therapeutic approaches to gastric cancer. J. Gastroenterol. Hepatol., 2009, 24(1), 37-41.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05753.x] [PMID: 19196394]
[3]
Chen, W.S.; Wei, S.J.; Liu, J.M.; Hsiao, M.; Kou-Lin, J.; Yang, W.K. Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase‐2 (COX‐2) expression and inhibited by a COX‐2–selective inhibitor, etodolac. Int. J. Cancer, 2001, 91(6), 894-899.
[http://dx.doi.org/10.1002/1097-0215(200102)9999:9999<894::AID-IJC1146>3.0.CO;2-#] [PMID: 11275997]
[4]
Howe, L.R. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res., 2007, 9(4), 210.
[http://dx.doi.org/10.1186/bcr1678] [PMID: 17640394]
[5]
Liao, Z.; Mason, K.A.; Milas, L. Cyclo-oxygenase-2 and its inhibition in cancer: Is there a role? Drugs, 2007, 67(6), 821-845.
[http://dx.doi.org/10.2165/00003495-200767060-00001] [PMID: 17428102]
[6]
Kinder, D.H.; Aulthouse, A.L. MCF-7 breast cancer cell line grown in agarose culture for study of COX-2 inhibitors in three-dimensional growth system. Cancer Lett., 2004, 205(1), 49-53.
[http://dx.doi.org/10.1016/j.canlet.2003.10.030] [PMID: 15036660]
[7]
Orun, O.; Mega Tiber, P.; Koçyiğit Sevinç, S. Apoptotic effects of etodolac in breast cancer cell cultures.Nonsteroidal anti-inflammatory drugs; 1st ed; Al-kaf, A.G.A., Ed.; IntechOpen: Croatia, 2017, pp. 133-151.
[http://dx.doi.org/10.5772/67855]
[8]
Hasegawa, K.; Ishikawa, K.; Kawai, S.; Torii, Y.; Kawamura, K.; Kato, R.; Tsukada, K.; Udagawa, Y. Overcoming paclitaxel resistance in uterine endometrial cancer using a COX-2 inhibitor. Oncol. Rep., 2013, 30(6), 2937-2944.
[http://dx.doi.org/10.3892/or.2013.2790] [PMID: 24100466]
[9]
Kobayashi, M.; Nakamura, S.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Ohnishi, K. Etodolac inhibits EBER expression and induces Bcl-2-regulated apoptosis in Burkitt’s lymphoma cells. Eur. J. Haematol., 2005, 75(3), 212-220.
[http://dx.doi.org/10.1111/j.1600-0609.2005.00498.x] [PMID: 16104877]
[10]
Carson, D.A.; Cottam, H.B.; Adachi, S.; Leoni, L.M. Use of etodolac in the treatment of multiple myeloma. US7105560, 2006.
[11]
Nardella, F.A.; LeFevre, J.A. Enhanced clearance of leukemic lymphocytes in B-cell chronic lymphocytic leukemia with etodolac. Blood, 2002, 99(7), 2625-2626.
[http://dx.doi.org/10.1182/blood.V99.7.2625] [PMID: 11926185]
[12]
Lindhagen, E.; Nissle, S.; Leoni, L.; Elliott, G.; Chao, Q.; Larsson, R.; Åleskog, A. R-etodolac (SDX-101) and the related indole–pyran analogues SDX-308 and SDX-309 potentiate the antileukemic activity of standard cytotoxic agents in primary chronic lymphocytic leukaemia cells. Cancer Chemother. Pharmacol., 2007, 60(4), 545-553.
[http://dx.doi.org/10.1007/s00280-006-0400-9] [PMID: 17186240]
[13]
Shigemura, K.; Shirakawa, T.; Wada, Y.; Kamidono, S.; Fujisawa, M.; Gotoh, A. Antitumor effects of etodolac, a selective cyclooxygenase-II inhibitor, against human prostate cancer cell lines in vitro and in vivo. Urology, 2005, 66(6), 1239-1244.
[http://dx.doi.org/10.1016/j.urology.2005.06.076] [PMID: 16360450]
[14]
Çıkla, P.; Özsavcı, D.; Bingöl-Özakpınar, Ö.; Şener, A.; Çevik, Ö.; Özbaş-Turan, S.; Akbuğa, J.; Şahin, F.; Küçükgüzel, Ş.G. Synthesis, cytotoxicity, and pro-apoptosis activity of etodolac hydrazide derivatives as anticancer agents. Arch. Pharm., 2013, 346(5), 367-379.
[http://dx.doi.org/10.1002/ardp.201200449] [PMID: 23609809]
[15]
Çoruh, I.; Çevik, Ö.; Yelekçi, K.; Djikic, T.; Küçükgüzel, Ş.G. Synthesis, anticancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch. Pharm., 2018, 351(3-4), 1700195.
[http://dx.doi.org/10.1002/ardp.201700195] [PMID: 29575045]
[16]
Koç, H.C.; Atlıhan, İ.; Mega Tiber, P.; Orun, O.; Küçükgüzel, Ş.G. Synthesis and anticancer activity against prostate cancer of 3 hydrazide-hydrazones derived from etodolac. J. Res. Pharm. Pract., 2022, 26(1), 1-12.
[17]
Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[http://dx.doi.org/10.1182/blood.V96.10.3343] [PMID: 11071626]
[18]
Chhikara, B.S.; Parang, K. Global cancer statistics 2022: The trends projection analysis. Chem. Biol. Lett, 2023, 10(1), 451.
[19]
Lin, Q.; Mao, L.; Shao, L.; Zhu, L.; Han, Q.; Zhu, H.; Jin, J.; You, L. Global, regional, and national burden of chronic myeloid leukemia, 1990-2017: A systematic analysis for the global burden of disease study 2017. Front. Oncol., 2020, 10, 580759.
[http://dx.doi.org/10.3389/fonc.2020.580759] [PMID: 33384954]
[20]
Anwer Ahmed, A.; Khaleel, K.J.; Abbas Fadhel, A.; Laftaah Al-Rubaii, B.A. Chronic Myeloid Leukemia: A retrospective study of clinical and pathological features. Bionatura, 2022, 7(3), 1-3.
[http://dx.doi.org/10.21931/RB/2022.07.03.41]
[21]
Senapati, J.; Sasaki, K.; Issa, G.C.; Lipton, J.H.; Radich, J.P.; Jabbour, E.; Kantarjian, H.M. Management of chronic myeloid leukemia in 2023 – common ground and common sense. Blood Cancer J., 2023, 13(1), 58.
[http://dx.doi.org/10.1038/s41408-023-00823-9] [PMID: 37088793]
[22]
Jabbour, E.; Cortes, J.E.; Kantarjian, H.M. Molecular monitoring in chronic myeloid leukemia. Cancer, 2008, 112(10), 2112-2118.
[http://dx.doi.org/10.1002/cncr.23427] [PMID: 18348294]
[23]
Clarkson, B.; Strife, A.; Wisniewski, D.; Lambek, C.L.; Liu, C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia, 2003, 17(7), 1211-1262.
[http://dx.doi.org/10.1038/sj.leu.2402912] [PMID: 12835715]
[24]
Mauro, M.J.; Deininger, M.W. Chronic myeloid leukemia in 2006: A perspective. Haematologica, 2006, 91(2), 152-158.
[PMID: 16461297]
[25]
Kantarjian, H.; Sawyers, C.; Hochhaus, A.; Guilhot, F.; Schiffer, C.; Gambacorti-Passerini, C.; Niederwieser, D.; Resta, D.; Capdeville, R.; Zoellner, U.; Talpaz, M.; Druker, B.; Goldman, J.; O’Brien, S.G.; Russell, N.; Fischer, T.; Ottmann, O.; Cony-Makhoul, P.; Facon, T.; Stone, R.; Miller, C.; Tallman, M.; Brown, R.; Schuster, M.; Loughran, T.; Gratwohl, A.; Mandelli, F.; Saglio, G.; Lazzarino, M.; Russo, D.; Baccarani, M.; Morra, E. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med., 2002, 346(9), 645-652.
[http://dx.doi.org/10.1056/NEJMoa011573] [PMID: 11870241]
[26]
Sawyers, C.L.; Hochhaus, A.; Feldman, E.; Goldman, J.M.; Miller, C.B.; Ottmann, O.G.; Schiffer, C.A.; Talpaz, M.; Guilhot, F.; Deininger, M.W.; Fischer, T.; O’Brien, S.G.; Stone, R.M.; Gambacorti-Passerini, C.B.; Russell, N.H.; Reiffers, J.J.; Shea, T.C.; Chapuis, B.; Coutre, S.; Tura, S.; Morra, E.; Larson, R.A.; Saven, A.; Peschel, C.; Gratwohl, A.; Mandelli, F.; Ben-Am, M.; Gathmann, I.; Capdeville, R.; Paquette, R.L.; Druker, B.J. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: Results of a phase II study. Blood, 2002, 99(10), 3530-3539.
[http://dx.doi.org/10.1182/blood.V99.10.3530] [PMID: 11986204]
[27]
Talpaz, M.; Silver, R.T.; Druker, B.J.; Goldman, J.M.; Gambacorti-Passerini, C.; Guilhot, F.; Schiffer, C.A.; Fischer, T.; Deininger, M.W.; Lennard, A.L.; Hochhaus, A.; Ottmann, O.G.; Gratwohl, A.; Baccarani, M.; Stone, R.; Tura, S.; Mahon, F.X.; Fernandes-Reese, S.; Gathmann, I.; Capdeville, R.; Kantarjian, H.M.; Sawyers, C.L. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of a phase 2 study. Blood, 2002, 99(6), 1928-1937.
[http://dx.doi.org/10.1182/blood.V99.6.1928] [PMID: 11877262]
[28]
Lee, Y.L.; Chen, C.W.; Liu, F.H.; Huang, Y.W.; Huang, H.M. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation. PLoS One, 2013, 8(4), e61939.
[http://dx.doi.org/10.1371/journal.pone.0061939] [PMID: 23613979]
[29]
Lozzio, C.B.; Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975, 45(3), 321-334.
[http://dx.doi.org/10.1182/blood.V45.3.321.321] [PMID: 163658]
[30]
Kamijo, T.; Sato, T.; Nagatomi, Y.; Kitamura, T. Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines. Int. J. Urol., 2001, 8(7), S35-S39.
[http://dx.doi.org/10.1046/j.1442-2042.2001.00332.x] [PMID: 11442675]
[31]
Liu, W.; Nakamura, H.; Tsujimura, T.; Cheng, J.; Yamamoto, T.; Iwamoto, Y.; Imanishi, H.; Shimomura, S.; Yamamoto, T.; Hirasawa, T.; Inagaki, S.; Nishiguchi, S.; Hada, T. Chemoprevention of spontaneous development of hepatocellular carcinomas in fatty liver Shionogi mice by a cyclooxygenase-2 inhibitor. Cancer Sci., 2006, 97(8), 768-773.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00237.x] [PMID: 16863510]
[32]
Nakamura, S.; Kobayashi, M.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Hayashi, H.; Ohnishi, K. Etodolac induces apoptosis and inhibits cell adhesion to bone marrow stromal cells in human myeloma cells. Leuk. Res., 2006, 30(2), 123-135.
[http://dx.doi.org/10.1016/j.leukres.2005.06.009] [PMID: 16046235]
[33]
Okamoto, A.; Shirakawa, T.; Bito, T.; Shigemura, K.; Hamada, K.; Gotoh, A.; Fujisawa, M.; Kawabata, M. Etodolac, a selective cyclooxygenase-2 inhibitor, induces upregulation of E-cadherin and has antitumor effect on human bladder cancer cells in vitro and in vivo. Urology, 2008, 71(1), 156-160.
[http://dx.doi.org/10.1016/j.urology.2007.09.061] [PMID: 18242386]
[34]
Yanaoka, K.; Oka, M.; Yoshimura, N.; Deguchi, H.; Mukoubayashi, C.; Enomoto, S.; Maekita, T.; Inoue, I.; Ueda, K.; Utsunomiya, H.; Iguchi, M.; Tamai, H.; Fujishiro, M.; Nakamura, Y.; Tsukamoto, T.; Inada, K.; Takeshita, T.; Ichinose, M. Preventive effects of etodolac, a selective cyclooxygenase-2 inhibitor, on cancer development in extensive metaplastic gastritis, a Helicobacter pylori-negative precancerous lesion. Int. J. Cancer, 2010, 126(6), 1467-1473.
[PMID: 19711347]
[35]
Nakamura, S.; Kobayashi, M.; Shibata, K. COX-2 independent induction of apoptosis by leukemia cells in vitro and growth inhibition of leukemia cells in vivo. Cancer Ther., 2004, 2, 153-166.
[36]
Alam, M.S.; Choi, S.U.; Lee, D.U. Synthesis, anticancer, and docking studies of salicyl-hydrazone analogues: A novel series of small potent tropomyosin receptor kinase A inhibitors. Bioorg. Med. Chem., 2017, 25(1), 389-396.
[http://dx.doi.org/10.1016/j.bmc.2016.11.005] [PMID: 27856237]
[37]
Şenkardeş, S.; Türe, A.; Ekrek, S.; Durak, A.T.; Abbak, M.; Çevik, Ö.; Kaşkatepe, B.; Küçükgüzel, İ.; Güniz Küçükgüzel, Ş. Novel 2,6-disubstituted pyridine hydrazones: Synthesis, anticancer activity, docking studies and effects on caspase-3-mediated apoptosis. J. Mol. Struct., 2021, 1223, 128962.
[http://dx.doi.org/10.1016/j.molstruc.2020.128962]
[38]
Han, M.İ.; Atalay, P.; Tunç, C.Ü.; Ünal, G.; Dayan, S.; Aydın, Ö.; Küçükgüzel, Ş.G. Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorg. Med. Chem., 2021, 37, 116097.
[http://dx.doi.org/10.1016/j.bmc.2021.116097] [PMID: 33743356]
[39]
Şenkardeş, S.; Erdoğan, Ö.; Çevik, Ö.; Küçükgüzel, Ş.G. Synthesis and biological evaluation of novel aryloxyacetic acid hydrazide derivatives as anticancer agents. Synth. Commun., 2021, 51(17), 2634-2643.
[http://dx.doi.org/10.1080/00397911.2021.1945105]
[40]
Patra, D.; Paul, S.; Sepay, N.; Kundu, R.; Ghosh, T. Structure-activity relationship on DNA binding and anticancer activities of a family of mixed-ligand oxidovanadium(V) hydrazone complexes. J. Biomol. Struct. Dyn., 2018, 36(16), 4143-4155.
[http://dx.doi.org/10.1080/07391102.2017.1409652] [PMID: 29171343]
[41]
Damghani, T.; Moosavi, F.; Khoshneviszadeh, M.; Mortazavi, M.; Pirhadi, S.; Kayani, Z.; Saso, L.; Edraki, N.; Firuzi, O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci. Rep., 2021, 11(1), 3644.
[http://dx.doi.org/10.1038/s41598-021-83069-4] [PMID: 33574356]
[42]
Li, L.Y.; Peng, J.D.; Zhou, W.; Qiao, H.; Deng, X.; Li, Z.H.; Li, J.D.; Fu, Y.D.; Li, S.; Sun, K.; Liu, H.M.; Zhao, W. Potent hydrazone derivatives targeting esophageal cancer cells. Eur. J. Med. Chem., 2018, 148(148), 359-371.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.033] [PMID: 29475156]
[43]
Patil, S.; Kuman, M.M.; Palvai, S.; Sengupta, P.; Basu, S. Impairing powerhouse in colon cancer cells by hydrazide-hydrazone-based small molecule. ACS Omega, 2018, 3(2), 1470-1481.
[http://dx.doi.org/10.1021/acsomega.7b01512] [PMID: 30023806]
[44]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer. Bioorg. Med. Chem. Lett., 2004, 14(21), 5289-5293.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.029] [PMID: 15454213]
[45]
Ottanà, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.; Vigorita, M.G.; Mini, E. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg. Med. Chem. Lett., 2005, 15(17), 3930-3933.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.093] [PMID: 15993594]
[46]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170(170), 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[47]
Tahmasvand, R.; Bayat, P.; Vahdaniparast, S.M.; Dehghani, S.; Kooshafar, Z.; Khaleghi, S.; Almasirad, A.; Salimi, M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg. Chem., 2020, 104, 104276.
[http://dx.doi.org/10.1016/j.bioorg.2020.104276] [PMID: 32992280]
[48]
Türe, A.; Ergül, M.; Ergül, M.; Altun, A.; Küçükgüzel, İ. Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids. Mol. Divers., 2021, 25(2), 1025-1050.
[http://dx.doi.org/10.1007/s11030-020-10087-1] [PMID: 32328961]
[49]
Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[50]
Cheriyan, A.A.; Thomas, L.; Singhal, A. Synthetic strategies and medicinal applications of Quinoline-Pyrimidine hybrids. Chem. Biol. Lett, 2022, 9(3), 318.
[51]
Nallapu, M.R.; Vadluri, R.; Arasan, J. Design and synthesis of new Nilutamide-1,2,3-triazole derivatives as in vitro Anticancer agents. Chem. Biol. Lett, 2022, 9(4), 405.
[52]
Jia, L.; Yang, J.; Hao, X.; Zheng, M.; He, H.; Xiong, X.; Xu, L.; Sun, Y. Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin. Cancer Res., 2010, 16(3), 814-824.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1592] [PMID: 20103673]
[53]
Ozden, S.A.; Ozyurt, H.; Ozgen, Z.; Kilinc, O.; Oncel, M.; Gul, A.E.; Karadayi, N.; Serakinci, N.; Kan, B.; Orun, O. Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer. World J. Gastroenterol., 2011, 17(44), 4905-4910.
[http://dx.doi.org/10.3748/wjg.v17.i44.4905] [PMID: 22171132]
[54]
Mega Tiber, P.; Baloglu, L.; Ozden, S.; Ozgen, Z.; Ozyurt, H.; Eren, M.; Orun, O. The association of apoptotic protein expressions sensitive to apoptosis gene, p73 and p53 with the prognosis of cervical carcinoma. OncoTargets Ther., 2014, 7, 2161-2168.
[PMID: 25473298]
[55]
Dumont, A.; Lohard, S.; Maillet, L.; Juin, P.P.; Barillé Nion, S. NOXA the BCL-2 Family member behind the scenes in cancer treatment. J. Cell. Signal., 2020, 1(4), 127-143.

© 2025 Bentham Science Publishers | Privacy Policy