Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Exploring Lycopene: A Comprehensive Review on its Food Sources, Health Benefits and Functional Food Applications

Author(s): Ashwini Gengatharan, Che-Nur-Mazadillina Che Zahari and Nur-Vaizura Mohamad*

Volume 20, Issue 8, 2024

Published on: 19 September, 2023

Page: [914 - 931] Pages: 18

DOI: 10.2174/1573401319666230824143323

Price: $65

Abstract

The importance of dietary composition to human health has raised consumer interest in consuming fruits, vegetables, and foods containing bioactive chemicals and nutraceuticals. Lycopene belongs to the carotenoids abundantly found in tomato and tomato-based food products. It also can be present in other types of fruits like watermelon and pink guava. This review aims to outline the lycopene sources, health benefits, their applications as functional food ingredients and the challenges to commercialization. It has been reported that dietary lycopene has multifunctional health activities, including anticancer on various types of cancer, hepatoprotective, neuroprotective, and bone protective effects identified in clinical and preclinical studies. This is because, lycopene primarily affects oxidative stress, inflammation, and pathways implicated in carcinogenesis and cell proliferation. The effects of preparation and processing factors that may impair the bioavailability of lycopene consumed through diet are addressed in this review. Overall, lycopene is a valuable natural colourant that can enhance the nutritional value of foods leading to the development of new functional foods in the food industry.

Graphical Abstract

[1]
Fennema OR, Damodaran S, Parkin KL. Introduction to food chemistry. In: Fennema’s Food Chemistry. CRC Press: Boca Raton, Florida 2007; pp. 13-28.
[2]
Millington K. Improving the whiteness and photostability of wool. In: Advances in Wool Technology. Elsevier Amsterdam, Netherlands 2009; pp. 217-47.
[http://dx.doi.org/10.1533/9781845695460.2.217]
[3]
Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol 2016; 52: 1-15.
[http://dx.doi.org/10.1016/j.tifs.2016.03.009]
[4]
Wood L. $5 Billion natural dyes market - global outlook and forecasts 2019-2024. 2019. Available from: https://www.prnewswire.com/news-releases/5-billion-natural-dyesmarket---global-outlook-and-forecasts-2019-2024-300797306.html (Accessed on 27/10/2022).
[5]
Rodriguez-Amaya DB. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Res Int 2019; 124: 200-5.
[http://dx.doi.org/10.1016/j.foodres.2018.05.028] [PMID: 31466641]
[6]
Venil CK, Dufossé L, Renuka Devi P. Bacterial pigments: Sustainable compounds with market potential for pharma and food industry. Front Sustain Food Syst 2020; 4: 100.
[http://dx.doi.org/10.3389/fsufs.2020.00100]
[7]
Novais C, Molina AK, Abreu RMV, et al. Natural food colorants and preservatives: A review, a demand, and a challenge. J Agric Food Chem 2022; 70(9): 2789-805.
[http://dx.doi.org/10.1021/acs.jafc.1c07533] [PMID: 35201759]
[8]
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The colors of health: Chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu Rev Food Sci Technol 2020; 11(1): 145-82.
[http://dx.doi.org/10.1146/annurev-food-032519-051729] [PMID: 32126181]
[9]
Nabi BG, Mukhtar K, Ahmed W, et al. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Biosci 2023; 52: 102403.
[http://dx.doi.org/10.1016/j.fbio.2023.102403]
[10]
Monselise SP, Halevy AH. Detection of lycopene in pink orange fruit. Science 1961; 133(3463): 1478.
[http://dx.doi.org/10.1126/science.133.3463.1478.a] [PMID: 13772077]
[11]
Zuorro A, Lavecchia R, Medici F, Piga L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Technol 2013; 6(12): 3499-509.
[http://dx.doi.org/10.1007/s11947-012-1003-6]
[12]
Aliyu A, Kabiruyunusa A, Abdullahi N. Kinetics of the thermal degradation of lycopene in tomatoes. Croat J Food Sci Technol 2020; 12(1): 84-9.
[http://dx.doi.org/10.17508/CJFST.2020.12.1.11]
[13]
Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF. Revealing the power of the natural red pigment lycopene. Molecules 2010; 15(2): 959-87.
[http://dx.doi.org/10.3390/molecules15020959] [PMID: 20335956]
[14]
Grabowska M, Wawrzyniak D, Rolle K, et al. Let food be your medicine: Nutraceutical properties of lycopene. Food Funct 2019; 10(6): 3090-102.
[http://dx.doi.org/10.1039/C9FO00580C] [PMID: 31120074]
[15]
Takács S, Pék Z, Csányi D, et al. Influence of water stress levels on the yield and lycopene content of tomato. Water 2020; 12(8): 2165.
[http://dx.doi.org/10.3390/w12082165]
[16]
Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol 2021; 118: 447-58.
[http://dx.doi.org/10.1016/j.tifs.2021.10.015]
[17]
Dawood MFA, Abu-Elsaoud AM, Sofy MR, Mohamed HI, Soliman MH. Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. Environ Sci Pollut Res Int 2022; 29(35): 52378-98.
[http://dx.doi.org/10.1007/s11356-022-19378-6] [PMID: 35258726]
[18]
Daood HG, Bencze G, Palotás G, Pék Z, Sidikov A, Helyes L. HPLC analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. J Chromatogr Sci 2014; 52(9): 985-91.
[http://dx.doi.org/10.1093/chromsci/bmt139] [PMID: 24046161]
[19]
Helyes L, Lugasi A, Pogonyi Á, Pék Z. Effect of variety and grafting on lycopene content of tomato (Lycopersicon lycopersicum L. Karsten) fruit. Acta Aliment 2009; 38(1): 27-34.
[http://dx.doi.org/10.1556/AAlim.2008.0013]
[20]
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and beyond color: Comparative overview of functional quality of tomato and watermelon fruits. Front Plant Sci 2019; 10: 769.
[http://dx.doi.org/10.3389/fpls.2019.00769] [PMID: 31263475]
[21]
Aghel N, Ramezani Z, Amirfakhrian S. Isolation and quantification of lycopene from tomato cultivated in Dezfoul, Iran. Jundishapur J Nat Pharm Prod 2011; 6: 9-15.
[22]
Alda LM, Gogoasa I, Bordean D-M, et al. Lycopene content of tomatoes and tomato products. J Agroaliment Proc Technol 2009; 15: 540-2.
[23]
Colle I, Van Buggenhout S, Van Loey A, Hendrickx M. High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility. Food Res Int 2010; 43(8): 2193-200.
[http://dx.doi.org/10.1016/j.foodres.2010.07.029]
[24]
Shi J, Maguer ML. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 2000; 40(1): 1-42.
[http://dx.doi.org/10.1080/10408690091189275] [PMID: 10674200]
[25]
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J 2008; 54(4): 733-49.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03447.x] [PMID: 18476875]
[26]
Stojiljkovic N, Ilic S, Jakovljevic V, et al. The encapsulation of lycopene in nanoliposomes enhances its protective potential in methotrexate-induced kidney injury model. Oxid Med Cell Longev 2018; 2018: 2627917.
[http://dx.doi.org/10.1155/2018/2627917]
[27]
Ghadage S, Mane K, Agrawal R, Pawar V. Tomato lycopene: Potential health benefits. J Pharm Innov 2019; 8: 1245-8.
[28]
Chasse GA, Mak ML, Deretey E, et al. An ab initio computational study on selected lycopene isomers. J Mol Struct Theochem 2001; 571(1-3): 27-37.
[http://dx.doi.org/10.1016/S0166-1280(01)00424-9]
[29]
Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ. Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem 2002; 50(1): 221-6.
[http://dx.doi.org/10.1021/jf010888q] [PMID: 11754571]
[30]
Mieliauskaite D, Viskelis P, Noreika R, Viskelis J. Lycopene solubility and its extraction from tomatoes and their by-products. Proceedings of the CIGR section VI international symposium on food processing, monitoring technology in bioprocesses and food quality management. Potsdam, Germany. 2009.
[31]
García-Closas R, Berenguer A, Tormo MJ, et al. Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. Br J Nutr 2004; 91(6): 1005-11.
[http://dx.doi.org/10.1079/BJN20041130] [PMID: 15182404]
[32]
Hussain MB, Ahmad RS, Waheed M, et al. Extraction and characterization of lycopene from tomato and tomato products. Russ J Agric Soc-Econ Sci 2017; 63(3): 195-202.
[http://dx.doi.org/10.18551/rjoas.2017-03.24]
[33]
Squillace P, Adani F, Scaglia B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem 2020; 315: 126224.
[http://dx.doi.org/10.1016/j.foodchem.2020.126224] [PMID: 32007813]
[34]
Silva YPA, Ferreira TAPC, Jiao G, Brooks MS. Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents. J Food Sci Technol 2019; 56(3): 1649-54.
[http://dx.doi.org/10.1007/s13197-019-03618-8] [PMID: 30956346]
[35]
Calvo MM, Dado D, Santa-María G. Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. Eur Food Res Technol 2007; 224(5): 567-71.
[http://dx.doi.org/10.1007/s00217-006-0335-8]
[36]
Strati IF, Oreopoulou V. Process optimisation for recovery of carotenoids from tomato waste. Food Chem 2011; 129(3): 747-52.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.015] [PMID: 25212294]
[37]
Pataro G, Carullo D, Falcone M, Ferrari G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov Food Sci Emerg Technol 2020; 63: 102369.
[http://dx.doi.org/10.1016/j.ifset.2020.102369]
[38]
Santana ÁL, Meireles MAA. Lycopene. In: A Centum of Valuable Plant Bioactive. Elsevier Amsterdam, Netherlands 2021; pp. 35-58.
[39]
Khalida P, Afifa EN, Novita TH, Purnawan C. Edible coating chitosan and lycopene isolated from watermelon as a solution to extend fruit and vegetables storage time from after harvest damage. AIP Conf Proc. 2019; 2085.(1) :020033
[http://dx.doi.org/10.1063/1.5095011]
[40]
Taungbodhitham AK, Jones GP, Wahlqvist ML, Briggs DR. Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chem 1998; 63(4): 577-84.
[http://dx.doi.org/10.1016/S0308-8146(98)00011-9]
[41]
Oberoi DPS, Sogi DS. Utilization of watermelon pulp for lycopene extraction by response surface methodology. Food Chem 2017; 232: 316-21.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.038] [PMID: 28490080]
[42]
Naz A, Butt MS, Sultan MT, Qayyum MMN, Niaz RS. Watermelon lycopene and allied health claims. EXCLI J 2014; 13: 650-60.
[PMID: 26417290]
[43]
Choudhary R, Bowser TJ, Weckler P, Maness NO, McGlynn W. Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biol Technol 2009; 52(1): 103-9.
[http://dx.doi.org/10.1016/j.postharvbio.2008.10.002]
[44]
Vani B, Kalyani S, Pabba M, Sridhar S. Forward osmosis aided concentration of lycopene carotenoid from watermelon juice. J Chem Technol Biotechnol 2021; 96(7): 1960-73.
[http://dx.doi.org/10.1002/jctb.6720]
[45]
Ashraf W, Latif A, Lianfu Z, et al. Technological advancement in the processing of lycopene: A review. Food Rev Int 2022; 38(5): 857-83.
[http://dx.doi.org/10.1080/87559129.2020.1749653]
[46]
Saeid A, Eun JB, Sagor MSA, Rahman A, Akter MS, Ahmed M. Effects of extraction and purification methods on degradation kinetics and stability of lycopene from watermelon under storage conditions. J Food Sci 2016; 81(11): C2630-8.
[http://dx.doi.org/10.1111/1750-3841.13504] [PMID: 27681032]
[47]
Sampaio GLA, Pacheco S, Ribeiro APO, Galdeano MC, Gomes FS, Tonon RV. Encapsulation of a lycopene-rich watermelon concentrate in alginate and pectin beads: Characterization and stability. Lebensm Wiss Technol 2019; 116: 108589.
[http://dx.doi.org/10.1016/j.lwt.2019.108589]
[48]
Bruno A, Durante M, Marrese PP, et al. Shades of red: Comparative study on supercritical CO2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells’ viability. J Food Compos Anal 2018; 65: 23-32.
[http://dx.doi.org/10.1016/j.jfca.2017.08.007]
[49]
Lenucci MS, Caccioppola A, Durante M, et al. Optimisation of biological and physical parameters for lycopene supercritical CO2 extraction from ordinary and high-pigment tomato cultivars. J Sci Food Agric 2010; 90(10): 1709-18.
[http://dx.doi.org/10.1002/jsfa.4006] [PMID: 20564441]
[50]
Egea I, Barsan C, Bian W, et al. Chromoplast differentiation: Current status and perspectives. Plant Cell Physiol 2010; 51(10): 1601-11.
[http://dx.doi.org/10.1093/pcp/pcq136] [PMID: 20801922]
[51]
Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 2006; 19(6-7): 669-75.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[52]
Rojas-Garbanzo C, Zimmermann BF, Schulze-Kaysers N, Schieber A. Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv. ‘Criolla’) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res Int 2017; 100(Pt 3): 445-53.
[http://dx.doi.org/10.1016/j.foodres.2016.12.004] [PMID: 28964367]
[53]
Ismail A. Guava pulp composition. Google Patents 2013.
[54]
Nagarajan J, Hoe BC, Krishnamurthy NP, et al. Co-extraction of lycopene and pectin from pink guava decanter by water-induced colloidal complexation: Optimization and techno-economic assessment. Food Bioprod Process 2022; 134: 181-92.
[http://dx.doi.org/10.1016/j.fbp.2022.05.004]
[55]
Nagarajan J, Krishnamurthy NP, Nagasundara Ramanan R, Raghunandan ME, Galanakis CM, Ooi CW. A facile water-induced complexation of lycopene and pectin from pink guava byproduct: Extraction, characterization and kinetic studies. Food Chem 2019; 296: 47-55.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.135] [PMID: 31202305]
[56]
Kumar K, Chauhan N, Rizvi QUEH, Jan S, Thakur P, Chauhan D. Guava wastes and by-products: Chemistry processing, and utilization Handbook of Fruit Wastes and By-Products. CRC Press Boca Raton, Florida 2022; pp. 99-107.
[57]
Kong KW, Ismail A, Tan CP, Rajab NF. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. Lebensm Wiss Technol 2010; 43(5): 729-35.
[http://dx.doi.org/10.1016/j.lwt.2009.10.011]
[58]
Kumar K, Ahmed N, Jan S, Thakur P, Chauhan D, Kaur J. Guava wastes and by-products: Chemistry, processing, and utilization. In: Handbook of Fruit Wastes and By-Products. 2022:. 99-112.
[59]
Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J 2021; 134(7): 783-91.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[60]
Bhalla Y, Gupta VK, Jaitak V. Anticancer activity of essential oils: A review. J Sci Food Agric 2013; 93(15): 3643-53.
[http://dx.doi.org/10.1002/jsfa.6267] [PMID: 23765679]
[61]
Chen X, Yang G, Liu M, et al. Lycopene enhances the sensitivity of castration-resistant prostate cancer to enzalutamide through the AKT/EZH2/androgen receptor signaling pathway. Biochem Biophys Res Commun 2022; 613: 53-60.
[http://dx.doi.org/10.1016/j.bbrc.2022.04.126] [PMID: 35533600]
[62]
Jiang X, Wu H, Zhao W, et al. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells. Cancer Cell Int 2019; 19(1): 68.
[http://dx.doi.org/10.1186/s12935-019-0789-y] [PMID: 30948928]
[63]
Chan YP, Chuang CH, Lee I, Yang NC. Lycopene in combination with sorafenib additively inhibits tumor metastasis in mice xenografted with lewis lung carcinoma cells. Front Nutr 2022; 9: 886988.
[http://dx.doi.org/10.3389/fnut.2022.886988] [PMID: 35711540]
[64]
Tjahjodjati S, Sugandi R, Umbas M, et al. The protective effect of lycopene on prostate growth inhibitory efficacy by decreasing insulin growth factor-1 in Indonesian human prostate cancer cells. Res Rep Urol 2020; 12: 137-43.
[65]
Xu J, Li Y, Hu H. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis. Mol Cell Probes 2019; 46: 101419.
[http://dx.doi.org/10.1016/j.mcp.2019.07.002] [PMID: 31279748]
[66]
Valadez-Bustos N, Escamilla-Silva EM, García-Vázquez FJ, Gallegos-Corona MA, Amaya-Llano SL, Ramos-Gómez M. Oral administration of microencapsulated B. Longum BAA-999 and lycopene modulates IGF-1/IGF-1R/IGFBP3 protein expressions in a colorectal murine model. Int J Mol Sci 2019; 20(17): 4275.
[http://dx.doi.org/10.3390/ijms20174275] [PMID: 31480481]
[67]
Polinati RM, Teodoro AJ, Correa MG, et al. Effects of lycopene from guava (Psidium guajava L.) derived products on breast cancer cells. Nat Prod Res 2022; 36(5): 1405-8.
[http://dx.doi.org/10.1080/14786419.2021.1880402] [PMID: 33641558]
[68]
Moran NE, Thomas-Ahner JM, Smith JW, et al. β-Carotene oxygenase 2 genotype modulates the impact of dietary lycopene on gene expression during early TRAMP prostate carcinogenesis. J Nutr 2022; 152(4): 950-60.
[http://dx.doi.org/10.1093/jn/nxab445] [PMID: 34964896]
[69]
Park B, Lim JW, Kim H. Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells. Nutr Res 2019; 70: 70-81.
[http://dx.doi.org/10.1016/j.nutres.2018.07.010] [PMID: 30098838]
[70]
Kim M, Kim SH, Lim JW, Kim H. Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells. J Physiol Pharmacol 2019; 70(4): 70.
[PMID: 31741457]
[71]
Sahin K, Yenice E, Tuzcu M, et al. Lycopene protects against spontaneous ovarian cancer formation in laying hens. J Cancer Prev 2018; 23(1): 25-36.
[http://dx.doi.org/10.15430/JCP.2018.23.1.25] [PMID: 29629346]
[72]
Shejawal KP, Randive DS, Bhinge SD, et al. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: Their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J Mater Sci Mater Med 2021; 32(2): 19.
[http://dx.doi.org/10.1007/s10856-021-06489-8] [PMID: 33576907]
[73]
dos Santos RC, Ombredane AS, Souza JMT, et al. Lycopene-rich extract from red guava (Psidium guajava L.) displays cytotoxic effect against human breast adenocarcinoma cell line MCF-7 via an apoptotic-like pathway. Food Res Int 2018; 105: 184-96.
[http://dx.doi.org/10.1016/j.foodres.2017.10.045] [PMID: 29433206]
[74]
Soares NCP, Elias MB, Machado CL, Trindade BB, Borojevic R, Teodoro AJ. Comparative analysis of lycopene content from different tomato-based food products on the cellular activity of prostate cancer cell lines. Foods 2019; 8(6): 201.
[http://dx.doi.org/10.3390/foods8060201] [PMID: 31185698]
[75]
Zhao Q, Yang F, Meng L, et al. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020; 8(3): 747-55.
[http://dx.doi.org/10.1111/andr.12747] [PMID: 31880092]
[76]
Cheng J, Miller B, Balbuena E, Eroglu A. Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants 2020; 9(7): 643.
[http://dx.doi.org/10.3390/antiox9070643] [PMID: 32708354]
[77]
Han H, Lim JW, Kim H. Lycopene inhibits activation of epidermal growth factor receptor and expression of cyclooxygenase-2 in gastric cancer cells. Nutrients 2019; 11(9): 2113.
[http://dx.doi.org/10.3390/nu11092113] [PMID: 31491956]
[78]
Aktepe OH, Şahi̇n TK, Güner G, Arik Z, Yalçin Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor- kappa B (NF-κB) pathway. Turk J Med Sci 2021; 51(1): 368-74.
[http://dx.doi.org/10.3906/sag-2005-413] [PMID: 32718121]
[79]
Jiang L-N, Liu Y-B, Li B-H. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian J Androl 2018; 21(1): 80-5.
[PMID: 30198495]
[80]
Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 2017; 11(2): 90-6.
[http://dx.doi.org/10.4162/nrp.2017.11.2.90] [PMID: 28386381]
[81]
Siegel R, Miller K, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2020; 66(1): 7-30.
[82]
Lu Y, Edwards A, Chen Z, et al. Insufficient lycopene intake is associated with high risk of prostate cancer: A cross-sectional study from the national health and nutrition examination survey (2003–2010). Front Public Health 2021; 9: 792572.
[http://dx.doi.org/10.3389/fpubh.2021.792572] [PMID: 34966715]
[83]
Fraser GE, Jacobsen BK, Knutsen SF, Mashchak A, Lloren JI. Tomato consumption and intake of lycopene as predictors of the incidence of prostate cancer: The Adventist Health Study-2. Cancer Causes Control 2020; 31(4): 341-51.
[http://dx.doi.org/10.1007/s10552-020-01279-z] [PMID: 32100191]
[84]
Beynon RA, Richmond RC, Santos Ferreira DL, et al. Investigating the effects of lycopene and green tea on the metabolome of men at risk of prostate cancer: The ProDiet randomised controlled trial. Int J Cancer 2019; 144(8): 1918-28.
[http://dx.doi.org/10.1002/ijc.31929] [PMID: 30325021]
[85]
Lane JA, Er V, Avery KNL, et al. ProDiet: A phase II randomized placebo-controlled trial of green tea catechins and lycopene in men at increased risk of prostate cancer. Cancer Prev Res 2018; 11(11): 687-96.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0147] [PMID: 30309839]
[86]
Carrasco C, Blanco L, Abengozar Á, Rodríguez AB. Effects of lycopene-enriched, organic, extra virgin olive oil on benign prostatic hyperplasia: A pilot study. Altern Ther Health Med 2021; 28(8): 8-15.
[PMID: 33421040]
[87]
Moran NE, Thomas-Ahner JM, Fleming JL, et al. Single nucleotide polymorphisms in β-carotene oxygenase 1 are associated with plasma lycopene responses to a tomato-soy juice intervention in men with prostate cancer. J Nutr 2019; 149(3): 381-97.
[http://dx.doi.org/10.1093/jn/nxy304] [PMID: 30801647]
[88]
WHO. Cancer. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer(Accessed on 31/1/2023)
[89]
Mustra Rakic J, Liu C, Veeramachaneni S, et al. Lycopene inhibits smoke-induced chronic obstructive pulmonary disease and lung carcinogenesis by modulating reverse cholesterol transport in ferrets. Cancer Prev Res 2019; 12(7): 421-32.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0063] [PMID: 31177203]
[90]
Sengngam K, Hoc TH, Hang DV, Tran Ngoan L. Trans-lycopene and β-cryptoxanthin intake and stomach cancer in vietnamese men: A pilot case-control study. Asian Pac J Cancer Prev 2022; 23(3): 861-5.
[http://dx.doi.org/10.31557/APJCP.2022.23.3.861] [PMID: 35345357]
[91]
Alhoshani NM, Al-Johani NS, Alkeraishan N, Alarifi S, Alkahtani S. Effect of lycopene as an adjuvant therapy with 5-florouracil in human colon cancer. Saudi J Biol Sci 2022; 29(9): 103392.
[http://dx.doi.org/10.1016/j.sjbs.2022.103392] [PMID: 35957702]
[92]
Arathi BP, Raghavendra-Rao Sowmya P, Kuriakose GC, et al. Fractionation and characterization of lycopene-oxidation products by LC-MS/MS (ESI)+: Elucidation of the chemopreventative potency of oxidized lycopene in breast-cancer cell lines. J Agric Food Chem 2018; 66(43): 11362-71.
[http://dx.doi.org/10.1021/acs.jafc.8b04850] [PMID: 30259736]
[93]
Vasconcelos AG, Valim MO, Amorim AGN, et al. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Res Int 2020; 136: 109548.
[http://dx.doi.org/10.1016/j.foodres.2020.109548] [PMID: 32846600]
[94]
Meng X, Li L, An H, et al. Lycopene alleviates titanium dioxide nanoparticle-induced testicular toxicity by inhibiting oxidative stress and apoptosis in mice. Biol Trace Elem Res 2021; 200(6): 1-13.
[PMID: 34396458]
[95]
Cao L, Zhao J, Ma L, et al. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicol Environ Saf 2021; 225: 112737.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112737] [PMID: 34482067]
[96]
Jhou BY, Song TY, Lee I, Hu ML, Yang NC. Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by downregulation of NADPH oxidase 4 protein expression. J Agric Food Chem 2017; 65(32): 6893-903.
[http://dx.doi.org/10.1021/acs.jafc.7b03036] [PMID: 28723216]
[97]
Wang S, Wu YY, Wang X, et al. Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradation. Aging 2020; 12(9): 8167-90.
[http://dx.doi.org/10.18632/aging.103132] [PMID: 32365333]
[98]
Yang CM, Huang SM, Liu CL, Hu ML. Apo-8′-lycopenal induces expression of HO-1 and NQO-1 via the ERK/p38-Nrf2-ARE pathway in human HepG2 cells. J Agric Food Chem 2012; 60(6): 1576-85.
[http://dx.doi.org/10.1021/jf204451n] [PMID: 22260728]
[99]
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019; 83: 102673.
[http://dx.doi.org/10.1016/j.dnarep.2019.102673] [PMID: 31387777]
[100]
Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004; 202(1): 275-93.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00199.x] [PMID: 15546400]
[101]
Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[102]
Huang CS, Fan YE, Lin CY, Hu ML. Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J Nutr Biochem 2007; 18(7): 449-56.
[http://dx.doi.org/10.1016/j.jnutbio.2006.08.007] [PMID: 17049831]
[103]
Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37(9): 11553-72.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[104]
Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci 2003; 100(5): 2645-50.
[http://dx.doi.org/10.1073/pnas.0437939100] [PMID: 12598651]
[105]
Abdel-Rahman HG, Abdelrazek H, Zeidan DW, Mohamed RM, Abdelazim AM. Lycopene: Hepatoprotective and antioxidant effects toward bisphenol A-induced toxicity in female Wistar rats. Oxid Med Cell Longev 2018; 2018: 5167524.
[http://dx.doi.org/10.1155/2018/5167524]
[106]
Liu B, Yan L, Jiao X, et al. Lycopene alleviates hepatic hypoxia/reoxygenation injury through Nrf2/HO-1 pathway in AML12 cell. J Interferon Cytokine Res 2020; 40(8): 406-17.
[http://dx.doi.org/10.1089/jir.2020.0038] [PMID: 32813603]
[107]
Xue R, Qiu J, Wei S, et al. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in Kupffer cells. Ann Transl Med 2021; 9(8): 631.
[http://dx.doi.org/10.21037/atm-20-7084] [PMID: 33987329]
[108]
Mustra Rakic J, Liu C, Veeramachaneni S, et al. Dietary lycopene attenuates cigarette smoke-promoted nonalcoholic steatohepatitis by preventing suppression of antioxidant enzymes in ferrets. J Nutr Biochem 2021; 91: 108596.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108596] [PMID: 33548472]
[109]
Xu X, Teng Y, Zou J, Ye Y, Song H, Wang Z. Effects of lycopene on vascular remodeling through the LXR–PI3K–AKT signaling pathway in APP/PS1 mice. Biochem Biophys Res Commun 2020; 526(3): 699-705.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.063] [PMID: 32253029]
[110]
Czarnik-Kwaśniak J, Kwaśniak K, Kwasek P, Świerzowska E, Strojewska A, Tabarkiewicz J. The influence of lycopene,[6]-gingerol, and silymarin on the apoptosis on U-118MG glioblastoma cells in vitro model. Nutrients 2019; 12(1): 96.
[http://dx.doi.org/10.3390/nu12010096] [PMID: 31905849]
[111]
Fang Y, Ou S, Wu T, et al. Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s disease. PeerJ 2020; 8: e9308.
[http://dx.doi.org/10.7717/peerj.9308] [PMID: 32551202]
[112]
Ou S, Fang Y, Tang H, et al. Lycopene protects neuroblastoma cells against oxidative damage via depression of ER stress. J Food Sci 2020; 85(10): 3552-61.
[http://dx.doi.org/10.1111/1750-3841.15419] [PMID: 32885410]
[113]
Zhao X-Z, Zhu N-W, Yin X-L, et al. Possible mechanisms of lycopene amelioration of learning and memory impairment in rats with vascular dementia. Neural Regen Res 2020; 15(2): 332-41.
[http://dx.doi.org/10.4103/1673-5374.265565] [PMID: 31552907]
[114]
Wang J, Li L, Wang Z, et al. Supplementation of lycopene attenuates lipopolysaccharide-induced amyloidogenesis and cognitive impairments via mediating neuroinflammation and oxidative stress. J Nutr Biochem 2018; 56: 16-25.
[http://dx.doi.org/10.1016/j.jnutbio.2018.01.009] [PMID: 29454265]
[115]
Meeta M, Sharma S, Unni J, Khandelwal S, Choranur A, Malik S. Cardiovascular and osteoporosis protection at menopause with lycopene: A placebo-controlled double-blind randomized clinical trial. J Midlife Health 2022; 13(1): 50-6.
[http://dx.doi.org/10.4103/jmh.jmh_61_22] [PMID: 35707307]
[116]
Russo C, Ferro Y, Maurotti S, et al. Lycopene and bone: An in vitro investigation and a pilot prospective clinical study. J Transl Med 2020; 18(1): 43.
[http://dx.doi.org/10.1186/s12967-020-02238-7] [PMID: 31996227]
[117]
Li X, Xue W, Cao Y, Long Y, Xie M. Effect of lycopene on titanium implant osseointegration in ovariectomized rats. J Orthop Surg Res 2018; 13(1): 237.
[http://dx.doi.org/10.1186/s13018-018-0944-5] [PMID: 30223885]
[118]
Oliveira GR, Vargas-Sanchez PK, Fernandes RR, et al. Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Miner Metab 2019; 37(4): 658-67.
[http://dx.doi.org/10.1007/s00774-018-0970-8] [PMID: 30357566]
[119]
Xia B, Zhu R, Zhang H, et al. Lycopene improves bone quality and regulates AGE/RAGE/NF-кB signaling pathway in high-fat diet-induced obese mice. Oxid Med Cell Longev 2022; 2022: 3697067.
[120]
Ardawi MSM, Badawoud MH, Hassan SM, et al. Lycopene nanoparticles promotes osteoblastogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cells. Eur Rev Med Pharmacol Sci 2021; 25(22): 6894-907.
[PMID: 34859851]
[121]
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem 2018; 57: 26-34.
[http://dx.doi.org/10.1016/j.jnutbio.2018.03.004] [PMID: 29655028]
[122]
Mannino F, D’Angelo T, Pallio G, et al. The nutraceutical genistein-lycopene combination improves bone damage induced by glucocorticoids by stimulating the osteoblast formation process. Nutrients 2022; 14(20): 4296.
[http://dx.doi.org/10.3390/nu14204296] [PMID: 36296984]
[123]
Mare R, Maurotti S, Ferro Y, et al. A rapid and cheap method for extracting and quantifying lycopene content in tomato sauces: Effects of lycopene micellar delivery on human osteoblast-like cells. Nutrients 2022; 14(3): 717.
[http://dx.doi.org/10.3390/nu14030717] [PMID: 35277076]
[124]
Hadley CW, Clinton SK, Schwartz SJ. The consumption of processed tomato products enhances plasma lycopene concentrations in association with a reduced lipoprotein sensitivity to oxidative damage. J Nutr 2003; 133(3): 727-32.
[http://dx.doi.org/10.1093/jn/133.3.727] [PMID: 12612144]
[125]
Schmitz HH, Poor CL, Wellman RB, Erdman JW Jr. Concentrations of selected carotenoids and vitamin A in human liver, kidney and lung tissue. J Nutr 1991; 121(10): 1613-21.
[http://dx.doi.org/10.1093/jn/121.10.1613] [PMID: 1765826]
[126]
Kun Y, Ssonko Lule U, Xiao-Lin D. Lycopene: Its properties and relationship to human health. Food Rev Int 2006; 22(4): 309-33.
[http://dx.doi.org/10.1080/87559120600864753]
[127]
Hoppe PP, Krämer K, Van den Berg H, Steenge G, van Vliet T. Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur J Nutr 2003; 42(5): 272-8.
[http://dx.doi.org/10.1007/s00394-003-0421-7] [PMID: 14564460]
[128]
Cooperstone JL, Ralston RA, Riedl KM, et al. Enhanced bioavailability of lycopene when consumed as cis -isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res 2015; 59(4): 658-69.
[http://dx.doi.org/10.1002/mnfr.201400658] [PMID: 25620547]
[129]
Cohn W, Thürmann P, Tenter U, Aebischer C, Schierle J, Schalch W. Comparative multiple dose plasma kinetics of lycopene administered in tomato juice, tomato soup or lycopene tablets. Eur J Nutr 2004; 43(5): 304-12.
[http://dx.doi.org/10.1007/s00394-004-0476-0] [PMID: 15309451]
[130]
Tang G, Ferreira ALA, Grusak MA, et al. Bioavailability of synthetic and biosynthetic deuterated lycopene in humans. J Nutr Biochem 2005; 16(4): 229-35.
[http://dx.doi.org/10.1016/j.jnutbio.2004.11.007] [PMID: 15808327]
[131]
Harper WJ, Hewitt SA, Huffman LM. Model food systems and protein functionality.In: Milk Proteins. Elsevier 2020; pp. 573-98.
[http://dx.doi.org/10.1016/B978-0-12-815251-5.00015-3]
[132]
Galdeano MC, dos Santos Gomes F, Chávez DWH, et al. Lycopene-rich watermelon concentrate used as a natural food colorant: Stability during processing and storage. Food Res Int 2022; 160: 111691.
[http://dx.doi.org/10.1016/j.foodres.2022.111691] [PMID: 36076396]
[133]
Siddiq M, Harte J, Dolan K, Khan A, Collins J, Perkins Veazie P. The use of lycopene-rich watermelon juice or juice concentrate in different food systems. 2006. Available from: https://www.ars.usda.gov/research/publications/publication/?seqNo115=206483
[134]
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage stability and in vitro bioaccessibility of microencapsulated tomato (solanum lycopersicum l.) pomace extract. Bioengineering 2022; 9(7): 311.
[http://dx.doi.org/10.3390/bioengineering9070311] [PMID: 35877362]
[135]
Otálora MC, Wilches-Torres A, Gómez Castaño JA. Evaluation of guava pulp microencapsulated in mucilage of aloe vera and opuntia ficus-indica as a natural dye for Yogurt: Functional characterization and color stability. Foods 2022; 11(15): 2380.
[http://dx.doi.org/10.3390/foods11152380] [PMID: 35954146]
[136]
Luana Carvalho de Queiroz J, Medeiros I, Costa Trajano A, et al. Encapsulation techniques perfect the antioxidant action of carotenoids: A systematic review of how this effect is promoted. Food Chem 2022; 385: 132593.
[http://dx.doi.org/10.1016/j.foodchem.2022.132593] [PMID: 35276479]
[137]
Bhat NA, Wani IA, Hamdani AM. Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon 2020; 6(1): e03042.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03042] [PMID: 31989047]
[138]
Olapade AA, Adeyemo MA. Evaluation of cookies produced from blends of wheat, cassava and cowpea flours 2014; 3(2): 175-85.
[139]
Xu B, Chang SKC. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J Agric Food Chem 2008; 56(16): 7165-75.
[http://dx.doi.org/10.1021/jf8012234] [PMID: 18680298]
[140]
Phan-Thi H, Waché Y. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV–Vis spectra as a marker. Food Chem 2014; 156: 58-63.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.040] [PMID: 24629938]
[141]
Yucel B, Topal E, Kosoglu M. Bee products as functional food. In: Superfood and functional food-an overview of their processing and utilization . InTech London, England. 2017; pp. 15-33.
[142]
Putnik P, Bursać Kovačević D, Režek Jambrak A, et al. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes-A review. Molecules 2017; 22(5): 680.
[http://dx.doi.org/10.3390/molecules22050680] [PMID: 28448474]
[143]
Sampedro F, McAloon A, Yee W, Fan X, Geveke DJ. Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food Bioprocess Technol 2014; 7(7): 1928-37.
[http://dx.doi.org/10.1007/s11947-014-1298-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy